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Abstract
This paper presents an iterative finite element (FE)–based method to calculate the gravity-free shape of nonrigid parts from
an optical measurement performed on a non-over-constrained fixture. Measuring these kinds of parts in a stress-free state
is almost impossible because deflections caused by their weight occur. To solve this problem, a simulation model of the
measurement is created using available methods of reverse engineering. Then, an iterative algorithm calculates the gravity-
free shape. The approach does not require a CAD model of the measured part, implying the whole part can be fully scanned.
The application of this method mainly addresses thin, unstable sheet metal parts, like those commonly used in the automotive
or aerospace industry. To show the performance of the proposed method, validations with simulation and experimental
data are presented. The shown results meet the predefined quality goal to predict shapes within a tolerance of ±0.05 mm
measured in surface normal direction.

Keywords Gravity-free shape · 3D metrology · Sheet metal parts

Notation
S Shape
Sgrav−f ree Gravity-free shape
u Displacement field
g Gravity

1 Introduction

Optical measurement systems become more and more
popular in modern quality assurance processes. These 3D
scans can provide coverage of the whole visible surface of
the measured object. This enables the opportunity to use the
geometrical information of scanned parts to run simulations

� Felix Claus
claus@cs.uni-kl.de

Hans Hagen
hagen@informatik.uni-kl.de

Bernd Hamann
hamann@cs.ucdavis.edu

1 TU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663,
Kaiserslautern, Germany

2 Department of Computer Science, University of California,
One Shields Avenue, Davis, CA 95616, USA

considering their real shape (compare W. W. Cai et al. [1]).
With these simulation models, often referred to as digital
twin, optimizations can be performed and more precise
predictions can be made. Especially, for the automotive and
aerospace industry, this principle is used for optimizing
the assembly of thin parts, for example, sheet metal
body parts as presented by A. Rezaei Aderiani et al. [2].
Before simulations with digital twins were performed in the
quality assurance processes, only physical measurements
were compared. The measurements had to fulfill special
requirements. For example, the position and the clamping
of the individual part during measurement need to be
similar to the assembled situation. This is necessary to
be able to compare the result with a measurement of the
assembled situation. To achieve such a condition, the part
needs to be over-constrained to prevent deflections caused
by its weight. By that, the part becomes tensioned and
its geometry is influenced. However, to be able to run
correct simulations with the measurements, the gravity-
free shape is required. To obtain this shape, a non-over-
constrained measurement is necessary. This problem arises,
as measurement fixtures are expensive, and performing
two measurements on two different fixtures is inefficient
and expensive. Nevertheless, over-constraint measurement
is necessary for quality assurance.

This paper solves this problem by using an iterative FE
based approach to calculate the gravity-free shape based
on a non-over-constrained measurement. Therefore, an FE
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simulation model is set up from the measured geometry.
The simulation result enables the opportunity to perform
quality measures directly on the gravity-free shape without
using expensive fixtures and eliminating the error caused by
the over-constraining at the same time. As the gravity-free
shape is represented as a simulation mesh, the part can be
virtually put in any other situation by performing additional
simulations. For example, virtual clamping can be applied to
obtain the shape of the part, clamped into any measurement
fixture. By applying this concept, only one measurement on
one fixture has to be performed and the part can be virtually
put in any desired situation to perform quality measures
on it.

The paper is structured as follows: first, definitions
established in Section 2, followed by a literature review
about the topics affecting this paper, are given in Section 3.
Next, a detailed description of the problem is given in
Section 4. After that, the method of calculating the gravity-
free shape is explained and an overview of the steps that
need to be performed will be given in Section 5. Then,
the method is applied to virtual and physical experiments
in Section 6. In Section 6.1, the method is applied to
simple test geometry and also an industrial use case and in
Section 6.2, to a physical test setup to validate the virtual
experiments. Last, the results are discussed in Section 6.4,
and the paper is concluded in Section 7. In particular, the
contributions of the following work are:

– Algorithm to calculate the gravity-free shape of a sim-
ulation model that is suitable for almost all commercial
FE solvers.

– Validations with simulation data for a real-world use
case.

– Experimental validation with a simple, easy to under-
stand sheet metal part.

2 Definitions

This section discusses the theoretical foundations affecting
the work of this paper. In particular, phrases that are defined
differently in the literature are clarified.

2.1 Free shape

The free shape is the geometry of the part situated in the
free state. Unfortunately, there are different definitions of
the phrase “free state.” In the literature sometimes, the term
is used to describe the situation of a weightless, load- and
constraint-free state. This paper sticks to the definition from
DIN EN ISO 10579 [3]:

Free state (translated)
State of a part, where nothing but gravity load caused
by its own weight is applied.

2.2 Gravity-free state

3D scans with a non-over-constrained fixture obtain one
possible shape of the part in the free state. As the method
of this paper is aimed to obtain the shape without the
influence of any load including gravity, the term “gravity-
free” (hereinafter “GF”) is used to describe this load-free
state. In Fig. 1, a simple 3D example shows the GF shape
and the free shape with a non-over-constrained fixture.

2.3 Nonrigid parts

The general sense of the term “nonrigid part” describes an
object that deforms under its weight in a relevant magnitude.
As every object deforms due to gravity, a classification
is needed to be able to differentiate between rigid and
nonrigid parts. G. N. Abenhaim et al. [4] introduced such
classification by using the term “compliance behavior.” This
basically describes a ratio between the applied force and
the occurring deflection of the part. Based on this measure,
three classes of parts are introduced.

DIN EN ISO 10579 [3] uses another definition that is
more application dependent:

Nonrigid part (translated)
A part that deforms in the free state with an amount
that exceeds the dimensional and/or geometrical
tolerances defined in the technical drawing

For this paper, both descriptions are applicable but, for
consistency, the paper sticks to the definition from DIN EN
ISO 10579.

3 Background

In the literature, two approaches for finding the GF shape of
a measured part are present. The first approach is to use a
simulation mesh of the measured state and set up an inverse
FE formulation to iteratively calculate the gravity-free state.
The second approach uses a FE simulation of a CAD part
to calculate the deformations, caused by its weight when it
is held by the measurement fixture. Then, the displacements
of the simulation result are mapped to the measurement in
the opposite direction. For both methods, the present work
will be highlighted and discussed in the following. Besides
that, the literature for fixtureless inspection methods is
highlighted as the presented method also has common goals.
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3.1 Inverse finite element formulation/inverse form
finding

To obtain the stress-free shape from an FE model repre-
senting the loaded shape, an inverse FE simulation can be
used. Besides the FE model of the loaded shape, the load
case that led to the deformed shape must be known. With
this information, an inverse FE problem can be formulated
to calculate the unloaded shape. Inverse formulations can
be used for a wide variety of mechanical problems. S. Ger-
main and P. Steinmann [5] made a comparison between
an inverse mechanical formulation and Limited-Broyden-
Flechter-Goldfarb-Shanno method for shape optimization,
showing that an inverse formulation is much faster in terms
of computing time. Later, the same authors S. Germain et al.
[6] proposed a recursive algorithm for solving inverse form
finding problems in isotropic elastoplasticity. P. Landkam-
mer et al. [7] again used the same algorithm for solving an
inverse form-finding problem for orthotropic plasticity. A.
Ask et al. [8] set up and validated an inverse formulation
for the electro-elastic case. All presented publications are
showing promising results; however, for using an inverse
formulation in real applications, an implementation for a
commercial simulation software is necessary. Besides that,
all publications on inverse form finding have in common
that no experimental validations are showing the usability
for real use cases.

3.2 Mapping of gravity deformation

To bypass the problem of generating costly simulation
models from measurement data, an intuitive way is to
take advantage of the similarity between the measured part
and its CAD model. Therefore, a simulation model from
the CAD geometry is loaded with the constraints of the
measurement fixture and gravity load. The displacements of
the simulation result are then mapped to the measured point
cloud to update the vertex positions of the measurement. C.
Lartigue et al. [9] used a voxel filter for the point registration
on the point cloud to map the nodes of the simulation mesh
to the measurement. A commonly used and old method
for this kind of registration problem is multidimensional
scaling which is used in a variety of medical and mechanical
applications; see [10–12]. A detailed description is given by
I. Borg and P. Groenen [13] and a survey on the method
is proposed by N. Saeed et al. [14]. H. Radvar-Esfahlan
et al. [15] improved this registration method by calculating
and comparing geodesic distances on the part surface
to refine the mapping. F. Thiébaut et al. [16] presented
a validation with experimental data showing the use of
mapping simulation data for evaluating shape deviations of
nonrigid parts. Although the problem of mapping simulation
results in a measurement representing a similar geometry

seems to be solved satisfactorily, this method is always
based on the assumption that the geometries, CAD, and
measured part behave in the same way.

3.3 Fixtureless inspectionmethods

To save the cost for expensive measurement fixtures, dif-
ferent approaches are dealing with the post-processing of
optical measurements that do not need complex fixtures or
no fixtures at all. The most common fixtureless approach
is called virtual clamping. The basic idea of virtual clamping
is to generate an FE model of the scanned part and apply the
boundary conditions of any desired measurement fixture.
The simulation results deliver a result that can be compared
to the CAD model. V. Tuominen [17], for example, is using
the principle of virtual clamping for the inspection of sub-
frame components from an automotive application. More
recently, V. Sabri et al. [18] present an algorithm where
the CAD mesh is iteratively deformed toward the mea-
surement by a continuous displacement field. By checking
neighborhood conditions of the displacement field, areas,
where profile defects like dents are occurring, can be identi-
fied. This work was extended by S. Karganroudi et al. [19].
A survey of fixtureless inspection methods is given by G.
N. Abenhaim et al. [4]. The challenge of post-processing
point clouds that were obtained from a measurement with-
out fixture is to distinguish between deflection caused by
its weight and geometrical differences compared to CAD.
Although the presented methods can differentiate between
profile defects and geometrical deviations caused by loads
or variabilities, the methods are not capable of comparing
the part with the CAD in a free state. Similar to the princi-
ple of “virtual clamping” is to perform a virtual assembly,
based on measured geometries. In the work of I. Gentilini
and K. Shimada [20], a full pipeline from generating the
FE model of the measurement toward predicting the post-
assembly shape of the measured part is proposed. Here, also
different materials and objects, for example, plastic lid of
a storage box, or a metal sheet housing of a toaster, were
investigated. Nevertheless, the authors are stating that to
be able to use this method properly with weak parts, the
influences of gravity and clamping must be removed in a
previous step.

3.4 Research questions

The presented related work is showing some solutions or
partial solutions for finding the GF shape of a measurement.
All have in common that they either need a special imple-
mentation for the used solver or are based on similarity and
need an implementation for solving the point registration
problem. Also, the literature does not provide any valida-
tions with experimental data for the case where the CAD
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geometry cannot reflect the real behavior of the measured
gravity-free state. To apply any kind of gravity compen-
sation method to industrial use cases, both problems, the
implementation to commercial software and the valida-
tion with experimental data for the general case instead of
special cases, must be addressed.

4 Problem description

Before describing the method, the problem of measuring
nonrigid parts is explained more in detail. Usually, measure-
ments represent a compromise between deflections due to
weight and ambiguity of the measurement.

Figure 1 shows a simple 2D example for a measurement.
The part is constrained at the right end and displaced due
to gravity with maximal displacement influence toward S0
and the displacement (vector) field u0 illustrated via a few
representative vectors. The free shape is the geometry that
is measured and is the input of our proposed method. The
goal is to determine the unknown displacement field u0
and obtain the unknown GF shape from the measured part;
see Eq. (1). The goal for the approximation is to achieve
a deviation measured in surface normal direction of less
than 0.05 mm. The value of 0.05 mm is the measurement
uncertainty of typically used optical measurement systems
for the quality assurance of sheet metal parts; see W.
Boesemann et al. [21].

Sgrav−f ree = S0 − u0 (1)

4.1 Deflections of the part on ameasurement fixture

When a part is measured, it is usually placed in a measure-
ment fixture. This fixture ensures that the part is always
positioned in the same way to be able to reproduce mea-
surements. Various optimization methods exist to determine
an optimal amount and positions of locators for measuring
or machining a part; see [22–24]. Especially, for measuring
nonrigid parts, the goal of an optimization is to minimize

Fig. 1 Problem definition. Example of a simple 2D beam constrained
at the right end; S0 represents the free shape resulting from the
influence of gravity (u0)

deflections (caused by weight) by using as few locators
as possible. Figure 2 shows an example demonstrating the
problem. Situation (a) depicts the GF of the desired part
geometry (CAD geometry) positioned on two rigid support
elements. As the part is considered as a nonrigid, it deflects
when applying gravity to it. This case is depicted in (b). To
prevent large deflections during the measurement process,
an additional support element is added in the center in (c).
By adding the additional support element, the measurement
obtained from (c) is comparable with the CAD geometry
model.

4.2 Unambiguity of measurement

Adding additional support elements to the fixture to
reduce deflections during the measurement process has
one significant disadvantage. The measurement yields an
ambiguous geometry. Figure 2(a) shows an actual part
geometry, not undergoing the influence of gravity, that
differs from the CAD geometry. After applying gravity (b)
and adding the additional support element (c), the shape can
no longer be differentiated from the measurement of the
CAD geometry. The missing information is the distribution
of the forces that act on the support elements. In Fig. 2,
(a) and (b), the distribution is unambiguous since the forces
on the support elements can be calculated merely by the
center of mass relative to the contact points of the support
elements. For the case depicted in (c), at least one force must
be given to calculate the forces on the other two support
elements. Unfortunately, the forces acting on the support
elements are usually not measured during a 3D scanning
process. Even if the forces were known, the measurement
still would have to be post-processed to make the difference
visible for an inspection engineer.

Fig. 2 Unambiguous boundaries used for comparison of ideal and
actual geometry for different constraints/loads. a GF shape for the two
geometries. b Ideal and actual geometry loaded with gravity influence.
c Additional support used (blue) to compensate the part’s deflection;
the geometries now agree qualitatively
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As over-constrained measurements are often used in
industrial applications, the relevance of this problem is
demonstrated via a real-world example, shown in Fig. 3.
Here, a simulation model of an engine hood was used
to show a worst-case scenario. The hood has dimensions
1290 mm × 1490 mm × 415 mm (X, Y, Z) and is
made of seven individual steel sheet metal components. All
components were meshed with first-order shell elements
(number of nodes 365,700), joined together by modeling all
spot welds and adhesives. The input for this demonstration
is a fictitious badly shaped part, depicted on the left-hand
side in the gravity-free state. This part has deviations up to
25 mm when compared to the desired CAD geometry. By
applying the boundary conditions of a potential fixture using
four support elements in Z-direction (perpendicular to the
image plane) and load the structure with gravity, the shape
shown in the middle is obtained. This shape is viewed as the
measured geometry. The shown fixture setup is very similar
to real fixture layouts used in automotive applications. An
intuitive approach for gravity compensation would be this
one: for example, one maps an inverted displacement field,
obtained from an FE simulation calculating the deformation
of the CAD geometry, on the same fixture. This step is
shown in the right picture in the figure. As can be seen,
the resulting shape is not even close to the known GF-
shape. The reason for this large difference of up to 24.6 mm
was motivated in Fig. 2. The distribution of the weight
to the support elements is usually not obtained during
the measurement process, and it is assumed to be equally
distributed in the simulation. In this particular case, the
weight is distributed as unevenly as possible due to the bad
input shape. The image shown in the middle of Fig. 3 depicts
the forces on the support elements, indicated with two plus
signs and two zeros. The two support elements with the
plus signs carry together 100% of the weight. The other
two support elements are merely touched and are used only
to keep the part in balance. Thus, the real deformation due

to the weight of the part is not recognized and is hidden
by the over-constrained fixture. Most methods described
in the literature point out this problem and only consider
measurements that are not over-constrained.

4.3 Similarity between CAD and real geometries

FE simulations based on ideal CAD geometries are
commonly used to predict deformations caused by the
weight of the part when it is placed in a measurement
fixture. Simulation results can be mapped to 3D scans
to correct a measured shape as discussed by F. Thiébaut
et al. [16]. These methods typically assume that a measured
part geometry behaves similarly to the simulation model
that predicts the deformation caused by the weight of
the part. This assumption must be treated with caution.
Already minor differences in shape can cause recognizable
differences in simulation results. Figure 4 illustrates this
problem. Here, a steel sheet metal part with dimensions 300
mm × 200 mm × 0.5 mm is simulated using a linear
elastic material model. Two different geometries were used.
The top row shows an ideal CAD geometry represented
by a plane, and the bottom row shows a part with small
shape deviations below 0.5 mm, compared to the CAD
geometry. Both geometries were meshed with first-order
shell elements (number of mesh nodes 15,251) and loaded
equally with gravity-induced forces applied perpendicularly
to the image plane (Z-direction). Boundaries are shown in
the figure. To demonstrate the influence of the orientation
of the part relative to the fixture, two simulations were
performed—one with gravity in positive and one with
gravity in negative Z-direction. One can also interpret this
as two different parts with inverse shape deviations. For
the ideal plane, both simulations lead, as expected, to the
same displacement field. For the part with shape deviations,
two different displacement fields resulted from the FE
simulation, and neither one of them matches the result

Fig. 3 Real-world example
showing the problem of
measuring with over-constrained
fixtures
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Fig. 4 Different behavior of ideal CAD geometries (top) and real part geometries (bottom)

of the simulation obtained for the CAD geometry. The
two displacement fields obtained for the part with shape
deviations differ up to 0.2 mm, which is evident by direct
comparison (right-hand side).

These results show that minor shape deviations can
cause recognizable errors when assuming that real part
geometries behave like ideal geometries. Also, different
fixture layouts and shape deviations were tested, resulting in
a sensitive behavior of the outputs. Thus, it depends greatly
on shape deviation and fixture layout whether it is possible
to use an FE simulation result, produced for an ideal CAD
geometry, as a basis for performing shape corrections on
a measurement by mapping simulated displacements. In
real-world applications, fixture layout is known but shape
deviations are unknowns. Therefore, it is difficult to verify
the quality of a mapping approach as it can be different for
individual parts.

To overcome the described shortcomings, the authors
present an iterative FE simulation-based approach that
calculates a valid GF shape of a measured sheet metal
part by using measured geometry as simulation input. It is
assumed that the input measurement is not over-constrained
to prevent effects like the ones depicted in Fig. 3.

5Method

This section is split into two parts. First, the method is
explained by discussing mathematical aspects of calculating

the GF shape. Second, the used algorithm resulting from
the mathematical description is presented. To calculate the
GF shape, the method needs the following inputs: (1) a
mesh representation of the measured object, (2) the locator
positions and directions, (3) material information, and (4)
the gravity direction. The output of the computation will
be a mesh representation of the GF-state of the measured
object.

5.1 Generation of the simulationmodel

The first step after measuring a part is the generation of
a simulation model from the measured geometry. There
are many different methods available for the generation
of a mesh from a measured geometry. I. Gentilini and K.
Shimada [20] for example are applying a bubble packing
method to the point cloud to reduce its density. After
triangulating the coarsened point cloud, they define the
elements as FE shell elements to run simulations. Another
method that automatically creates volume FE meshes from
STL files is proposed by Y. Liu et al. [25]. More recently,
also a simulation method called finite cell method became
more popular. This method enables running simulations
completely without the use of meshing the measured object.
It can handle three-dimensional point clouds from different
kinds of scans. A detailed review and a description of
the method are given by D. Schillinger and M. Ruess
[26]. Another possible way to obtain an FE mesh from
a measurement is to use commercially available software
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tools for reverse engineering to get a CAD representation
of the measured object and then again meshing the new
CAD model. Thus, the generation of the simulation mesh is
treated as a problem on its own that can already be solved in
a satisfying way for different kinds of applications.

To finalize the simulation model material properties,
boundaries and loads must be added. The boundaries and
loads can be derived from the measurement fixture. As
mentioned, the fixture must be unambiguous to calculate
the GF shape only with geometrical information as input
(compare Section 4.2). For further explanations, the load
case shown in Fig. 1 is used.

5.2 Iterative approach (Loop 1)

Starting from the initial situation, the most intuitive way
of finding the GF shape would be to invert the direction
of the load. This might work for really small magnitudes
of u0 and in some special cases but is wrong in general.
As such, it is not applicable reasoned by the difference
of geometrical stiffnesses. The pre-studies in Section 4.2
already discussed this problem. Motivated by the problem
of different magnitudes by flipping the gravity direction, an
iterative approach is used to approximate the displacement
field u0. The basic idea of this approach is to subdivide the
total gravity load into smaller increments Δg and applying
the load incremental wise to the structure. Per iteration,
two simulation runs are performed, one with the load of
+Δg, and in a separate simulation, the same incremental
load is applied in the inverse direction. Figure 5 shows
the resulting displacement fields u

+Δg

0 and u
−Δg

0 . Now, the

magnitudes of the displacement field u
+Δg

0 can be used to

apply it in the direction of the field u
−Δg

0 for every node. The
resulting shape S1 is the updated mesh configuration after
the first iteration, being the initial configuration for the next
iteration. The shape S1 can be expressed mathematically as:

S1 = S0 +
(

|S+Δg

0 − S0| ∗ S
−Δg

0 − S0

|S−Δg

0 − S0|

)
(2)

The displacements u
±Δg

0 can be written with:

S
±Δg

0 − S0 = u
±Δg

0 (3)

(3) in (2) results in:

S1 = S0 +
(

|u+Δg

0 | ∗ u
−Δg

0

|u−Δg

0 |

)
(4)

To approximate the target displacement field u0, all incre-
mental displacements need to be summed up:

u0 ≈
n∑

i=0

|u+Δg
i | ∗ u

−Δg
i

|u−Δg
i |

(5)

Fig. 5 Calculating one increment of “Loop 1” from shape S0 to S1 by
displacing the mesh nodes using the magnitude of the displacement
vectors calculated with the load +Δg (blue) and applying them into
the direction of the vectors calculated with −Δg (red)

In every iteration, only node positions of the mesh are
updated. Tensions and forces are not considered for the
next iteration. When updating the position of a node, the
geometry of the simulation model is changed. Thus, the
displacement field calculated in the next iteration changes
as well. This iterative approach solves the problem of
different geometrical stiffnesses in different directions of
gravity. To obtain the GF shape approximation, iterations
are performed until the sum of allΔg values equals the value
of g, captured mathematically in Eq. 5. Note that one could
think, performing only the simulation run with +Δg and
flipping the displacement vectors might be sufficient, as the
direction of displacement is very similar to the simulation
run with −Δg, for small Δgs. Unfortunately, it turned out
that this slight difference in direction is summed up while
performing the iterative steps leading to recognizable errors.

The user controls increments for this “Loop 1.” By
defining how many iterations are to be performed, the value
of Δg is given as Δg = g/#iterations. Similarly to
other iterative approaches, it is expected that the quality
of the approximation improves with an increasing number
of iterations, at the expense of computational cost. The
ideal number of iterations is a trade-off between precision
and computational cost and must be determined for every
application individually via a sensitivity study. Once the
ideal number of iterations is determined, this number can
be used for the calculation of the GF shape for further
measurements of the same part.

Iterative approaches can be used to approximate a
solution. By reducing the increment size resulting in a
higher number of iterations the solution should become
more precise. It turned out that the presented approach has
a weak spot that causes a convergence toward a shape that
slightly differs from the desired GF shape.
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5.3 Stress stiffening (Loop 2)

To find the reason for the error in the approach of
Section 5.2, first, the solution of one iteration is verified. To
do so, two simulations are compared. The first simulation
is applying g + Δg to the known GF shape to obtain the
configuration S

+Δg

0 from Fig. 6. The second simulation is
applying the load +Δg on the free shape S0. Note that the
shape S0 was calculated before by applying the load +g to
the GF shape and exporting the mesh. The initial meshes of
both simulations are considered stress-/strain-free. It turned
out that these two simulations do not result in the same
geometry. As a reason, an effect called stress stiffening is
identified, which is not considered in the second simulation
which causes the differences in the simulation results.

Stress stiffening, sometimes also named geometric stiff-
ening, incremental stiffening, initial stress stiffening, or
differential stiffening, is the effect that a loaded structure
behaves differently from a stress-free structure. This effect
usually occurs in simulation with thin structures like shells
or beams. Depending on the geometry, the structure can
be stiffened or weakened by this effect. The mathemati-
cal aspects are not discussed in detail; they can be looked
up for example in the Ansys Theory Guide [27]. For fur-
ther improvements, it is only important to know that the
stress stiffening effect influences the behavior of a loaded
structure.

As the stresses are lost after the mesh update in each
iteration of Loop 1, the stress stiffening effect cannot be
considered directly. To overcome this problem, a second
iterative approach is used, based on the calculations made
before as described in Section 5.2. As mentioned before,
a shape that does not exactly match the desired GF shape
can be calculated, but this shape is already very close to the
GF shape. The shape obtained from Section 5.2 is further
used as initial geometry for the following calculations.

Fig. 6 Comparing one increment of Loop 2 by calculating S
+Δg

0 in two
different ways

The basic idea for the next iterative simulations is to use
the similarity of the GF shape and the already calculated
shape. Both shapes result in similar displacement fields
when applying the full gravity load. As the stress stiffening
effect is considered in the forward simulation, the resulting
displacement field will differ from the approximation
calculated before in Section 5.2. This scenario is depicted
in Fig. 7a, where SLoop1 is the shape initially used from
the previous iterative calculations and S0 the free shape.
Now, the displacement field ug that has been obtained from
loading SLoop1 with the full gravity can be used to displace
the free shape S0 in the opposite direction. The resulting
shape S′

Loop1 is closer to the desired GF shape (see Fig. 7b).
This behavior can be expressed as:

|(Sn − S
g
n) − u0| < |

(
n∑

i=0

|u+Δg
i | ∗ u

−Δg
i

|u−Δg
i |

)
− u0| (6)

As both geometries, S0 and SLoop1, are represented by the
same mesh, the displacements can be applied per node. So
a registration method for matching the geometries is not
necessary. By running the forward simulation from Fig. 7
and updating the shape SLoop1 multiple times, the resulting
geometry comes every step closer to the GF shape. So the
following sequence can be established:

Si = S0 − (S
+g

i−1 − Si−1) (7)

The limit of Si is the desired GF shape:

Sgrav−f ree = lim
i→∞Si (8)

As the change of the shape from Si to Si+1 can be
calculated, a termination criterion ε can be defined as:

ε > max(|Si − Si+1|) (9)

The maximal change of the shape converges to zero for an
infinite number of iterations. The threshold ε can be viewed
as a measure for the precision of an intermediate result.
This approach allows a user to control output precision for
a specific application by specifying the value of ε.

Note that the whole calculation of the GF shape might
work by only applying “Loop 2” multiple times directly
to the measured shape S0, but this would result in a large
number of iterations that can be drastically reduced by using
the geometry of Loop 1 as input for the second loop.

5.4 Algorithm

This section will describe an algorithmic implementation of
the method described before. This algorithm highly relates
to the method proposed by S. Germain et al. [6]. The
difference in the method which is proposed in this paper
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Fig. 7 Two-step optimization of “Loop 2.” a First, full gravity load g is applied to the shape SLoop1; b second, a displacement field ug is applied
in inverse direction to the shape S0, resulting in S′

Loop1

is that it does not use any inverse FE formulation. This
might result in way higher run times (see Section 6.3) but
makes the method easier to implement with almost any
simulation software and thus easier and capable to use in
real applications.

To explain the algorithm in detail, Fig. 8 is used. As a
prerequisite, a simulation model of the measured geometry,
containing boundaries, material information, and direction
of gravity, is necessary. The algorithm is split up into two
loops. These loops refer to the iterations explained before
in Sections 5.2 and 5.3. Before starting the computation,
the user has to define the number of iterations for the first
loop and the abort criteria ε for the second loop. At the
beginning of Loop 1, a Δg is defined by dividing the full
gravity load by the defined number of iterations. Then, two
simulations can be started in parallel, one with the load
vector +Δg and one with −Δg. From these two results, the
magnitude and direction of the displacement for the node
update can be obtained. This step refers to the principle
explained in Section 5.2. After the node positions of the
mesh nodes are updated, the next iteration of “Loop 1” can

be performed with the updated mesh. When all iterations
are done, the mesh geometry already is close to the GF
shape. The updated mesh geometry is then used as input
for Loop 2. This loop refers to the iterations explained in
Section 5.3. Here, the following steps are performed. First,
the full load of +g is applied to the resulting mesh from
Loop 1. Then, the direction of the displacement vectors
becomes flipped and applied to the original input mesh that
represents the measurement of the free state. The resulting
mesh is closer to the GF shape then the result from Loop
1 and is used for the next iteration of Loop 2. This loop is
running until the maximum change of the displacement field
from one iteration to the next one is below the user-defined
value ε. The result of the algorithm is a simulation model
of the part in its GF shape. From here, the user can run any
forward simulation to virtually clamp or assemble the part
in any desired situation to perform quality measures in other
situations if needed.

As stated in the “Abstract,” this algorithm does not need
a CAD model of the part and also does not use any
inverse formulations. The user merely needs access to the

Fig. 8 Flowchart of algorithm to calculate the GF shape. The algorithm is divided into two loops: columns represent steps that are performed
during one iteration. Loop 1, shown in blue, iterates a fixed number defined by the user. Loop 2, shown in red, terminates based on a threshold
condition
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node position of the mesh and the displacement vectors
of the results to implement the proposed algorithm.
Commonly, these are fundamental functions provided by

scripting interfaces of commercial simulation software. An
alternative visualization of the method is given in Algorithm
1 expressed as pseudocode.

6 Validation

This section provides validations to show the performance
of the proposed algorithm. There are two kinds of
validations that are presented in this section. The first
kind are virtual validations showing the performance of the
algorithm at simple and complex parts. These validations
have a ground truth (CAD) to measure the precision of
the method. The second kind of validations are validations
with experimental data to show the whole workflow and
precision based on a physical experiment.

6.1 Validation with simulation data

To show whether the proposed method works in theory,
virtual experiments were performed. In these simulations,
a CAD model was deformed by a gravity load with
unambiguous boundary conditions. The resulting shape then
was exported. With this mesh representing the free state, a
simulation model preserving the same material model and
boundaries was set up. The mesh is considered as tension-
and stress-free. This simulation model is the input for the
algorithm (see Section 5.4). The result of the algorithm can

then be compared to the CAD model which represents the
GF shape.

6.1.1 Simulation setup

To show the performance of the proposed method, the
algorithm from Fig. 8 is implemented as a plugin in
the commercial simulation software Abaqus from Dassault
Systèmes. The kernel of this implementation only takes
about 175 lines of code. With this prototype plugin, the
GF shapes of the two simulation models shown in Fig. 9
are calculated. On the upper row, a simple piece of sheet
metal with the dimensions 200 mm × 300 mm × 0.5
mm is shown. As material, aluminum with a simple linear
elastic material model is chosen. On the lower row, a more
application relevant geometry is depicted. This geometry
represents the roof of a car with the dimensions of about
2000 mm × 1000 mm, with 0.7 mm thickness. The material
is chosen as steel, also with a linear elastic material model.
Both geometries have meshed with the default Abaqus shell
element, a first-order shell element. To avoid uncertainties
caused by a coarse mesh resolution, both geometries were
meshed densely (using 15,251 nodes for the simple sheet
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metal and 169,378 nodes for the car roof). Besides the
geometry, the supports of a fictitious measurement fixture
are shown in the first column “Initial setup.” The direction
of the gravity load is chosen perpendicular to the image
plane (Z-direction). The next column “Applied gravity”
shows the influence of gravity compared to the CAD
geometry from the first column. This result is obtained by
running a simulation that applies the gravity load to the
meshed CAD geometry with the boundaries already shown.
The resulting mesh is then considered stress-free and is used
as an input simulation model representing the free state and
retaining the same material model and boundaries.

The user-defined parameters for the algorithm were 4 for
the number of iterations (n) of Loop 1 and ε = 0.004 for
the abort criteria of Loop 2 (compare Section 5.4). These
parameter values were obtained by performing simulations
using the CAD geometry. There exists an optimal number
of iterations for Loop 1 for every part. The value of the
parameter n was varied between 1 and 10. In this particular
case, we found that n = 4 was optimal for the number of
iterations of Loop 1 for both geometries. When the user does
not set the number of iterations properly, the second loop
will take more iterations but will nonetheless find the correct
GF shape. The second parameter ε = 0.004 is related to the
precision of the output and can be chosen as desired.

6.1.2 Results

The last two columns of Fig. 9 show the simulation results
of the proposed method. The results of both loops are
shown separately in columns 3 and 4 of the figure compared
with the CAD geometry. The differences between the
geometries resulting from Loop 1 and their corresponding
CAD geometry are below 0.5 mm which is a good first
approximation but for quality assurance purposes way
too coarse. After the second loop of the algorithm, the
deviations between the CAD geometry, which represents the
GF shape, and the corresponding simulation results were
reduced drastically. Both results differ below a value of
0.019 mm which is less than half than the defined quality
goal from Section 4.

6.2 Validation with experimental data

To show that the proposed method not only works in theory
but in real applications as well, a physical experiment is
demonstrated in this section. Therefore, the physical setup
is explained first in Section 6.2.1. Next, the simulation
setup is explained in Section 6.2.2. Lastly, the results are
presented in Section 6.2.3. The goal of this validation with
experimental data is to prove that the GF shape of a sheet

metal part can be calculated from an optical measurement.
This cannot be validated directly without sending the part
together with its fixture and a measuring machine to space.
So, this validation works indirectly by performing the steps
shown in Fig. 10. First, the specimen is scanned in situation
1. From this scan, a simulation model is created by fitting a
surface to the measured point cloud. Then, the fitted surface
becomes meshed and boundaries, as well as loads from
situation 1, are applied to the model. The next step is to
calculate the GF shape by using the proposed algorithm.
Then, another simulation step is performed, where the
boundary conditions of situation 2 are applied to the model
of the GF shape. The last step is to compare the simulation
result with the measurement of situation 2. Only if the GF
shape is calculated properly, the comparison succeeds.

6.2.1 Experimental setup

The setup of the physical experiment is depicted in Fig. 11.
The specimen is a steel sheet metal part (structural steel
St37 - 1.0037) with dimensions of 200 mm × 300 mm and a
thickness of 0.7 mm. As support, four balls that are in-plane
are used for restricting the part in Z-direction (direction
of gravity). For positioning the specimen in the X and Y
directions, precision rods are used as boundaries.

The specimen and the rods are sprayed with a mat metal
primer to reduce reflections that cause faulty measurement
results when using optical measurement systems. As an
optical measurement system, an HP Structured Light
Scanner Pro S3 was used. This device provides scans
with a precision of 0.05 mm. Note that the authors have
used different experimental configurations (i.e., lighting
conditions, calibrations, angle of view) for acquiring the
measurement data. The highest quality point cloud is used
for the validation presented in this section.

The specimen was scanned in the two situations shown
in Fig. 11. Situation 1 has unambiguous boundaries. This is
the measurement from which the initial simulation model is
created. Situation 2 has an additional support in Z-direction
which results in ambiguous boundaries. This is the situation
that is simulated by calculating the GF shape of situation
1 and applying the boundaries of situation 2 in a second
simulation step. Note that it is only possible to calculate
the shape of situation 2 based on the shape of situation 1.
Contrariwise, it is not possible because the measurement of
situation 2 is not unambiguous. To ensure that no plastic
deformation occurs when placing the specimen on the
fixture, an FE simulation with an ideal geometry (plane) was
performed to estimate the mechanical stresses for situation
1. Maximal stress is obtained at about 5% of the yield
strength for the steel used.
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Fig. 9 Results of validation with simulation data. The figure shows the initial situation, sub-steps, and final result for two sheet metals. Top row:
simple plane sheet metal; bottom row: realistic car roof

6.2.2 Simulation setup

The first step of the workflow right after measuring the part
is to create a simulation model of the measured geometry.

To do so, a surface fitting approach is used, where a
parametrized surface rectangle with the correct dimensions
is fitted to the point cloud. Therefore, the commercial soft-
ware tool Alias from Autodesk is used. The fitted surface

Fig. 10 Workflow of the
experimental validation
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Fig. 11 Experimental setup and
measured situations

has then meshed in Abaqus with first-order shell elements
(15,251 nodes) and the boundary conditions and material
properties are added. For this validation, a linear elastic
material model was used with the properties:

– E-Modulus: 210 GPa
– Poisson’s ratio: 0.3
– Density: 7.8 g

cm3

With the simulation model of the measured geometry
created, the simulations can be performed to obtain the GF
shape.

6.2.3 Results

After performing the steps described in Fig. 10, the results
are shown in Fig. 12. The first row shows the measurements
of the same object in two situations (see Fig. 11) compared
to a plane surface with the dimensions 200 mm × 300 mm
which is considered as CAD for the following comparisons.
All measurements are aligned by using the contact points
of the part with its fixture as alignment boundaries for a 3-
2-1 alignment (see Fig. 11). The measurement of situation
1 shows that the part behaves similarly to the part from the
virtual validations shown in Fig. 9. The left picture of the
second row shows the result of the surface fitting compared
to the measurement of situation 1. It can be seen, that the
measurement is noisy on a scale of ±0.05 mm but due to
the surface fitting, the resulting surface is smooth. Based on
this fitted surface, the simulation mesh is created. The right
picture of the second row shows the result of the proposed
algorithm which calculated the GF shape compared with

the CAD model. Note that in this comparison the color
transition is much smoother because the simulation mesh
and the CAD can both be assumed as smooth. The last
row shows the result of the simulation with the boundary
conditions of situation 2 applied to the calculated GF shape,
compared with the actual measurement of situation 2. Note
that the measurement of situation 2 was also smoothed by
fitting a surface to it as well. Ideally, the shown comparison
would not show any deviations, but as actual measurement
data is used for this comparison there will always be
differences. The picture shows that the differences between
measurement and simulation result are below ±0.05 mm
measured in the surface normal direction. The results and
run times of both the virtual and physical validations are
summed up in Table 1.

6.3 Run times

To compare the proposed algorithm in terms of run time
with other methods, the simulation time of the iterations
were determined and summed up. The shown numbers
(Table 1) are only covering simulation run time, as the
pre- and post-processing times are highly dependent on
the implementation. All simulations were performed on the
same system:

– CPU: AMD Ryzen 5 1600 @ 3.20 GHz (8 threads were
used)

– 16 GB DDR4 RAM
– Windows 10 64 bit LTSB
– Abaqus Vers. 2018
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Fig. 12 Result stages obtained
from validation with measured
data. The largest node error
value for the final comparison,
considering the entire mesh used
to generate this image, is less
than 0.05 mm. This value is less
than the tolerance value
published by the manufacturer
of the 3D scanner used to
digitize the object

6.4 Discussion

This section will take a deeper look into the results of the
validations with simulation data presented in Section 6.1.
By using a CAD model, a precise ground truth model
is given to compare with. The only differences that can
be measured are either a consequence of the numerical
uncertainty of the FE solver or result from the proposed
algorithm. The message file of the simulations contains
displacement corrections of the order of 4e−05, which is far
below the scale used to evaluate the quality of the GF shape.
Therefore, the results, shown in Fig. 9, are trustworthy. The
results show that, as long as the simulation model does
reflect the measured geometry (unambiguous measurement)
and behavior of a real part, the proposed method can be
used for calculating the GF shape. The deviation of less
than ±0.019 mm is sufficient for the considered application

and meets the design goals for our method as defined in
Section 4. In both results, it can be seen that the areas
that are far apart from the fixture supports have the highest
error which is plausible. Nevertheless, one can improve the
results further by performing additional iterations of Loop
2; see Fig. 8.

The measured run times shown in Table 1 only consider
simulation times. The time required for solving the problem
of applying full or partial gravity load to a structure is
the bottleneck for reducing the overall time needed for
a solution. The pre- and post-processing steps can be
performed fully parallel, in principle. To reduce the overall
run time of the proposed method would require one to
reduce either the number of iterations or the complexity
of the simulation. In terms of run time, the proposed
method was not designed to compete with inverse FE
formulations as described by S. Germain et al. [6], for
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example, but it still provides a viable alternative approach
for industrial applications where real-time support is not
necessary. The advantage of the proposed method is the
simplicity of the implementation of the algorithm compared
to implementations using inverse FE calculations.

Our method’s overall run time cost is also relatively
high when compared to approaches that only map a pre-
calculated gravity deformation field to a measurement.
This cost is caused mainly by the expensive genera-
tion/adjustment of a simulation model for each scan. By
performing all calculations based on measured geometry,
the assumption of similar behavior between the ideal and
real geometry no longer applies. Furthermore, there is no
need to register the measured point cloud to the CAD geom-
etry. The GF shape, calculated with our method, is valid for
all part distortions. This increased reliability and precision
justifies the higher run time cost, especially in applications
where high precision is crucial.

Our validation results show that our method is suitable
for real applications. The chosen specimen geometry shows
a displacement-per-length ratio that is above the car roof
from the virtual validations; see Section 6.1. The small
test setup reflects deformations similar to those obtained
when measuring large sheet metal parts. The results of the
validations are shown in Fig. 12. The deflections of the
part caused by gravity are plausible when comparing the
results with the used boundary conditions. The second row
on the left side in the figure shows a comparison between
the surface fitting and measurement (the fitting target). The
deviations produce a stripe pattern when compared to the
fitted surface. Structured 3D light scans and the resolution
of the measurement system explain this effect. The last
row of the figure shows the quality of the validation with
experimental data. The measured data had been smoothed
by fitting a surface to the original point-cloud. Deviations
are below ±0.05 mm, meeting the design goal of < ±0.05
mm. This is sufficient for assessing the geometric quality
of sheet metal parts; see Section 4. This statement holds
for the whole surface being compared and not merely
for points of interest. The experimental results presented
show lower maximal error values than experiment results
presented in the literature, e.g., F. Thiébaut et al. [16].
Two major factors explain smaller differences between
simulation and measurement: First, every measurement
system has uncertainties that have to be taken into account;
second, every model used for computer simulation is an
approximation of complex real-world physical behavior.
The authors are keenly interested in the simulation model,
and inaccuracies of the simulation could be reduced by
making a model physically more realistic. In this particular
case, the model has not considered residual stresses and
varying material thickness of the part that might be present
in a manufactured sheet metal part.
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7 Conclusions

This paper has described a solution for computationally
determining the GF shape of a measured sheet metal part for
quality assurance purposes. Our solution employs an itera-
tive approach to FE simulation. As only input and output
node positions of a simulation are needed to be accessi-
ble, so one can implement our method with commercially
available simulation software. The paper provides a detailed
description of our algorithm and test implementation, using
commercial simulation software. Furthermore, the imple-
mentation was validated by discussing a comparison of
simulation and experimental data. Also, different geome-
tries and materials were used for the validation to show
the usability and performance of the method. The quanti-
tative numerical results of our validations show deviations
below the uncertainty of typical measurement devices used
for assessing sheet metal part geometries, which is ±0.05
mm. Thus, the results produced by the presented method
and its implementation meet the quality goals the authors
had established for the method. In addition, the geometrical
precision and run times of our method were analyzed and
discussed for different problem sizes.

To improve run time behavior, it would be worthwhile
to analyze the convergence behavior of the algorithm
and consider, for example, an extrapolation scheme for
faster convergence. Another improvement would be the
calculation of the displacement direction used in Loop 1.
Also, it would be very beneficial to check whether the
method is capable of calculating the GF shape of an over-
constrained measurement when the force distribution on the
supports is known.
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