
Combined Volume Registration and
Visualization

Arlie G. Capps, Robert J. Zawadzki, John S. Werner and Bernd Hamann

Abstract We describe a method for combining and visualizing a set of overlap-
ping volumetric data sets with high resolution but limited spatial extent. Our system
combines the calculation of a registration metric with ray casting for direct volume
rendering on the graphics processing unit (GPU). We use the simulated annealing
algorithm to find a registration close to optimal and allow the user to closely moni-
tor the optimization progress. The combined calculation reduces memory traffic, in-
creases rendering frame rate, and makes possible interactive-speed, user-supervised,
semi-automatic combination of many component volumetric data sets.

1 Introduction

Volumetric imaging modalities have become centrally important in biological and
medical applications. These modalities can produce a volumetric data set (“volume
image”) composed of samples or voxels commonly arranged in a 3D Cartesian grid

A.G. Capps
Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550 USA
Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology
and Vision Science, University of California, Davis, Sacramento, CA 95817 USA
Institute for Data Analysis and Visualization (IDAV), Department of Computer Science, University
of California, Davis, Davis, CA 95616 USA
e-mail: capps2@llnl.gov

R.J. Zawadzki, J.S. Werner
Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology
and Vision Science, University of California, Davis, Sacramento, CA, 95817 USA
e-mail: rjzawadzki@ucdavis.edu; werner@ucdavis.edu

B. Hamann
Institute for Data Analysis and Visualization (IDAV), Department of Computer Science, University
of California, Davis, Davis, CA 95616 USA
e-mail: hamann@cs.ucdavis.edu

1

2 A.G. Capps et al.

Fig. 1 Overview of the al-
gorithm. (1) Input volumes.
(2) User adjusts position. (3)
Build a binary space partition
(BSP) tree, cutting volumes
into non-overlapping convex
polyhedra. (4) Perform ray
casting. (5) Each ray produces
a color value for its pixel. The
resulting image is displayed
on the screen. (6) Each ray
that pierces the intersection of
multiple input volumes also
produces an intermediate met-
ric result. The resulting metric
image is stored in a texture.
(7) The intermediate metric
results are reduced to a single
value M. (8) An optimization
step adjusts volume positions.
Note that the image texture
and the metric intermediate
values shown at (5) and (6)
represent the view from the
eye point, a quarter turn from
the representation at (4).

of resolution I× J×K. Advances in technology and engineering have resulted in
rapidly increasing image resolution, data acquisition speed, and data set size and
dimensionality. However, with some clinical in vivo imaging techniques such as
OCT the coverage provided by individual high resolution volume images is smaller
than the extent of the imaged structures. Multiple volume images that partially over-
lap must be captured, registered and combined (“stitched”) to allow a single larger
region to be analyzed as a single data set. Gaps or holes, areas of the larger re-
gion not covered by any volume image, must be easily identifiable as such by the
user. Overlaps, areas covered by more than one volume image, must contain enough
information for the stitching operation to unambiguously determine the volume im-
ages’ correct relative position and are combined through an averaging operation to
reduce noise and improve contrast.

We have developed methods and a prototype system for stitching multiple high-
resolution volume data sets which combines on-screen visualization with registra-
tion metric computation. After the user places individual volume images into rough

Combined Volume Registration and Visualization 3

alignment, our system automatically refines the registration of the component im-
ages (see Fig. 1) using rigid-body transformations. Our system also supports com-
bination of scanned data sets in which correction for motion artifacts has changed a
deformed, regular image into a correct image with sampling irregularities and gaps.
Successive motion-corrected scans of the same region contain different motion and
hence different sampling gaps, which are filled in when the scans are properly reg-
istered and combined.

The procedures for visualizing multiple overlapping data sets and calculating a
metric for registration are closely linked. Both tasks require sampling throughout the
regions of image space where multiple volumes overlap followed by combination
of the sample values to a summary, either to an image of the combined data or to a
metric for goodness-of-fit. Since both tasks require intensive and wide-ranging data
sampling, an efficient data access pattern directly benefits the speed of the system.
We combine computation of the registration metric with the volume ray casting
algorithm running on a workstation GPU.

We developed our system for use with non-invasive in vivo cellular resolution hu-
man retinal imaging modalities. Specifically, we applied our system to two varieties
of optical coherence tomography, which acquires a series of consecutive 2D cross-
sectional tomograms that when stacked define a 3D image. The first system [12]
scans an area of 3mm×3mm on the retina in 4 seconds to produce an image of
375× 360 steps with an axial resolution of 10µm. The second system [14, 15]
uses adaptive optics to achieve much finer resolution and scans a retinal patch of
300µm×250µm in 512× 100 steps over about 4 seconds, with an axial resolution
of 3µm. This fine resolution provides the potential for morphological analysis of
microscopic structure in the human eye. The value of this analysis, already great,
increases with the coverage of the image and provides a powerful motivation for
volume image stitching. However, without some kind of correction, involuntary
eye motion that is a significant nuisance in images from the first system becomes
prohibitive to stitching ultra-high-resolution data sets acquired using adaptive op-
tics with the second system. Our system should also be applicable to images from
other volumetric modalities such as computed tomography (CT), magnetic reso-
nance imaging (MRI), and confocal scanning optical microscopy.

In Section 2, we discuss work related to visualization and registration of volume
data sets. We discuss volume partitioning, ray casting to produce images and calcu-
late the registration metric, and optimization using simulated annealing in Section 3.
In Section 4 we present examples demonstrating our method and the results of its
application to OCT data sets, and we conclude with Section 5.

The key contributions made in this paper are (1) an algorithm combining visual-
ization and computation of a registration metric for overlapping volumes and (2) a
system using that algorithm to assist users in stitching multiple retinal OCT volumes
to extend high-resolution coverage.

4 A.G. Capps et al.

2 Related work

Early work on multiple volume rendering includes that of Jacq and Roux [5], whose
method casts rays through combined volumes and accumulated a derived value (the
minimum, maximum, or average). Cai and Sakas [2] addressed the use of more gen-
eral functions for data intermixing and established a useful taxonomy for the stage in
the pipeline where data from the two volumes are combined. Image-level combines
a 2D rendering of each individual volume, accumulation-level fusion combines col-
ors from individual volumes’ transfer functions during ray casting, and illumina-
tion-level fusion combines raw data from each volume at each step into one value
which is transformed to color. The choice of data fusion level has consequences for
the design of the rendering system, requiring different levels of flexibility. Recent
work on multi-volume rendering has focused on facilitating arbitrary alignment and
increasing the number of overlapping volumes supported. Shader programs are kept
manageable by splitting up rays into sections that do not cross volume boundaries.
The approach of Rößler et al. [13] treats overlapping volumes as a scene graph and
auto-generates the shader programs necessary to render homogeneous regions of
space. Kainz et al. [6] introduced a system that transforms the boundary polygons
of each input volume to screen space and sorts the resulting fragments in depth
to produce homogeneous ray segments. These techniques, while powerful, require
expensive depth-sorting techniques. To avoid this cost, solutions suggested by Lind-
holm et al. [9] and Lux and Fröhlich [10] use a binary space partitioning (BSP) tree
to produce homogeneous volume fragments which are rendered in depth order pro-
vided by traversal of the BSP tree. We base our system on the approach of Lindholm
et al., which is simpler in its treatment of large volumes. The systems discussed so
far and several other recent works [4, 8] perform multi-volume visualization, requir-
ing registered volumes as input.

Many capable systems have been introduced that accomplish automatic or semi-
automatic registration of volume data. Bria et al. [1] described a system for stitch-
ing 3D confocal ultramicroscopy (CU) data sets, with no function for visualization.
Unlike OCT, the CU data sets are sparse; like OCT, the initial position of each
volume are approximately known and are used as starting points for registration.
Dalvi et al. [3] introduced a multi-step process starting with recorded sensor po-
sition, performing feature extraction using a wavelet transform and finishing with
intensity-based volume registration. This system performs non-interactive stitching
of ultrasound data sets, with no visualization component. Ultrasound, like retinal
OCT, is a coherent detection process and ultrasound data sets contain pervasive
speckle noise. However, the examples in [3] show features that are much larger and
less complicated than the range of feature scales present in retinal OCT images.
Specific to OCT data sets, Zawadzki et al. [16, 15] presented a system that allows
the user stitch multiple high-resolution AO-OCT data sets using axis-aligned trans-
lation in whole-voxel increments. Image combination is accomplished by choosing
the maximum intensity of overlapping voxels.

Combined Volume Registration and Visualization 5

3 Methods

Our system is summarized in Fig. 1. The user supplies several input volumes (1) and
adjusts their positions (2). The overlapping input volumes are divided using a BSP
tree (3) on the CPU, using the boundaries of the input volumes as partition planes.
Interior nodes of the BSP tree represent cut planes that divide the overlapping input
volumes; leaf nodes represent the subvolumes or BSP “cells” (4) defined by the cut
planes. We produce a volume rendering by casting rays through the leaf node cells in
order of increasing distance from the eye point. In addition to calculating an image
pixel, each ray also calculates a partial metric value. Image pixels are displayed on
the screen (5), and intermediate metric results (6) are stored in a graphics texture.
The partial metric values are reduced to a final metric value M (7); an optimizer
process uses the final metric to adjust the input volume positions (8). The optimizer
repeatedly runs steps (3) through (8), using the simulated annealing algorithm [7] to
choose successive relative positions.

BSP tree construction (3) and ray casting through the resulting volume fragments
(4) to produce a display image (5) are adopted from the approach of Lindholm et
al. [9] In our system, the ray casting algorithm produces not only an image for
display but also calculates a registration metric. We also integrated the simulated
annealing algorithm as the optimizer for this application.

The oriented plane in 3D space is a concept we use throughout our system. The
plane pl with equation ax+by+ cz = d divides 3D space into its positive side, the
open half-space pl+ with equation ax+by+cz > d, and its negative side, pl−, with
equation ax+by+cz < d. The vector n = (a,b,c) is normal to the plane and points
into pl+.

3.1 Binary space partition

After the user selects and places input volumes, our system partitions the region
occupied by the input volumes into a BSP tree (Fig. 1, step (3)). Algorithm 1 ac-
complishes the partition. The input to the algorithm is the list of the input volumes,
which must all be convex polyhedra. The algorithm uses the oriented planes of the
polyhedral faces to recursively divide the polyhedra until all the face planes have
been used. Hence, all face planes of all input polyhedra are initially marked unused.
The output is a binary tree whose nodes have the following fields:

• pl, the oriented cut plane (set on interior nodes, unset on leaf nodes),
• polys, a list of polyhedra (empty on interior nodes, populated on leaf nodes),
• left, the left child node, representing pl+, the positive side of the cut plane
• right, the right child node, representing pl−, the negative side of the cut plane.

Fig. 2 illustrates the first iterations of applying Algorithm 1 to a 2D scene. Al-
though here we show the application in two dimensions, BSP tree generation is
generalizable to any dimensionality, which for our system is 3D. Implementers of

6 A.G. Capps et al.

Algorithm 1 Generate BSP tree
Input: Convex polyhedra v1 . . .vn.
Output: BSP tree rooted at node r.
1: r.vols← input volumes
2: Node n← r
3: Recursive section on n:
4: n.pl← unused face plane from n.vols
5: Mark n.pl as used
6: for all p within p.polys do
7: if p lies entirely in pl+ then
8: Move p to n.left.polys
9: else if p lies entirely in pl− then

10: Move p to n.right.polys
11: else
12: Remove p from n.polys
13: Cut p with n.pl into p+ and p−

14: Add p+ to n.left.polys
15: Add p− to n.right.polys
16: end if
17: end for
18: if n.left.polys contains anything then
19: Recur on n.left
20: end if
21: if n.right.polys contains anything then
22: Recur on n.right
23: end if
24: return Node r, root of a new BSP tree

+ −

+

−

Fig. 2 First iterations of Algorithm 1 ap-
plied to a 2D scene. Top: initial state. Mid-
dle: first cut and resulting partition. Bottom:
second cut and resulting partition.

the BSP tree algorithm must be careful to avoid errors in the geometric operations
at lines 7, 9, and 13, which can result from floating-point inaccuracies.

The binary tree resulting from Algorithm 1 has properties useful for speedy ray
casting. Each leaf node l contains a list of one or more polyhedra p. All p in the
same leaf node have the same boundaries, and each p refers to one of the original
input volumes. This means that we iterate over the list of p to get the list of input
volumes that l intersects, and also that ray casting only needs to refer to the first
p in each leaf node to determine ray entry and exit points. Since all leaf nodes
have been constructed using cut planes chosen from the face planes of the input
volumes, the interior of no p intersects any input volume boundary. This method of
construction also assures that any ray cast through p must start precisely as it enters
and stop precisely as it exits, and will never re-enter p. Finally, even with arbitrary
viewpoints the Z-ordering of leaf volumes can be obtained without rebuilding the
tree.

Combined Volume Registration and Visualization 7

3.2 Drawing the BSP tree

After constructing the BSP tree, the system executes the ray casting algorithm on
the volume cells in order of increasing distance from the eye point i (Fig. 1, step
(4)). To determine the depth ordering, the program traverses the BSP tree starting
from its root. At each internal node n, if i lies on the positive side of cut plane n.pl,
the program traverses first the left then the right child node. Otherwise it traverses
right then left child. The side of each cut plane that contains i is always visited first,
so that leaf nodes (which contain the cells) are visited in increasing depth order.

The program performs ray casting as it visits each leaf node l. This is done in
several passes, using code on the CPU and several GPU shaders, as described below.
Textures are used to pass intermediate results between rendering steps.

1. Sort faces of l’s first polyhedron into two lists: fronts, with normals pointing
toward i, and backs, with normals pointing away from i.

2. Draw each face in backs using shader RecordDepth, which returns the frag-
ment’s distance from i. We store this in a buffer d. We render computed distance
to a buffer rather than use the depth buffer commonly provided by rendering
toolkits because we need the Euclidean distance from i to the fragment lying on
the back-face, not the Z-buffer distance resulting from the perspective transform.

3. Draw each face in fronts using shader RayCast to perform the ray casting algo-
rithm:

a. Record the fragment world coordinates as ray start point s.
b. Stop point t is calculated from the value in buffer d, the distance from i to the

ray exit point from l.
c. For each input volume v1 . . .vk that l overlaps, calculate texture-coordinate

step vectors.
d. Step through all input volumes in parallel from s to t. At each step p,

i. Accumulate color from the average of v1[p] . . .vk[p]
ii. Accumulate metric from the sum of the squares of all pairwise differences

e. On ray termination, output three values: the color accumulated along each
ray, stored in the buffer lc, the ray’s partial metric value, stored in lm, and the
number of sample steps p, stored in lp.

4. Draw each face in fronts using shader Finalize to accumulate the local color,
metric, and sample count buffers into the overall buffers C, Mbuf , and P.

The heart of the rendering process is line 3d. Shader RayCast runs in parallel
for each pixel of the final image that portrays the polyhedron l, stepping through l
along that pixel’s ray from its entry point s to exit point t. Here we explain line 3(d)i
in more detail. At each step p, the shader finds the average of all k input volumes
overlapping l, then looks up the corresponding color (with r, g, b and a components)
in the transfer function table tf :

8 A.G. Capps et al.

raw =
1
k

k

∑
i=1

vi[p]

t.rgba = tf [raw]

The shader accumulates the color into the pixel color lc using the ray casting for-
mula:

lc.rgb = lc.rgb+ lc.a · t.rgb

lc.a = lc.a · t.a

To compute the metric over volume l, we compute the sum of the square of image
differences over all sample points p within P, the set of ray casting sites lying within
l (here vn[p] means the value located at world space point p in volume n):

M =
1
|P|

k−1

∑
i=1

k

∑
j=i+1

(vi[p]− v j[p])2. (1)

When a ray traverses a volume l that intersects more than one input volume,
at each ray cast step p the shader RayCast calculates the contribution at p to the
registration metric (line 3(d)ii) and accumulates the partial metric value along the
ray. The subtotal for all p in the ray are stored in that ray’s pixel in metric texture
lm.

After completing RayCast, shader Finalize accumulates color and metric values
into the final buffers (line 4):

C.rgb =C.rgb+C.a · lc.rgb

C.a =C.a · lc.a
Mbuf = Mbuf + lm

P = P+ l p

After visiting all leaf nodes in order of increasing distance from i, the program
displays color buffer C on screen (Fig. 1, (5)). Then the system divides the sum of
the partial metrics stored in Mbuf (Fig. 1, (6)) by the sum of the ray sample counts
stored in P to produce a final registration metric value M (Fig. 1, (7)).

3.3 Optimization

The final metric value (Equation 1) has a minimum when pixels from one volume
overlap pixels in other volumes having equal value. In other words, the metric has a
global minimum when volumes are perfectly registered. The position of one volume
relative to another can be expressed by six values, three orthogonal translations
and three orthogonal rotations. Given k input volumes, we use the 6(k− 1)-tuple
θ to represent the rigid transformations of volumes 2 . . .k with respect to volume 1.

Combined Volume Registration and Visualization 9

The metric function can be written as M = f (θ) to emphasize that the value of M
depends on the rigid transformation (rotation and translation) of the input volumes.
In Equation 1, θ was implicit in the statement that overlapping volumes are sampled
at points in world space.

3.3.1 Simulated Annealing

To search for the optimum arrangement of input volumes, we implement an iterative
optimization routine. The optimizer calculates the metric M for a series of θ , choos-
ing successive θ to converge to a global minimum for M. Optimizers exist which
choose new θ based on predicted function behavior [11]. Newton and gradient de-
scent optimization methods use the function value, first and/or second derivative to
predict f (θi+1) from θi based on the assumption that the derivatives exist and the
function can be predicted over the interval from θi to θi+1. However, the input vol-
ume images are full of high-frequency signal as well as speckle noise, making the
metric function unpredictable even if the derivatives were available. The optimizer
for the metric function must not require derivative information, and should not rely
on function predictions to choose successive values for θ .

To satisfy these requirements, we implemented the simulated annealing (SA) op-
timizer process which executes a random walk in the parameter space, successively
choosing values for θi+1 that are “close” to θi. The step is “accepted” when it re-
sults in an improvement, and the random walk continues from θi+1. The step is “re-
jected” with gradually increasing probability when it results in a worse metric, and
the random walk continues from θi. SA is well-suited to a noisy registration metric
which must be calculated for each new value of θ : the possibility to accept sub-
optimal steps lets the algorithm escape from local minima, and in contrast to some
other methods SA does not need an estimate of the function first or second deriva-
tive to choose θi+1. SA is modeled on the physical process of annealing, where a
piece of hot metal is cooled slowly. When hot, the chance of random internal struc-
ture change is high. As the temperature drops, the chance of a random change in
microstructure drops as well. When the temperature drops too quickly, regions of
internal stress and irregular structure remain because the metal is too cold to allow
the shifts that would relieve the weak spot. But in cases where the temperature drops
slowly enough, the internal structure of the metal becomes stronger because regions
of stress have a chance to relax in one of the random changes that occurs as part of
the cooling process.

3.3.2 Details of Simulated Annealing

The SA algorithm tracks state with several variables: θi is the current rigid transfor-
mation of all input volumes, Mi is the metric calculated for θi using Equation 1, and
temperature T controls the likelihood of accepting a step with a worse metric than
Mi. SA uses several parameters: T0, the initial value of T ; dT , the factor by which T

10 A.G. Capps et al.

p

−∆M

1

Fig. 3 Graph of Equation 2. The probability of accepting a random step is based on the change in
metric.

periodically diminishes; and freeze, the value of T which determines the algorithm
stopping point. SA has five steps:

1. θi+1 = randstep(θi,T)
2. Mi+1 = eval(θi+1)
3. If accept(T,Mi,Mi+1), then let i = i+1
4. Let T = T ·dT
5. If T > freeze, go to line 1.

The randstep function chooses θi+1 to be “not far” from θ . This keeps the SA
random walk from jumping far away from the user’s initial placement. The function
randomly chooses to translate a volume transversely or axially or to rotate the vol-
ume around one of its axes, then randomly chooses an amount by which to move the
volume. We rely on the user to place the input volumes close to their desired final
registration, within the diameter of the dominant features in the image, and we want
the optimizer to refine the user’s placement, not to discard it. Thus, we constrain the
translation steps to be on the order of ten pixels and rotation steps to be less than
2 ◦ at the beginning of the annealing process. We multiply the random translation or
rotation by (T0 +T)/2T0 to decrease the random step along with T .

The eval function renders the superimposed input volumes as described in Sub-
sections 3.1 and 3.2 to find the metric Mi+1 that results from θi+1.

The accept function implements the annealing behavior. It accepts all random
steps that give an improved metric (where Mi > Mi+1), and also probabilistically
allows random steps that don’t give an improvement (where Mi ≤Mi+1). The prob-
ability of accepting a step from θi to θi+1 is:

p(step θi→ θi+1) = min
(

1,exp
(
−Mi+1−Mi

T

))
. (2)

Fig. 3 shows a graph of Equation 2. When Mi > Mi+1 (to the right of the origin),
the proposed step will improve the registration so accept always returns true. The
further to the left of origin, the worse the effect on registration, so the lower the prob-
ability of accepting the step. As T decreases, the exponential curve becomes sharper
and the probability of accepting a bad step decreases. Near freezing, the curve ap-
proaches a step from 0 to 1 at the origin, making the behavior of SA approximate a
gradient-descent random walk.

Combined Volume Registration and Visualization 11

3.3.3 Parameters and Starting Conditions

Successful optimization with SA requires good starting parameters. Together, the
parameters T0, dT and freeze determine the annealing schedule. The temperature T
is closely linked to the random walk. When T0 is too high, the algorithm will make
many random steps with a very low penalty for a bad step and will tend to wander
away from the user’s specified initial placement, failing to find a registration. So,
prior to starting SA proper, we determine a value for T0 by perturbing the position
of each input volume in turn for several tens of steps by random translation of 10
pixels or less and rotation by 2◦ or less. For the set of all bad steps (Mi < Mi+1) we
find the average ∆M = Mi+1−Mi and take this to be the expected value. We then
start SA with T0 = E(∆M)/ ln2. This way, the expected probability of accepting a
step that worsens (increases) the metric is initially 0.5, giving the algorithm a chance
to settle down around the correct registration as T decreases.

For some initial volume arrangements, SA will fail to settle down around the true
registration. We have observed this to happen when the initial placement was not
close to the true registration. Since SA is a stochastic process, we cannot guarantee
convergence. However, we have observed that initial registration of OCT data sets
cut into overlapping subsets and given an initial registration within 10 pixels of
displacement tend to succeed. Rotation is much more sensitive; initial misrotation
of 3 ◦ or more tends to cause SA to fail, while correct rotation of less than 1◦ tends
to lead to success.

To allow the use of an easy-to-work-with value of dT = 0.95, we repeat line 1, 2
and 3 several (hundred) times for each input volume in turn before line 4, rather than
decreasing T by an infinitesimal amount each time through the loop. Finally, we set
freeze = T · 10−5. This results in an annealing schedule which in our experience
results in successful registration after an acceptable computation time.

Finally, we save the lowest Mi and its θi, and apply that arrangement to the input
volumes at the end of the SA process.

3.4 Effect of View Point

The ray casting algorithm can be implemented with either perspective or orthogo-
nal projection of the scene to a viewing plane. Orthogonal projection casts parallel
rays normal to the viewing plane through the volume data sets; perspective projec-
tion casts rays that diverge from the eye point, pass through the viewing plane and
volume data. We implemented perspective projection in this project. Since the rays
diverge, ray casting sample points p used for metric calculation are dense close to
the eye point and become sparser in regions farther away. Thus, a change in eye
point will move the region where p is most densely distributed, likely resulting in
a different metric value even with no change in input volume position. This means
that only metric values computed from the same eye point are comparable. Practi-
cally speaking, the simulated annealing registration must restart when a user moves

12 A.G. Capps et al.

the global point of view. We have found that repeated experiments with the same
initial placement of the input volumes but differing eye points converge to the same
correct final registration.

Because our system calculates the registration metric by ray casting through vol-
ume overlap regions, we require these regions to be within view, or they will not
contribute to the metric. Likewise, “island” volumes that do not overlap others can-
not affect the metric, and must by registered by means other than our system.

The common technique of early ray termination cannot be applied to our com-
bined metric and visualization method. Even though a ray may accumulate enough
opacity that its color will not change over further sample steps, metric calculation
must still be done at those sample steps; so all rays must run to volume exit. How-
ever, our algorithm skips all empty space, since it casts rays through BSP leaf nodes,
which by construction always intersect at least one input volume.

Fig. 4 Synthetic example with three blobs. Upper-left: initial placement, before registration.
Upper-right: result of registration. Bottom: registration metric over duration of simulated anneal-
ing. The registration metric value depends on the overlapping volume images and the ray casting
eye point. A metric value is only significant relative to other values in the same optimization run.

Combined Volume Registration and Visualization 13

Fig. 5 Synthetic example with axis-aligned bars. Upper-left: initial placement, before registration.
Upper-right: result of registration. Bottom: registration metric over duration of simulated anneal-
ing.

4 Examples and Results

We have applied our registration system on several classes of input. To demonstrate
basic functionality, we show samples from synthetic data sets. Overlapping sub-
sets taken from the aneurism data set (courtesy Viatronix, Inc., USA; available at
http://www.volvis.org) show successful registration of real-world data. For each ex-
ample, we show the evolution of the registration metric throughout the optimization
run. For test data sets, a metric value of zero indicates perfect registration. A metric
value of zero is not possible with real OCT data sets because distinct images of the
same area contain random noise. Finally, we show two examples of successfully
stitching OCT data sets. Lacking a ground truth for the in vivo OCT data sets, we
show several cross-sectional slices through the combined volume to demonstrate the
improvement brought to the combined image by our method.

4.1 Test Data Sets

The first test case is two volumes sampled from a data set containing three spherical
solids, with centers at (0.2,0.4,0.1), (1.1,0.1,0.1), and (0.6,0.7,0.6) and radius

14 A.G. Capps et al.

Fig. 6 The aneurism volume image. Original image was divided into four overlapping subvol-
umes, which were then re-registered. Upper-left: initial placement, before registration. Upper-right:
result of registration. Middle: registration metric over duration of simulated annealing. Lower row:
before-and-after detail views

0.15, 0.40, 0.25 (arbitrary units), as shown by Fig. 4. Starting from a close but
inexact manual registration, the system was able to produce an accurately-registered
result. The second test case is two volumes sampled from a data set containing three
bars, parallel to the X−, Y−, and Z−axes, with a square cross-section 0.2 units on a
side and several other features to help quick visual verification of correct orientation.
See Fig. 5. The second data set was sampled at a rotation of x radians about the
Z−axis. The registration was successful.

The third example shows the ability of our system to simultaneously register sev-
eral data sets. From the aneurism data set, we extracted four overlapping subimages.
We manually positioned the subimages in rough alignment, then ran our system to
refine the initial placement. See Fig. 6 for overall images before and after registra-
tion as well as details of vessels interpenetrating several input volumes.

Combined Volume Registration and Visualization 15

Fig. 7 Two OCT volumes taken around 6 ◦ superior retina. Upper-left: initial placement, before
registration. Upper-right: result of registration. Middle: registration metric over duration of sim-
ulated annealing. Lower row: before-and-after detail views showing improvement in vasculature
registration.

4.2 Application to OCT Volumes

We used our technique to stitch OCT volumes of overlapping retinal regions. A reti-
nal region’s location is described by visual angle off the line of sight, in degrees,
and direction, in terms of temporal or nasal (toward the temple or the nose, respec-
tively) and superior or inferior (physically above or below the fovea, or center of
gaze). Fig. 7 shows two overlapping volumes acquired about 6 ◦ superior retina, be-
fore and after registration. The entire volume is shown, as well as views of various
layers within the retina, to illustrate the effect of registration. Likewise, Fig. 8 shows
the registration of two data sets taken at 6 ◦ temporal, 6 ◦ superior retina. In the detail
views of both data sets the effects on vessels are clearly seen. While it is possible
to register OCT data sets “by hand,” features such as vasculature that guide regis-
tration generally occur in the middle of the dense OCT data set and are accessible
to the user only with some effort. As shown by the detail views of Figs. 7 and 8,

16 A.G. Capps et al.

Fig. 8 Two OCT volumes taken around 6 ◦ superior, 6 ◦ temporal retina. Upper-left: initial place-
ment, before registration. Upper-right: result of registration. Middle: registration metric over dura-
tion of simulated annealing. Lower row: before-and-after detail views.

the optimizer gives a major improvement in registration and lets us see and measure
detail that would otherwise be lost in noise.

The main difficulty of registering OCT data sets is pervasive eye motion in imag-
ing subjects. Any eye motion will result in distortion in the volume image, and since
different motion is present over the course of successive OCT scans the images will
not match and will be unable to register without correction for this motion.

5 Conclusions and Further Work

We have presented a system for combined visualization and registration of volume
data sets. We perform ray casting through multiple volume data sets. In overlapping
regions, we compute the sum of squared difference between volumes at each ray
casting sample site. Thus, a metric for the quality of the registration within overlap

Combined Volume Registration and Visualization 17

regions is calculated in real time for each frame displayed by the ray casting en-
gine. We added an optimizer to incrementally perturb the position of each displayed
volume, using the simulated annealing algorithm to find an optimum registration.
After showing examples using synthetic and example data sets, we successfully ap-
plied our system to two pairs of OCT data sets of the human retina. This registration
produced a volume image of high resolution and wide coverage.

We have found, however, that our technique is impractical if one or more of the
input volumes contain motion distortion in the overlap region. Motion distortion is
present to varying degrees in most OCT volumes. Techniques to mitigate motion
distortion will increase the applicability of our system to OCT and other scanning
image capture modalities.

Acknowledgements The authors gratefully acknowledge the help of VSRI laboratory mem-
bers Susan Garcia and Raju Poddar. Support was provided by the National Eye Institute (R01
EY014743) and Research to Prevent Blindness (NY). This work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. LLNL-BOOK-644901.

References

[1] Bria, A., Silvestri, L., Sacconi, L., Pavone, F., Iannello, G.: Stitching terabyte-
sized 3D images acquired in confocal ultramicroscopy. In: Biomedical Imag-
ing (ISBI), 2012 9th IEEE International Symposium on, pp. 1659–1662
(2012). DOI 10.1109/ISBI.2012.6235896

[2] Cai, W., Sakas, G.: Data intermixing and multi-volume rendering. Computer
Graphics Forum 18(3), 359–368 (1999). DOI 10.1111/1467-8659.00356

[3] Dalvi, R., Hacihaliloglu, I., Abugharbieh, R.: 3D ultrasound volume stitching
using phase symmetry and Harris corner detection for orthopaedic applica-
tions. Proc. SPIE 7623, 762,330.1–762,330.8 (2010). DOI 10.1117/12.844608

[4] Hadwiger, M., Beyer, J., Jeong, W.K., Pfister, H.: Interactive volume explo-
ration of petascale microscopy data streams using a visualization-driven virtual
memory approach. Visualization and Computer Graphics, IEEE Transactions
on 18(12), 2285–2294 (2012). DOI 10.1109/TVCG.2012.240

[5] Jacq, J.J., Roux, C.: A direct multi-volume rendering method aiming at
comparisons of 3-D images and models. Information Technology and
Biomedicine, IEEE Transactions on 1(1), 30–43 (1997)

[6] Kainz, B., Grabner, M., Bornik, A., Hauswiesner, S., Muehl, J., Schmalstieg,
D.: Ray casting of multiple volumetric datasets with polyhedral boundaries
on manycore GPUs. ACM Trans. Graph. 28(5), 152:1–152:9 (2009). DOI
10.1145/1618452.1618498

[7] Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated an-
nealing. Science 220(4598), 671–680 (1983)

18 A.G. Capps et al.

[8] Kirmizibayrak, C., Yim, Y., Wakid, M., Hahn, J.: Interactive visualization and
analysis of multimodal datasets for surgical applications. Journal of Digital
Imaging 25, 792–801 (2012). DOI 10.1007/s10278-012-9461-y

[9] Lindholm, S., Ljung, P., Hadwiger, M., Ynnerman, A.: Fused multi-volume
DVR using binary space partitioning. Computer Graphics Forum 28(3), 847–
854 (2009). DOI 10.1111/j.1467-8659.2009.01465.x

[10] Lux, C., Fröhlich, B.: GPU-based ray casting of multiple multi-resolution vol-
ume datasets. In: Advances in Visual Computing, Lecture Notes in Computer
Science, vol. 5876, pp. 104–116. Springer Berlin Heidelberg (2009). DOI
10.1007/978-3-642-10520-3 10

[11] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Opti-
mization Research. Springer-Verlag (2000)

[12] Poddar, R., Cortés, D.E., Werner, J.S., Mannis, M.J., Zawadzki, R.J.: Three-
dimensional anterior segment imaging in patients with type I Boston kerato-
prosthesis with switchable full depth range swept source optical coherence
tomography. Journal of Biomedical Optics 18(086002), 1–7 (2013). Although
this citation describes imaging of the anterior segment, we use retinal images
produced by the system.

[13] Rößler, F., Botchen, R., Ertl, T.: Dynamic shader generation for GPU-based
multi-volume ray casting. Computer Graphics and Applications, IEEE 28(5),
66–77 (2008). DOI 10.1109/MCG.2008.96

[14] Wojtkowski, M., Leitgeb, R., Kowalczyk, A., Bajraszewski, T., Fercher, A.F.:
In vivo human retinal imaging by Fourier domain optical coherence tomogra-
phy. J. Biomed. Opt. 7, 457–463 (2002). DOI 10.1117/1.1482379

[15] Zawadzki, R.J., Choi, S.S., Fuller, A.R., Evans, J.W., Hamann, B., Werner,
J.S.: Cellular resolution volumetric in vivo retinal imaging with adaptive
optics–optical coherence tomography. Opt. Express 17(5), 4084–4094 (2009).
DOI 10.1364/OE.17.004084

[16] Zawadzki, R.J., Fuller, A.R., Choi, S.S., Wiley, D.F., Hamann, B., Werner, J.S.:
Improved representation of retinal data acquired with volumetric Fd-OCT: co-
registration, visualization, and reconstruction of a large field of view. In:
Proceedings of SPIE, the International Society for Optical Engineering, pp.
68,440C–1. Society of Photo-Optical Instrumentation Engineers (2008)

