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Abstract
We present a volumetric iso-geometric finite element analysis based on Catmull-Clark solids. This concept allows
one to use the same representation for the modeling, the physical simulation, and the visualization, which optimizes
the design process and narrows the gap between CAD and CAE. In our method the boundary of the solid model
is a Catmull-Clark surface with optional corners and creases to support the modeling phase. The crucial point in
the simulation phase is the need to perform efficient integration for the elements. We propose a method similar to
the standard subdivision surface evaluation technique, such that numerical quadrature can be used.
Experiments show that our approach converges faster than methods based on tri-linear and tri-quadratic ele-
ments.However, the topological structure of Catmull-Clark elements is as simple as the structure of linear ele-
ments. Furthermore, the Catmull-Clark elements we use are C2-continuous on the boundary and in the interior
except for irregular vertices and edges.

Categories and Subject Descriptors (according to ACM CCS):

1. Introduction

Finite element methods are used in various areas ranging
from mechanical engineering [Mer09] to computer graph-
ics [ISF07] and bio-medical applications [BN96]. In en-
gineering, one of the major problems is still the gap be-
tween computer-aided design (CAD) and computer-aided
engineering (CAE). This gap results from different tools for
the design based on exact geometries, like boundary repre-
sentations or NURBS, and for the simulation based on ap-
proximative mesh representations.

The process of converting exact geometries to meshes is
time-consuming and causes approximation errors. Although,
in some instances meshes can be created automatically, of-
ten mesh creation is the most time consuming part. For auto-
motive, aerospace, and ship industry it is estimated that the
mesh creation consumes about 80% of the overall computa-
tional design process [BCC∗10]. As design and analysis are
typically done in sequence and sometimes even in multiple
design iteration loops, it is necessary to convert data between
CAD and CAE systems repeatedly. Thus, a change of the
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CAD geometry requires an adaptation of the CAE geometry
before the simulation can be repeated.

We present a method using Catmull-Clark solids for the
geometric modeling and the physical simulation, to narrow
the gap between CAD and CAE. We refer to the elements of
the solids as Catmull-Clark elements. We restrict the solid
topology to three-manifold meshes of hexahedra with arbi-
trary edge and vertex connectivity.

Our method is illustrated in Figure 2. In the initial phases
the boundary surface is modeled, the interior of the model is
meshed with hexahedra and the boundary conditions, such as
external forces, are defined. These three steps are regarded
as pre-processing and are not discussed in this paper. The
boundary and the interior of the solid model are Catmull-
Clark surfaces and Catmull-Clark solids, respectively, with
optional sharp features such as corners and creases. Thus,
the solid model is C1-continuous away from the sharp fea-
ture in the limit. Subsequently, the solid model can be subdi-
vided to increase the accuracy of the simulation. These rules
are simpler than those for NURBS, especially for models
with arbitrary topology. Next, the stiffness matrices are as-
sembled. One obtains a system of equations to be solved
and additional post-processing computations. These last two
steps are the post-processing to our method and are not dis-
cussed in this paper. If the simulation results are inadequate
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Figure 1: Deformation of a hexahedral mesh on three levels of refinement. First row: base mesh, second row: one-time re-
fined mesh, third row: two-times refined mesh. First column: undeformed mesh, second column: deformed mesh, third column:
deformed mesh after four steps of refinement, fourth column: deformation stress, fifth and sixth columns: cut-away view with
stress in the interior. Green faces and green edges in columns one to three are loaded faces and feature edges, respectively. In
columns four to six, the stress is visualized by the linearly interpolated color hue from 0◦ (high stress) to 120◦ (low stress).

the geometric model can be adapted after the simulation and
the whole process is repeated. As the same representation is
used for the modeling and the simulation, these adaptations
do not require data conversion.

Modeling of Catmull-Clark surface

Hexahedral meshing

Definition of boundary conditions

Refinement for higher simulation accuracy

Assembly of stiffness matrix

Solve system of equations

Post-processing
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Figure 2: Steps of our modeling and simulation framework.

We demonstrate the efficiency and effectiveness of our ap-
proach for problems in structural mechanics. The basic con-
cept is also applicable to problems in fluid dynamics, heat
conduction or electromechanics. Figure 1 illustrates our ap-
proach for a simple input mesh. A vertical load is applied to
the green faces, while the model is fixed at the bottom. The

problem is simulated on three levels of refinement. In Sec-
tion 2 we discuss recent work on iso-geometric analysis and
subdivision schemes. We briefly review subdivision surfaces
and solids in Section 3. Standard finite element techniques
for linear elasticity problems are described in Section 5. In
Sections 6 and 7 we describe our approach for finite element
analysis based on Catmull-Clark solids and demonstrate its
effectiveness in Section 8.

2. Related Work

2.1. Iso-geometric analysis

The concept of iso-geometric analysis was originally pro-
posed in [HCB05]. Here, the idea is to use the same geomet-
ric representation based on NURBS for the modeling and the
simulation. Other representations like B-splines [KFBY99]
or T-splines [BCC∗10] were also used. Since the same model
is used in both phases, there is no need to convert the
NURBS to a mesh. As far as the simulation is concerned, an
important aspect of these approaches is the fact that refine-
ment or degree elevation can be used to increase the simula-
tion accuracy without changing the geometry. The drawback
of this approach is that the underlying grid must be a struc-
tured grid and that solid meshes are not supported.

In the pioneering works [COS00, CSA∗02] a similar ap-
proach based on Loop-subdivision surfaces for the geomet-
ric modeling and the mechanical simulation of thin flexible
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structures is proposed. The subdivision surfaces are used to
describe both, the undeformed geometry and the smooth in-
terpolated displacement field with Kirchhoff-Love theory of
thin shells. Due to the usage of subdivision surfaces, this ap-
proach supports only unstructured two-manifold meshes.

2.2. Subdivision surfaces

Subdivision surfaces are a a standard modeling tool in com-
puter graphics to model free-form surfaces [DKT98]. They
were first developed in 1978 [CC78, DS78]. A subdivision
surface is defined as the limit of an iterative refinement
process, starting with a polygonal base mesh M0 of con-
trol points. Iterating the subdivision process generates a se-
quence of refined meshes M1, . . . ,Mn, that converges to a
smooth limit surface M∞ for n→∞. Usually the subdivi-
sion operator can be factored into a topological refinement
operation followed by a geometrical smoothing operation.
While the topological refinement inserts new vertices or flips
edges, the geometrical smoothing changes vertex positions.

Subdivision surfaces either approximate or interpolate the
base mesh. For approximating schemes the control points
of Mi usually do not lie on Mi+1, i ≥ 0. Approximating
schemes for arbitrary quadrangle meshes are Doo-Sabin and
Catmull-Clark subdivision [CC78, DS78]. Both are gener-
alizations of uniform tensor-product B-spline surfaces. Ap-
proximating schemes for arbitrary triangle meshes the algo-
rithm of Loop and

√
3-subdivision [Loo87, Kob00]. For in-

terpolating schemes all control points of Mi are also in Mi+1,
i ≥ 0. Thus, the limit surface interpolates these points. An
interpolating subdivision scheme for surfaces is the butterfly
scheme of [DLG90].

While subdivision surfaces have continuous normals,
real-world models have sharp features with discontinuous
normals. To model these features subdivision algorithms are
tailored to allow for corners and creases. Examples for such
special rules, where tagged edges will yield creases on the
subdivision surface, are presented in [BLZ00,BMZB02]. For
more details on subdivision surfaces we refer to [PR08].

2.3. Subdivision solids

In contrast to subdivision surfaces, subdivision solids have
gained much less attention. One of the first algorithms is de-
scribed in [JM96, MJ96]. It is a generalization of Catmull-
Clark subdivision to 3D solids for smooth deformations
based on unstructured hexahedral meshes. As the topolog-
ical refinement operation of this algorithm made it hard to
analyze the smoothness of the resulting limit solid, a mod-
ified operation was proposed in [BSWX02]. The resulting
deformations are provably smooth everywhere except at the
vertices of the base mesh.

A subdivision scheme for tetrahedral meshes based on
trivariate box splines was proposed in [CMQ02, CMQ03].

The topological refinement first splits every tetrahedron into
four tetrahedra and one octahedron. Subsequently, every oc-
tahedron is split along one of its diagonals into six tetrahedra
causing a potential directional bias. To remedy this effect
Schaefer et al. [SHW04] use a topological refinement that
splits the octahedra symmetrically into eight tetrahedra and
six octahedra. Their geometric smoothing allows for glob-
ally C2-continuous deformations, except along edges of M0.
The major drawback of these schemes is the use of tetrahe-
dra and octahedra, which are not well-suited for finite vol-
ume simulations, and require a complicated data structure.

A solid subdivision scheme that supports arbitrary poly-
hedral elements and adaptive refinement was presented in
[Pas02]. However, its topological refinement splits the poly-
hedra into pyramids causing complex merging operations in
every subdivision step.

3. Subdivision

3.1. Catmull-Clark surfaces

The subdivision rules for Catmull-Clark surfaces are defined
by the following four steps at a vertex of valence n:

1. For each face add a face point to its centroid.
2. For each edge add an edge point E = (F0 +2M+F1)/4,

where F0 and F1 are the face points of the two incident
faces and M is the edge midpoint.

3. For each face connect its face point into all edge points.
For quadrilaterals this operation splits each old quadrilat-
eral to four new quadrilaterals.

4. Move each original vertex Vold to its new location Vnew =
(Favg +2Mavg +(n−3)Vold)/n, where Mavg and Favg are
the averages of all adjacent edge and face points.

For boundaries and sharp features special rules are given in
[BLZ00]. An example of the overall subdivision is shown in
the top row of Figure 3.

All steps of Catmull-Clark subdivision are linear combi-
nations. Thus, there is a linear operator that relates the mesh
Mi to the finer mesh Mi+1, i ≥ 1. This operator generates
only regular vertices, i.e., vertices with valence four, and
coincides in mesh regions with regular vertices only with
uniform bi-cubic B-spline knot insertion. Therefore, this lin-
ear operator can be localized. There exists a so-called sub-
division matrix S that relates each vertex and its two-ring
neighborhood in Mi to the corresponding vertex in Mi+1 and
its refined two ring neighborhood. The subdivision matrix is
usually parametrized by the valance n of the vertex.

4. Catmull-Clark solids

The solid subdivision scheme we use for the iso-geometric
finite element analysis is the previously described Catmull-
Clark scheme. The advantage of this scheme is its simplic-
ity compared to the other subdivision solids. Starting with
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a hexahedral base mesh, only hexahedral elements are gen-
erated, all new vertices are regular, i.e. they have six inci-
dent edges, and all new edges are regular, i.e. they have four
incident hexahedra. However, this scheme can generate in-
verted hexahedra even from a non-self-intersecting hexahe-
dral mesh. The subdivision rules for Catmull-Clark solids
for hexahedral meshes are defined by five steps [JM96]:

1. For each hexahedron add a cell point to its centroid.
2. For each face add a face point F = (C0 +2A+C1)/4,

where C0 and C1 are the cell points of the two incident
hexahedra and A is the face centroid.

3. For each edge add an edge point E =(Cavg+ 2Aavg+ (n−
3)M)/n, where n is the number of incident faces, M is the
edge midpoint, and Cavg and Aavg are the averages of cell
and face points of incident cells and faces, respectively.

4. For each hexahedron connect its cell point to all its face
points and connect all its face points to all incident edge
points. This splits one hexahedron to eight hexahedra.

5. Move each original vertex Vold to its new location Vnew =
(Cavg +3Aavg +3Mavg +Vold)/8, where Cavg, Aavg, and
Mavg are the averages of the cell, face and edge points of
all adjacent cells, faces, and edges.

For faces, edges and vertices on the boundary of the solid
corresponding rules for Catmull-Clark surfaces are applied.
An example of this algorithm is shown in Figure 3.

Also for Catmull-Clark solids there is a subdivision
matrix that relates each vertex and its neighborhood in
Mi to its corresponding vertex and neighborhood in Mi+1
[BSWX02]. However, this matrix depends on the local mesh
topology and is thus parametrized via a graph isomorphy.

Figure 3: Two steps of Catmull-Clark refinement applied to
a hexahedral mesh with sharp boundary edges (green).

5. Finite element analysis of elastic materials

Finite element analysis is a numerical method to solve partial
differential equations by discretizing these equations in their
spatial dimensions. This discretization is done locally in
small regions of simple shape (the finite elements) connected
at discrete nodes. The solution of the variational equations is

approximated with local shape functions defined for the fi-
nite elements. This results in matrix equations relating the
input (boundary conditions) at the discrete nodes to the out-
put at these nodes (the unknown variables). The contribution
of each element is computed in terms of local stiffness ma-
trices Km, which are assembled into a global stiffness matrix
K. This yields for static elasticity problems a linear system
of equations Ku = f, where u is the vector of the unknown
variables and f of the external forces. The computation of
local stiffness matrices Km depends on the physical problem
and is described for linear elastic material in the sequel.
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Figure 4: Tri-linear (top) and tri-quadratic (bottom) La-
grangian hexahedral elements in local (left) and global co-
ordinates (right) with respect to their shape functionsN .

For volumetric problems the most common element types
are hexahedra and tetrahedra. Typically, these elements are
defined in a local coordinate system. This simplifies the con-
struction of shape functions also for higher-order elements
with curved boundaries and the numerical quadrature arising
during the assembly of the stiffness matrix. If the same shape
functions are used to describe the variation of the unknowns,
such as displacement or fluid potential, and the mapping
between the global and local coordinates, the elements are
called iso-parametric elements.

A tri-linear and a tri-quadratic hexahedral element are il-
lustrated in Figure 4, where (ξ,η,ζ) are local and (x,y,z) are
global coordinates. The tri-linear element, for instance, has
eight local shape functions N = [N1, ...,N8] defined over
the cube [−1,+1]3. For more details on elements of differ-
ent order and their shape functions we refer to [SG04].

During the assembly of the stiffness matrix the shape
functions and their derivatives with respect to global co-
ordinates are involved. The conversion of these deriva-
tives between the coordinate systems is provides by the
Jacobian matrix. For the integration over the volume of
the elements usually numerical integration such as Gauss-
Legendre quadrature is used [PTVF07]. In one dimension
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these quadrature rules are of the form∫ +1

−1
f (x)dx≈

k

∑
i=1

wif(xi),

where k is the number of integration points, wi are the
weights, and xi are the sampling points. For k = 2 Gauss-
Legendre quadrature is exact for cubic polynomials. The val-
ues for k = 1,2,3 are shown in Table 1.

k xi wi

1 0 2
2 −

√
1/3 +

√
1/3 1 1

3 −
√

3/5 0 +
√

3/5 5/9 8/9 5/9

Table 1: Sampling points xi and weights wi for Gauss-
Legendre quadrature of order k = 1,2,3.

In the theory of linear elasticity, a solid model Ω consists
of a set of nodes x = [x,y,z]T . These nodes are connected
to form the elements for the finite element analysis. When
forces are applied, Ω is deformed into a new shape. Thus,
x is displaced to x + u with u(x) = [u,v,w]T . The bound-
ary of the domain Ω consists of the boundary Γ1 with fixed
displacements u(x) = u0(x), the boundary Γ2 where forces
are applied, and the boundary Γ3 without constraints. These
components satisfy Γ =

⋃
i Γi and

⋂
i Γi = ∅.

The strain energy of a linear elastic body Ω is defined as

Estrain =
1
2

∫
Ω

ε
T

σdx,

with the stress vector σ and the strain vector ε =
[εx εy εz γxy γxz γyz]

T defined as

εx =
∂u
∂x

, εy =
∂u
∂y

, εz =
∂u
∂z

,

γxy =
∂u
∂y

+
∂v
∂x

, γxz =
∂u
∂z

+
∂w
∂x

, γyz =
∂v
∂z

+
∂w
∂y

.

This can be rewritten as ε = Bu, where B is the so-
called strain-displacement matrix, that depends on the partial
derivatives of the shape functions of used finite elements

BT =

∂/∂x 0 0 ∂/∂y ∂/∂z 0
0 ∂/∂y 0 ∂/∂x 0 ∂/∂z
0 0 ∂/∂z 0 ∂/∂x ∂/∂y

. (1)

Hooke’s law σ = Cε relates the stress vector σ to ε via the
material matrix C, which is defined by the Lamé constants λ

and µ. Rewriting the strain energy and adding work applied
by internal and external forces f and g, respectively, yields
the total energy function

E(u) = 1
2

∫
Ω

uT BT CBudx−
∫

Ω

fT udx−
∫

Γ2

gT da. (2)

A detailed discussion is provided in [ZT00, SG04].

6. Assembly of Catmull-Clark solids

We use Catmull-Clark solids for the representation of the
geometry and the approximation of the displacement field
defined by Equation (2). To solve this equation the finite el-
ement method is used to define a linear system of equations
of the form Ku = f, where K is the global stiffness matrix,
u is the unknown displacement vector and f are the exter-
nal forces. The global stiffness matrix K is defined via the
element stiffness matrices

Km =
∫ ∫ ∫

BT CBdxdydz. (3)

As the exact evaluation of (3) is in general not possible,
three-dimensional Gauss-Legendre quadrature is used:∫ +1

−1

∫ +1

−1

∫ +1

−1
f(x,y,z)dxdydz≈

n

∑
i=1

Wif(xi,yi,zi), (4)

where xi, yi and zi are permutations of the sampling points
of the univariate quadrature rule and Wi is the product of the
corresponding weights. As the elements are defined in local
coordinates, (4) in combination with (3) yields

Km ≈
n

∑
i=1

Wi det(J)BT CB. (5)

The assembly is illustrated in Procedure 1, where line nine
implements equation (5). In lines two and three the number
of nodes m in the one ring of an element is used to initialize
the element stiffness matrix Km. In line six the derivatives D
of the basis functions for the Catmull-Clark elements at the
current sampling point p are computed. This function will
be discussed in Section 7.3 in detail. As these derivatives are
computed in local coordinates ξ,η,ζ, the Jacobian J is com-
puted from the global coordinates of the current hexahedron
Coordinates(h) (line seven) for the conversion to global co-
ordinates x,y,z. Using the Jacobian J and the derivatives D,
the strain-displacement matrix B computed in AssembleB(J,
D) according to (1). Every part of Procedure 1 can also be
used for standard elements except the computation of the
derivatives, that is tailored for Catmull-Clark solids.

For standard tri-linear and tri-quadratic elements these
derivatives can be computed directly. For Catmull-Clark el-
ements it is not obvious how to compute derivatives due to
topologically arbitrary elements as shown in Figure 5(b).
However, evaluations of topological arbitrary elements can
be reduced to evaluations of regular elements shown in Fig-
ure 5(a). These regular elements can be evaluated directly,
see Section 7.1. The evaluation for the irregular elements is
discussed in Section 7.2. Thus, our approach can be inte-
grated with the iso-parametric concept since the same pro-
gram code can be used as the one used for the standard finite
elements from Figure 4. Only the evaluation at the sampling
points needs to be adapted to the arbitrary topological setting
illustrated in Figure 5(b).

Once the stiffness matrix K is assembled, the force vector

submitted to Eurographics Symposium on Geometry Processing (2010)



6 D. Burkhart & B. Hamann & G. Umlauf / Iso-geometric Finite Element Analysis Based on Catmull-Clark Subdivision Solids

Procedure 1 AssembleCCElements(HexMesh m)
1: for all (HexCC h in m) do
2: m = NumberOfNodesInOneRing(h);
3: Km = InitMatrix(3 ·m, 3 ·m);
4: for (int i = 0; i < n; i++) do
5: p = SamplePoint(i);
6: D = Derivative(h, p);
7: J = D · Coordinates(h);
8: B = AssembleB(J, D);
9: Km += Wi ·det(J) ·BT ·C ·B; // see (5)

10: end for
11: Assemble(K, Km);
12: end for

(a) (b)

Figure 5: Regular Catmull-Clark element (left), irregular
Catmull-Clark element (right). To evaluate the highlighted
hexahedron, all neighbored hexahedra are required.

f can be constructed. Fixed displacements are enforced us-
ing the penalty method described in [SG04]. Finally, the lin-
ear system of equations Ku = f can be solved with standard
linear solvers. To derive the deformed geometry the com-
puted displacement field is applied to the original geome-
try. The relation ε = Bue yields the strain at the sampling
points of the Gauss-Legendre quadrature for each element,
where ue is the displacement vector for a single element.
With Hooke’s law σ = Cε the stress is computed.

7. Evaluation of Catmull-Clark solids

Using Catmull-Clark solids for finite element analysis, the
displacement field within an element does not only depend
on the displacements of the nodes attached to the element but
also on the displacements of the nodes of adjacent elements,
because the support of the basis functions of Catmull-Clark
solids overlaps a one-ring neighborhood of elements. Hence,
for the evaluation at the sampling points of the Gauss-
Legendre quadrature, the one-ring neighborhood around an
element is required. This is illustrated in Figure 5, where the
gray elements are evaluated and all adjacent elements are re-
quired for the evaluation.

7.1. The regular case

As Catmull-Clark solids generalize tri-cubic uniform B-
splines to arbitrary topology, cubic uniform B-spline ba-
sis functions can be used, provided the element has no

irregular vertex, see Figure 5(a). These regular elements
depend on 64 nodal positions. The associated basis func-
tions for (s, t,u) ∈ [0,1]3 and i, j,k = 0, . . . ,3 are given by
Ni jk(s, t,u) =Ni(s)N j(t)Nk(u), where N0, . . . ,N3 are the uni-
form cubic B-spline functions.

7.2. The irregular case

If a hexahedral element has at least one irregular vertex, as
shown in Figure 5(b), this technique cannot be applied. How-
ever, a technique similar to [Sta98, Sta99] for the evaluation
of subdivision surfaces at arbitrary parameter values can be
used. This technique is based on the diagonalization of the
subdivision matrix S, where the eigenvectors can be inter-
preted as instances of special regular meshes. These can be
precomputed symbolically and evaluated with the B-spline
evaluation as discussed in Section 7.1. Thus, iterating the
subdivision process means scaling these special eigenvector
meshes with powers of the corresponding eigenvalues. This
reduces the evaluation at an arbitrary parameter value to the
computation of the correct power of the eigenvalue and B-
spline evaluations of the tabulated eigenvector meshes.

This technique is not immediately applicable to and re-
quired for our application. First, the eigenvectors of the
subdivision matrix are parametrized by a graph isomorphy,
which requires the symbolical pre-computation of a large
number of eigenvectors. Second, for the quadrature rules the
subdivision solids are only evaluated at the sample points.

To evaluate a Catmull-Clark solid at the eight sample
points of Gauss-Legendre quadrature of order k = 2 using
standard B-spline evaluation each sample point must lie in
the central element of a regular 3× 3× 3 mesh neighbor-
hood. Because one subdivision step bisects the correspond-
ing parameter space, after at most ` = 2 subdivisions every
sample point of Mi satisfies this requirement in Mi+`. For 27
and 64 sample points of Gauss-Legendre quadrature of order
k = 3,4, at most `= 4 subdivision steps are required. This is
used to compute the 192 derivatives of the basis functions

d
dω

Ni jk(s, t,u), i, j,k ∈ {0, . . . ,3},ω ∈ {s, t,u}.

Note that the derivatives are scaled by 2−`. Instead of the
eigenvectors we pre-compute the evaluation rules.

7.3. Evaluation algorithm

The assembly of Catmull-Clark elements is more expensive
than the assembly of eight-node hexahedral elements for two
reasons. First, eight-node hexahedral elements have 24 de-
grees of freedom, while Catmull-Clark elements have in the
regular case 192 degrees of freedom. This means that the
matrix-matrix multiplications in Equation (3) are more ex-
pensive. This can only be handled by a suitable optimized
matrix library. Second, the computation of the derivatives
at the sampling points is more expensive. To optimize this,
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(a) (b)

(c) (d) (e)

Figure 6: Five isomorphy classes for a regular hexahedral
mesh with feature edges in red.

we pre-compute and buffer stencils for the derivatives at the
sampling points. For all identical one-ring neighborhoods
the computations have to be done only once.

For regular meshes there is only a small number of iso-
morphic one-ring neighborhoods. Five of these are shown in
Figure 6. For arbitrary hexahedral meshes it is more complex
to determine isomorphic one-ring neighborhoods, since this
is an instance of a graph isomorphism problem [GJ90] which
is NP-complete. Here the valence of an interior vertex does
not suffice to determine the local mesh topology uniquely.
To find isomorphic cases we construct weighted undirected
graphs of the sub-meshes containing one hexahedron and its
one-ring neighborhood. In the regular case this graph con-
sists of 64 nodes and 288 edges. The weights of the edges
of this graph correspond to the tags representing the features
of the geometric model. For complicated meshes an addi-
tional hashing of the graphs avoids many unnecessary graph
comparisons. The hash function we use is

h = 3ne +5nv +7nh +
ne

∑
i=1

ei, (6)

where ei is the tag of the i-th edge and ne, nv, and nh are the
number of edges, vertices, and hexahedra in the sub-mesh.

Procedure 2 shows the function to evaluate derivatives of
Catmull-Clark elements at a sampling point p schematically.
Here, the matrices D and S represent the derivatives and the
subdivision stencils. The size of D depends on the number
of vertices in the one-ring neighborhood of the hexahedron,
which is 3× 192 in the regular case. The irregular mesh
shown in Figure 5(b) has 48 vertices and D has size 3×144.

In line three the sub-mesh containing the hexahedron to
be evaluated and its one-ring neighborhood are extracted.
Then first the isomorphism class of this mesh configura-
tion is checked (line five) using the hash function (6). If this
mesh configuration is not yet been evaluated, i.e. is not in
the database, the sub-mesh is subdivided (line eight) and the
parameters u, v, w are adapted (lines nine to eleven) until the

sampling point lies in a regular sub-mesh. During each step
of refinement the stencil S is adapted too. In line 13 and 14
the derivatives for a regular one-ring neighborhood for the
current parameters u, v, w and for the original irregular sub-
mesh are computed. The function of the stencil S is used to
map the regular subdivided sub-mesh temp to the irregular
original sub-mesh sub. Hence, the size of S depends on the
number of vertices in sub, e.g. for the irregular mesh shown
in Figure 5(b) S has the size 192× 144. Finally, the stencil
and derivative are stored in a database (line 15).

Procedure 2 Derivative(HexCC h, Point3D p)
1: u = p.x; v = p.y; w = p.z;
2: level=0;
3: sub = SubMesh(h);
4: hash = CalcHash(sub);;
5: if (D = GetFromDataBase(hash, sub)) return D;
6: repeat
7: level++;
8: temp = Subdivide(sub, S);
9: if (u ≤ 0.5) u = 2 ·u; else u = (u −0.5) ·2;

10: if (v ≤ 0.5) v = 2 · v; else v = (v −0.5) ·2;
11: if (w≤ 0.5) w = 2 ·w; else w = (w−0.5) ·2;
12: until (IsRegular(temp));
13: D = EvalBsplineDerivatives(u, v, w);
14: D = D ·S ·2−level ;
15: SaveToDataBase(hash, sub, D, S);
16: return D;

8. Results

To demonstrate the effectiveness of our approach, we com-
pare it to standard finite elements hex8 and hex20 shown in
Figure 4. As test case we use the model shown in Figure
7(a). This model is fixed at the left side and a vertical load
is applied on the right side. We measure the maximum dis-
placement in the direction of the load and compare this dis-
placement. For the visualization of the displacement or stress
fields we linearly interpolate the color hue from 0◦ (high dis-
placement or stress) to 240◦ (low displacement or stress).

To show that our approach does not require a regular
structured mesh, we use the unstructured mesh of this model
shown in Figure 7(b). The model in Figure 7(a) consists of
221 hexahedra and 504 vertices. The hexahedra are equally
sized cubes and vertices and edges are regular, except on
boundaries. To generate the model shown in 7(b) we re-
fined several hexahedra with an irregular split operation and
moved the vertices randomly. This mesh consists of 800 hex-
ahedra and 1,392 vertices. The statistic of irregular vertices
and edges in both meshes is shown in Table 2.

To analyze the convergence we subdivide both models
twice and measure the rate of convergence with respect to
a reference solution. The reference solution is the solution
computed with hex8 elements on the three times subdivided
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Valence Vertices Edges Vertices Edges
in 7(a) in 7(a) in 7(b) in 7(b)

1 0 250 0 196
2 0 652 0 1076
3 16 70 11 1616
4 172 222 826 381
5 244 0 256 61
6 72 0 104 43
7 0 0 79 21
8 0 0 53 14
≥9 0 0 63 6

Table 2: Edge and vertex valence for the models shown in
Figures 7(a) and 7(a).

model shown in Figure 7(a), which consists of 113,152 hex-
ahedra, 129,059 vertices and hence 387,177 degrees of free-
dom. Due to the high number of degrees of freedoms, the
reference solution was computed with a conjugate gradient
solver. For all other meshes we assemble the stiffness ma-
trices to sparse matrices and use the sparse direct solver
SuperLU [DEG∗99]. The line charts shown in Figure 8 il-
lustrate the rate of convergence against the normalized er-
ror. The timings used in the chart include the assembly of
the stiffness matrix as described in Procedure 1, solving the
linear system and pre-computing the stresses. For all three
types of elements the same code is used, except for the
method to compute the derivatives. This method depends on
the finite elements used and is illustrated in Procedure 2 for
Catmull-Clark elements. Note that for the computations, the
database was pre-computed, such that Procedure 2 for the
computation of the derivatives of the hexCC elements always
terminates in line five.

The reference solution in Figure 8 is the black line at
the normalized maximum displacement of 1. The line charts
show that Catmull-Clark elements (blue lines) converge
faster than other elements independently of the discretiza-
tion (red and green lines). For meshes with the same num-
ber of hexahedra, the assembly is fastest for hex8 elements
and slowest for hexCC elements. Solving the linear system of
equations is also fastest with hex8 elements, but hexCC ele-
ments are just slightly slower. Solving the linear system of
equations for hex20 elements takes much longer. Although
this may depend on the larger number of degrees of free-
doms, the overall convergence rate of hex20 elements com-
pared to hexCC elements is slower as well.

Figure 9 shows another example with 11,196 hexahe-
dra, 39,797 edges and 14,840 vertices. In this mesh only
1,806 vertices and 15,645 edges are regular. To generate
this mesh we transformed a tetrahedral mesh into a hexa-
hedral mesh by splitting each tetrahedron into four hexahe-
dra. The characteristic of this splitting operation is that the
generated mesh is highly unstructured [Owe98]. To the top
of this model a vertical load is applied. The legs are fixed
at the bottom. The maximum nodal displacement measured
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Figure 8: Convergence analysis for the model shown in Fig-
ure 7(a) (continuous lines) and 7(b) (dashed lines).

is 0.1776 mm, 0.1824 mm and 0.1811 mm for hex8, hex20
and hexCC elements, respectively. It shows that our algorithm
also works for highly unstructured meshes.

Figure 9: Visualization of displacement field of an highly un-
structured hexahedral mesh. For the visualization the same
color scale is used as before.

However, the evaluation of regular structured grids is
much faster, because for regular elements basis functions can
be directly applied. For irregular elements, we have to com-
pute subdivision stencils for each sampling point in a pre-
processing step and during the assembly the corresponding
stencils are looked up in a database before they are applied.
Therefore, we recommend to use meshes that are as regular
as possible. Such a model is shown in Figure 10. This mesh
has some irregular vertices, but most parts of the mesh are
regular. However, in the base mesh and after one subdivision
level (column one and two) all hexahedra are irregular as
they lie on the boundary. In the third subdivision level about
the half of the elements are regular.

9. Conclusions and future research

We have presented an iso-geometric approach for finite ele-
ment analysis based on Catmull-Clark solids. The major ad-
vantage of this approach is that only one representation is re-
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(a) (b) (c)

(d) (e) (f)

Figure 7: Model of a load cell used for analyzing the convergence of our approach and to compare it to standard finite elements.
a) regular structured mesh, d) irregular structured mesh; b) and e) meshes refined once; c) and f) meshes refined twice; a) and
d) visualize the displacement field; b),c),e) and f) visualize the highest principal stress per element.

quired for geometric design and physical analysis to narrow
the gap between CAD and CAE. This is the first approach
for iso-geometric finite element analysis that supports both,
unstructured grids and solids. Although Catmull-Clark ele-
ments have cubic degree, the same topological mesh struc-
ture as for standard tri-linear hexahedral elements can be
used. However, Catmull-Clark elements exhibit faster con-
vergence than the standard finite element approach.

At the moment only hexahedral meshes are supported but
we are working on ideas how to generalize this approach
to arbitrary polyhedral meshes. Furthermore, we have illus-
trated this approach only for examples using linear static
elasticity problems. We plan to apply our technique to other
physical problems, e.g. dynamic non-linear elasticity prob-
lems and problems from fluid dynamics.
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