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Abstract
We present an exploratory data analysis approach for finite element (FE) simulations to interactively
inspect measured deviations in sheet metals arising in automotive applications. Exterior car body
parts consist of large visible surfaces, and strict tolerances must be met by them to satisfy both
aesthetic requirements and quality performance requirements. To fulfill quality requirements like gap
and flushness, exterior vehicle components have adjustable mechanical boundaries. These boundaries
are used to influence the shape and position of a sheet metal part relative to its chassis. We introduce
a method that supports an inspection engineer with an interactive framework that makes possible a
detailed analysis of measured sheet metal deviation fields generated from 3D scans. An engineer
can interactively change boundary conditions and obtains the resulting deviation field in real-time.
Thus, it is possible to determine viable and desirable adjustments efficiently, leading to time and
cost savings in the assembly process.
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1 Introduction

Measuring the dimensions of produced car body parts is one of the most important aspects of
quality assurance. Regarding sheet metal assembly processes in today’s automotive industry,
dimension assessment is usually condensed by measuring single points on an assembled part.
These arbitrary points, referred to as KPIs (key performance indicators) must be chosen
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6:2 Interactive Quality Inspection

carefully to obtain a satisfactory assessment of the quality of a measured part. We focus on
the assembly of exterior automotive chassis components. KPIs are chosen such that gap and
flushness between parts can be controlled. These properties have small tolerance ranges, and
it is difficult to fine-tune them. The chosen tolerances are usually below the dimensional
variability of the assembled parts. Adjustable boundaries are used to fine-tune gap and
flushness for every assembly. When using the term “boundary” in the following, we refer to an
actual physical boundary of a mechanical part. To support adaptive assembly, expensive tools
with mounted measurement devices are employed to control gaps and flushness. However,
additional inspection steps are needed to evaluate an assembly produced in an automated
process. During detailed analysis, more inspection points are evaluated than can be actively
controlled during the assembly process. To increase the amount of information captured by
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Figure 1 High-level description of workflow outline, grouped by the following tasks/data: “One-
time preparation,” “Input” and “Output”.

a single measurement, optical measurement methods have become increasingly important
for assessing sheet metal assemblies. Optical measurement technology captures the entire
geometry of the visible surface of a produced assembly at high resolution. The “point clouds”
generated by scanning can provide more detailed information about a measured geometry
but, at the same time, it can be difficult to interpret the scanned data. Scans can be difficult
to understand since a comparison between desired geometry and measured data results in 3D
deviation (or difference) vector fields. To support simpler visual interpretation, we plot signed
distance to the geometry instead of rendering the 3D offset vector field. When inspecting
these color-coded distance fields, effects like dents, buckling, or elevations of large areas can
be identified. However, the reason for identified effects can be a superposition of misplaced
boundaries. Presumed geometrical compliance of the individual assembly components is
already taken into account. The determination of appropriate countermeasures for greatly
reducing identified deviations requires an experienced quality engineer with a substantial
understanding of part behavior. Especially when parts are used for the first time it is often
necessary to invest significant time to obtain the needed knowledge.

To speed up the mentioned trial and error experiments, this paper proposes an explorative
approach to interact with the measured deviations. Figure 1 shows a high-level description
of the workflow and the integration of the method. The figure is separated into “one-time
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preparation”, “Input” and “Output”. As one-time preparation steps, an FE-simulation
model must be set up from CAD geometry and an ensemble of displacement fields must
be simulated sampling the solution space spanned by the simulation parameters that are
considered adjustable. As input for the exploration method, a deviation field is calculated by
comparing a measurement of an assembled part with its desired geometry. The obtained
deviation field is then analyzed by a parameter estimation method to find a similar parameter
state in the ensemble of pre-calculated displacement fields. Based on the obtained parameter
state the input displacement field can then be updated by interpolating in between the
pre-calculated displacement fields. So the user can change the parameters and gets a real-time
update of the measurement. When the user found a satisfactory result, the output of the
method is an updated displacement field and a set of necessary corrections. To meet the
requirements of a system that is capable of updating measurements in real-time, our goal is
to compute the update of the measurement below 0.5s.

2 Background

This section summarizes the state of the art affecting the method this paper proposes.

Causal analysis of sheet metal assembly errors

The identification of potential causes for measured deviations is essential for quality assurance.
Once the reason(s) is(are) identified, countermeasures can be executed. The concept of causal
analysis is related to the topic of this paper, as the aim is to interactively identify proper
countermeasures for measured deviations. [7] uses this concept for reducing the dimensional
variation in multi-stage assemblies. When performing a causal analysis usually all possible
influences on the process are considered and explanations for variation are identified. Typical
causal factors in sheet metal assembly are, for example, assembly tool variation, part variation,
the order of fastening screws or spot welds. Published approaches deal with optimizing these
identified weak spots, see [17], [6], [16], [5], [15].

Parameter Estimation

Parameter estimation is widely used in different applications for identifying unknown quantit-
ies or states in simulation models, see [26], [3], [22]. In FE simulation, parameter estimation
can be used for fine-tuning material parameters of a simulation model, feeding the estimator
with experimental data, see [11] and [25]. [20] use parameter estimation as a kernel of a
closed-loop control system for automotive purposes to predict critical motion states. The
most relevant branch of parameter estimation methods used for our work is based on para-
meter estimation by least-squares methods. An overview of these methods is given in [13].
We already set up and validated a parameter estimation approach utilizing a least-squares
method in connection with 3D-scanned deviations in sheet metal assemblies, presented in [8].

Proper Orthogonal Decomposition (POD)

POD is a branch of dimension reduction methods for finding a lower-dimensional basis for
high-dimensional data. A review of POD methods is given in [18]. PODs are used in a wide
variety of applications. For example, [4] use decomposition for reconstructing pressure fields
on aerofoils from measured point data. [2] use POD for reducing the amount of necessary
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6:4 Interactive Quality Inspection

single optical measures for recognizing a sheet metal part by reconstructing non-measured
areas. The principle of POD is used in this paper to solve the parameter estimation problem
for 3D-vector field applications.

Interactive/Explorative Design

Interactive design methods are commonly used for finding an optimal shape or design of
a product to fulfill defined specifications by exploring the design space. These methods
are used for a wide variety of applications and domains, see [21], [19], [24] . Especially in
engineering applications, interactive design methods in combination with physical simulations
become more popular, see [14], [9]. The method proposed in this paper is a hybrid approach
containing aspects from interactive design methods as well as aspects from data exploration.
To briefly cover literature from the field of data exploration we refer to an overview given in
[12].

The presented literature covers many diverse topics of research spread over different disciplines.
This work utilizes the knowledge from these different disciplines combining it to create a
novel approach for interacting with measured sheet metal deviations. In particular, the
contributions are:

Method for supporting decision-making processes in the quality inspection of sheet metal
assemblies
Applicable for real-time interaction
Validations performed with simulation- and experimental data

This paper unfolds as follows. First, the method is described in Section 3 covering different
aspects like preparation steps and data acquisition, as well as a mathematical and algorithmic
description of the method. Next, Section 4 presents a use case scenario showing validations
with simulation- and experimental data. Last, the results are discussed in Section 5 and the
paper is concluded by Section 6.

3 Method

In this section, the method that enables the interaction with the measurement data is
explained in detail. Figure 2 depicts a detailed workflow that focuses on the “Interactive
Exploration Method” mentioned in Figure 1 (red ellipse). In Figure 2 the interactive
exploration method is also outlined with a red box. As input, we need an ensemble of pre-
simulated displacement fields and the used simulation parameters. Also, the parameter states
that led to the scanned deviation must be identified by a parameter estimation method. The
estimated parameter states are compared to the pre-simulated parameters to determine the
position of the scanned deviation field relative to the sampled points in the parameter space.
Next, the deviation field can be represented by an interpolation between the pre-simulated
displacement fields. This is achieved by weighting the pre-simulated fields corresponding to
the distance calculated in the parameter space. At this point in the workflow, the user can
make an input by changing the initially estimated parameter states of the scanned deviation.
This kicks off an update of the calculated distances and thus the weights for the pre-simulated
displacement fields become recalculated as well. By that, the scanned deviation field can be
updated by the change of the new interpolation result. This update can be performed within
a fraction of a second. So the user can interactively try out changes of parameters until he
achieves a satisfying result. The loop depicted in Figure 2 is representing the update loop
due to user input.
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Figure 2 Detailed description of the workflow with attention to the interactive exploration
loop marked in red. Inside this loop the user can change input parameters and gets an updated
displacement field as response of the method.

3.1 Preparation steps
To be able to interact in real-time with measurement data, one-time preparation steps are
necessary which are presented in this section. These preparations are already mentioned in
Figure 1. First, an FE-simulation model must be created from a CAD-geometry for the part
of interest. Also, the adjustable parameters and corresponding ranges must be defined and
assigned to boundaries in the simulation model. Next, an ensemble of simulation runs needs
to be created that samples the parameter space equally distributed. This ensemble can then
be used to set up an estimator for solving the parameter estimation problem for a given
deviation field. Different approaches can be used as kernel for the estimator. These already
are highlighted in section 2. For this paper, the parameter estimation is considered as a
problem that can be solved satisfactorily with methods already provided by the literature.
With the estimator set up, the preparation steps are complete.

3.2 Mathematical Aspects
In this section the mathematical details of the interactive exploration method are explained,
especially the data acquisition and the interpolation/approximation scheme are detailed in
the following.

3.2.1 Data Acquisition
The generation of the pre-calculated simulation runs, especially the choice of how to sample
the parameter space to achieve good interpolation results, is a crucial point. This data
generation will be discussed for a three-dimensional case for demonstration purposes and is
then extended to a six-dimensional parameter space to match up with the validations shown
later in this paper.

Before we can perform interpolations on pre-simulated displacement fields, we need to
perform multiple simulation runs to generate the necessary information. The amount of
simulation runs s ∈ N that need to be performed, highly depends on the number of simulation
parameters that are varied and on the sampling resolution r ∈ N of the parameter space
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X ⊆ Rn. For example: Let a⃗ ∈ X be a vector of one simulation parameter, where every
parameter ai can be varied in a range [mini, maxi] on its parameter space Xi.

a⃗ = (a1, a2, ..., an), ai ∈ [mini, maxi]. (1)

Then, the number of possible combinations of parameter states s for all axis of X can be
calculated with:

s = rn (2)

Sampling Distribution

The sampling distribution of simulation runs presumed in equation 2 is equally spaced on
every parameter axis {X0, . . . , Xn} with the same amount of sampling points r per axis. The
reason for choosing such a structured data set will be clarified in section 3.2.2. To get a better
understanding of the structure of the resulting data set, Figure 3 shows an example with
three simulation parameters and three sampling points per axis. The number of simulation

X1

X2

Sampling point
X3

Figure 3 Simplified illustration in 3D of sampling one hypercube in a multidimensional parameter
space.

parameters defines the order of dimension of the parameter space and the number of sampling
points defines the number of (hyper)-cubes needed for filling the parameter space. In this
particular example, we see three dimensions and three sampling points per axis resulting in
eight cubes with a total of 33 = 27 sampling points. One of these cubes and its sampling
points (parameter 1,2,3 >= 0) is highlighted in the figure. Every sampling point in the
parameter space is a combination of simulation parameters where an actual simulation run
is performed, resulting in 27 simulation results which are the supports for the interpolation
performed later on. As the simulation model of the use case presented in this paper has more
than three adjustable simulation parameters, we next discuss how to apply this systematic
sampling scheme on the general higher-dimensional case.

In the general case a geometric structure that subdivides a parameter space with the
dimension n in an equally spaced manner, is called n-cube also named hypercube. In Table 1
the elements of the hypercubes up to n = 6 are listed. This table can be calculated by the
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Table 1 Elements of an n-dimensional hypercube.

n Name 0-face
(vertex) 1-face 2-face 3-face 4-face 5-face 6-face . . .

0 Point 1
1 Line 2 1
2 Square 4 4 1
3 Cube 8 12 6 1
4 Tesseract 16 32 24 8 1
5 Penteract 32 80 80 40 10 1
6 Hexeract 64 192 240 160 60 12 1
...

sequence A038207 that can be found in “The On-Line Encyclopedia of Integer Sequences®”
(OEIS®) [1]. When we now consider six simulation parameters that are sampled with three
points per axis we already need 36 = 729 simulation runs that span 64 6D-hypercubes. Note
that this exponential behavior for this systematic kind of sampling can result in a large
number of simulation runs and thus in very expensive and time-consuming computations. To
avoid an impossible amount of simulation runs, adaptive sampling strategies like provided by
[23], can be applied. For the presented use-case no adaptive sampling was necessary.

3.2.2 Interpolation / Approximation Scheme

For generating information between sampled data points, we use interpolation. The interpol-
ation scheme chosen in this paper for interpolating in a higher-dimensional space is called
“inverse distance weighting”. This scheme will now be explained in detail:

Let a⃗ = (a1, a2, ..., an) be a vector of parameters of one simulation and u⃗(⃗a) the cor-
responding simulation result represented by a displacement field, then we can express the
pre-simulated displacement fields S as a set of simulation runs based on the parameter sets A:

A = {a⃗1, a⃗2, . . . , a⃗m} (3)
S(A) = {u⃗(⃗a1), u⃗(⃗a2), . . . , u⃗(⃗am)} = {u⃗1, u⃗2, . . . , u⃗m} (4)

Every parameter set contained in the quantity from equation 3 is considered as a known
or sampled point in the parameter space. The corresponding displacement field can be
interpreted as the “value” of this point.

Let b⃗ ∈ X be also a set of simulation parameters but u⃗(⃗b) = u⃗b ̸∈ S(A), thus we consider
u⃗b as an unknown value in the solution space S(A) that needs to be interpolated. To do so,
every known value is weighted by the inverse of the distance using the function λ : X ×X → R,
calculated in the parameter space:

u⃗b ≈ 1∑m
l=1 λ(⃗b, a⃗l)

m∑
i=1

λ(⃗b, a⃗i)u⃗(⃗ai) (5)

λ(⃗b, a⃗i) = 1
D(⃗b, a⃗i)

(6)

D(⃗b, a⃗i) = ∥⃗b − a⃗i∥2 (7)
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Figure 4 Calculation of the distances in the parameter space for an interpolation point (red)
inside a sampled cell.

Equation 6 is a weighting factor by inverting the distance calculated between the point b⃗

and the sampled point a⃗i, while

1∑m
l=1 λ(⃗b, a⃗l)

(8)

is a factor to scale the sum of weights to 1 so that we can introduce the scaled weight
λ∗(⃗b, a⃗i):

λ∗(⃗b, a⃗i) = λ(⃗b, a⃗i)∑m
l=1 λ(⃗b, a⃗l)

(9)

To locally increase the weight of a sampled point, the inverse lengths are raised to the power
of k:

λ∗k (⃗b, a⃗i) = (λ(⃗b, a⃗i))k∑m
l=1(λ(⃗b, a⃗l))k

, where

m∑
i=1

λ∗k (⃗b, a⃗i) = 1 (10)

With the introduced scaled weights and the notation λ∗k
i = λ∗k (⃗b, a⃗i) we can express the

interpolation as:

u⃗b ≈
m∑

i=1
λ∗k

i (⃗b, a⃗i)u⃗(⃗ai) = λ∗k
1 u⃗(⃗a1) + λ∗k

2 u⃗(⃗a2) + ... + λ∗k
m u⃗(⃗am) (11)

Figrue 4 demonstrates a simple 2D example the interpolation scheme. The red point I can
be approximated by calculating the distances l0−3 and applying equation 11.

Weak Spots of Inverse Distance Weighting

When using inverse distance weighting, some aspects that are affecting the interpolation
results are discussed in the following.

First, the distribution of the sampled points in the parameter space plays a significant
role in this interpolation scheme. In Figure 5 an example is given for an uneven distribution
of sampling points. The red point again is the point that needs to be interpolated. When
performing inverse distance weighting on this kind of data set the interpolation result will be
shifted towards the dense cluster of sampling points. Thus, the result of the interpolation
would not be plausible anymore. Another factor that influences the interpolation result is
the threshold radius when filtering the distances so that the interpolation does not have
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to calculate weights and the linear combination of Equation 11 for the whole data set.
Depending on the location of the interpolation point a slight change of the filter radius can
result again in an even or uneven set of sampling points that are used for the interpolation.
To prevent these shortcomings, the data set of pre-simulated displacement fields is distributed
in an even manner like presented in Section 3.2.1. To prevent uneven distribution due to
distance filtering, our method uses just the nodes of the hypercube where the interpolation
node is located in. These sampling points are found by sorting the whole data set by distance
and use the n closest points, where n is equal to the number of 0-faces of the corresponding
hypercube, see Table 1.

Although there are more general approaches available in the branch of multivariate
interpolation commonly used like kriging, spline interpolation, or radial basis function
interpolation, inverse distance weighting is preferred in this paper. Different methods for
scattered data interpolation are discussed and tested in [10]. The reason for choosing inverse
distance weighting for solving the interpolation problem in the higher dimensional parameter
space is the simplicity, robustness, and easy to implement nature of the algorithm. Also, the
mentioned shortcomings of this algorithm can be prevented as discussed.

X1

X2

Figure 5 Influence of the distribution of sampling points. Local clusters lead to a higher weighting
towards the cluster position.

3.3 Algorithm
In Algorithm 1, a pseudocode description of the interactive update is given. The input
for this algorithm is an initial parameter set that is obtained from solving the parameter
estimation problem for a measured deviation field. This initial parameter set is necessary to
locate the measured deviations in the parameter space. Next, the measured displacement
field is needed that will be updated by the algorithm. The third input is a list of parameters
that were used to generate the pre-simulated displacement fields. To this list, the actual
displacement fields are linked by a run-ID. The output of the algorithm is the updated
measured displacement field.

At the beginning of the algorithm, a baseline is calculated by interpolating a displacement
field for the initial parameter set. As we are interested in changes relative to this interpolation
result, we need to subtract it from further interpolation results. For the interpolation, the
steps that are described by the function “interpolate” have to be performed. First, the
distances between the target point (in this case the initial parameter set) and every sampling
point is calculated in the parameter space. Then the sampling points are sorted by distance
and the 65 (64 points for the nodes of the 6D-hypercube and one point for the center of mass)
closest points are used to perform the interpolation. For these 65 points, weights are calculated
as described in Equation 11. Last, the weights are multiplied with the corresponding pre-
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Algorithm 1 Pseudocode of Algorithm, structured by introducing two functions “calcu-
late_weight” and “interpolate” that are used in the main body.

Data:
a⃗_init: Initial parameter set obtained from parameter estimator
measurement: Measured displacement field
parameter_list: Ensemble of pre-calculated displacement fields and corresponding
list of simulation parameter

Result: Updated measured displacement field
Function calculate_weight(distances):

# calculates the weight using Equation 11.
Function interpolate(point):

distance_list=parameter_list - point
distance_list.sort_by_distance()
parameter_list.sort_by_distance()
cut_off_list=distance_list[:65] # get the first 65 entries
for i in length(cut_off_list) do

weight=calculate_weight(cut_off_list[i])
Output+=weight * simulation_result(parameter_list[i])

end
return Output

Main
baseline=interpolate(⃗ainit)
#interactive Loop
while TRUE do

get user_input
interpolation_result=interpolate(user_input)
updated_measurement=measurement - baseline + interpolation_result
render(updated_measurement)

end

simulated displacement fields. The weighted displacement fields are summed up and returned
by the function. After the baseline is calculated, the interactive loop starts, where the
user can make changes in the form of a parameter set. This input parameter set is then
also interpolated by the same function “interpolate”. The measured displacements are then
updated by subtracting the baseline and adding the interpolation result of the user input
resulting in an approximated displacement field for the new parameter state. Finally, the
updated field is rendered. The interactive loop runs until it is stopped by the user.

4 Use Case

We present a real-world use case scenario with validations performed on simulation and
experimental data sets.

4.1 Simulation Setup
The chosen part is the engine hood of a car body. This example represents an assembly
consisting of seven individual parts. The assembly structure is shown in Figure 6. Besides
the visible outer skin, two inner parts are visible when lifting the hood. Four thicker sheet
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Reinforce structure

Outer skin

Inner parts

Figure 6 Left side: assembly structure of used hood. Right side: boundaries used for simulation
with the coordinate system. The boundaries are “fixed” (cannot move at all), “adjustable” (to
manipulate hood shape), or “force” (by using defined forces to model gas springs attached to the
hood).

Table 2 Simulation parameters and corresponding value ranges.

Simulation parameter Label Description Value range [mm]

a1 HINGE_X Hinge left, X-direction [-1;1]
a2 HINGE_Y Hinge left, Y-direction [-1;1]
a3 BUFFER_L Buffer left, Z-direction [-1;1]
a4 BUFFER_R Buffer right, Z-direction [-1;1]
a5 LOCK_L Lock left, Z-direction [-1;1]
a6 LOCK_R Lock right, Z-direction [-1;1]

metal parts are inside the hood to reinforce its structure. An FE simulation model based on
the CAD geometry is created. Every component of the hood has meshed with first-order 3D
thin-shell elements. The total number of mesh nodes is 365,683 and the number of mesh
elements is 365,154. All components are joined together by modeling all spot welds as well
as structural and acoustic adhesives. Finally, mechanical boundaries are added, as shown in
Figure 6. This figure introduces the chosen coordinate system (X-, Y-, and Z-directions). The
hood is attached with two hinges to the chassis. The right hinge (direction-of-travel) is held
in position while the left hinge is adjustable in X- and Y-directions. In the closed state one
gas spring per side is pushing with 580N in X-Z-direction against the hood near the hinges.
In the front, two locks and two buffers are modeled as boundaries in Z-direction. While the
buffers can only push against the hood, the locks can push and pull in both Z-directions.
All boundaries are applied to the inner parts or the reinforced structure. Figure 6 shows an
overview of the locations of all boundaries and Table 2 lists the adjustable boundaries with
the corresponding value ranges. Based on the adjustable boundaries and the range of values,
the data set of pre-simulated displacement fields is generated. We sample three points per
axis. The number of simulation parameters is six, and by applying Equation 2 a total of
729 simulation runs are performed, used to define 64 6D-hypercubes. Further, 64 additional
simulation runs are performed by sampling the center point of every 6D-hypercube. This
approach produces a denser sampling without affecting the underlying data structure and
not affecting interpolation result negatively.
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6:12 Interactive Quality Inspection

4.2 Validation with Simulation Data
To assess the performance of the interpolation using inverse distance weighting, a validation
with simulation data is performed. The goal of this validation is to understand the scale
of the interpolation error. A “worst-case scenario” is set up by measuring the interpolation
quality of a point in parameter space that is as far away from all sample points as possible.
Therefore, we exclude the 64 simulation runs from the data set that were generated at the
center point of the 6D-hypercubes. Instead, we interpolate the data values for these center
points to compare the result with the excluded simulation-based value. The result is shown
in Figure 7 (parameter colored in red) for one hypercube. We argue that for every other
interpolation point inside a 6D-hypercube, the result generated via inverse distance weight
interpolation would be better, as the interpolation location will be closer to one of the
6D-hypercube’s sampled corner points. Additionally, the samples of the center points are part
of the data set for further interpolations. To show that the quality of interpolation improves
for different parameters, random parameter sets are generated in the allowable range specified
in Table 2 and full simulation runs are performed. An interpolation result is calculated for
the same parameter sets. The simulation results are compared with the interpolation results.
This comparison is shown in Figure 7 for three randomly generated parameter sets. The
first row in the figure shows the simulation parameters used for simulating/interpolating the
results for each column. Rows two and three show these results (displacement magnitude) as
color-coded images. As differences are difficult to see when visually comparing these two
rows, the last row shows the error distribution of the comparison of the simulated-based
and interpolated displacement fields. For all three examples, the RMS error is below the
worst-case scenario.
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4.3 Validation with Experimental Data

The quality of the interpolation result is crucial for practical use. The results presented in
Section 4.2 show promising performance concerning the precision, but further investigation
with experimental data should be made. We describe our experimental setup and present
results.

4.3.1 Hardware Set-up

Marker

Compund slide

Aluminum-profile frame

Dial gauge

Camera 1

Camera 2

Projector

Room layout

~4 mH
oo

d

~
1
m

~
1
m

Figure 8 Left-hand side: experimental setup used for validation against measurement data;
right-hand side: set-up used for scanning the engine hood.

The hood is prepared for measurement experiments by applying a light gray paint to
it. This is necessary to generate a 3D scan with a structured light scanner. Besides the
part itself, a fixture is designed and built from aluminum profiles. On top of this aluminum
frame the locks, buffers, hinges, and gas springs are mounted. The set-up is depicted in
Figure 8. To make the relative positions of the hinges adjustable, the left hinge is mounted
onto a compound slide. The locks and buffers have proprietary adjustment options. The
frame is equipped with markers to align different measurements. A dial gauge is used to
change boundaries precisely. The hood is not mounted in the orientation as it would be in
the assembled in a car, but this fact only affects the direction of gravity considered in the
simulation. For the purpose of our validation, the orientation of the hood does not matter.
Nevertheless, we point out that orientation matters when considering the scanning set-up, as
depicted in Figure 8 on the right-hand side. The cameras and the projector of the structured
light scan system must have a certain distance to the scanned object to capture it in its
entirety. Usually, complex parts are captured with many pictures that are later stitched
together. However, to reduce uncertainty caused by data registration, we capture every
measured state of the hood in a single picture. This approach results in a relatively coarser
resolution and noisier measurement data, but the quality of the result data is still sufficiently
precise for performing our validation. A significant advantage of this set-up is the fact that
the hood and the hardware components of the 3D scanner are not moved between scans. All
measurements are made in the same coordinate system. This method almost removes the
need for alignment. The markers mounted to the fixture are primarily used to determine
whether something has moved between scans. (The measurement system used is a modified
HP pro S3 structured light scanner, calibrated with custom calibration panels for the large
size of the scan window.)
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4.4 Experimental Validation Results
To assess the performance of the entire workflow, presented in Figure 2, a prototype imple-
mentation of Algorithm 1 is discussed next. We consider optical measurement data obtained
for different boundary situations. Figure 9 shows the sequence of steps of the validation.
First, a reference measurement is taken, and geometrical changes are computed relative to
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Figure 9 Experimental results. Top row: measured displacements caused by adjusting bound-
aries, compared to reference measurement (dark blue, leftmost); second row: interpolation results
reconstructed “backward” from the measured displacement field (rightmost); third row: histogram
for distribution of error caused by measurement update, evaluated at all vertices, and RMS error
value.

this reference model (dark blue - top left). Single boundaries are changed, one after the
other (top row). After every change of boundaries, the new geometry is captured by a scan.
The resulting geometries are compared relative to the reference measurement, producing the
displacement fields shown in the first row of the figure. The displacement field in the right-
most column is used as an input field for interactive interpolation. To validate the proposed
method, Algorithm 1 is used to calculate the measured states, based on the displacement
field. To reduce the influence of an interpolation error, only boundary states that match
a sampled point in the pre-calculated simulation ensemble are used. When traversing the
second row from right to left, we see the results produced by the proposed algorithm. The
initial displacement field is updated by the change of the interpolation towards the geometry
of the reference measurement, where the displacement should ideally be zero for every vertex.
It can be observed that the resulting displacement fields do not match the measured data
exactly.

4.5 Run Times
To assess the interactive aspect of our method, we measured run times, listed in Table 3. The
results show that creating the simulation data ensemble – which is a one-time pre-computation
step – requires about 103.5 hours. Nevertheless, as this is a pre-computation step that can
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also be performed in parallel, it scales with the available computational resources. The last
column, “Interpolation”, is the relevant column, it documents interactive response capability
of our presented method; the average computational time is only 0.2s.

Table 3 Computational times.

Simulation Ensemble Comparison of measurements Interpolation
Computational time 793 x 470s = 103.5 h 2s 0.2s

5 Discussion

This paper addresses different aspects of realizing its goal. Thus, the following topics from
the presented use case scenario are discussed in this section: The data generation of the
pre-calculated simulation ensemble, the results from the validation with simulation data as
well as the results from the validation with experimental data, and finally, the achieved run
times.

To generate sampling data for a higher dimensional parameter space can result in a large
number of necessary simulation runs. Already for the shown use case of six parameters, a
coarse sampling resulted in 793 runs. As the range of values is small relative to the size of
the part, a linear behavior can be presumed, making a coarse sampling sufficient. For the use
case of tuning in gap and flushness in sheet metal assemblies, this assumption is appropriate.
For parts that behave nonlinearly like ones that are made of composite materials, different
sampling and interpolation strategies might be necessary.

The interpolation/approximation scheme used in this paper, to achieve the results
presented in Section 4.2, is very simple and easy to implement. Although the achieved results
are sufficient for the presented use case it is hard to generalize this specific approach to other
use cases. The results in Figure 7 show an interpolation error (RMS) up to 0.1 (worst case
excluded). Considering the used sampling grid resolution of 1mm on each parameter axis,
extended by the additional sampling at the center of mass for each hypercube, this error
is indeed not negligible. Nevertheless, for exploitative purposes we consider the achieved
precision as sufficient, as the goal of the interpolation is not to replace simulation runs, but
to provide an impression of what’s happening in between the sampled points. When the user
visually compares the simulation and interpolation result, it is hard to spot out differences,
so we can argue that the achieved precision is sufficient for the presented use-case.

When using experimental data, things become more complicated. The results presented
in Figure 9 show on the same scale visible differences. To justify these higher errors, different
sources of errors were identified. First, every measurement system has uncertainties. The
measurement system includes the 3D-scanner itself, the fixture, and environmental influences.
The 3D-scanner is capable of providing scans with a precision of up to 0.05mm. But as
the measurement conditions were not ideal (compare Section 4.3.1) we assume a higher
uncertainty, estimated at 0.1mm. The second source of error is the fixture which is assumed
as entirely rigid. During the experiments, it turned out that some boundaries show a slight
runaway when changing the boundary state. This was recognized and re-adjusted, but
anyway causes errors when comparing set parameters. Besides uncertainties caused by the
physical setup, there are also sources of errors in the workflow of processing the measurement
data. For example, smoothing and outlier removal as well as solving the registration problem
to match measurement and simulation vertices is a crucial step. For this experiment, the
assumption was made, that only displacements perpendicular to the surface of the part occur
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as in-plane movements cannot be captured by a 3D-scan. The registration was simply made
by finding the closest point when comparing two meshes. This assumption might lead locally
to large errors. Nevertheless, when visually comparing the real measurements and due to
interpolation updated measurement, we see highly similar behavior. So we can argue that
the goal of providing information about the behavior of the measured part due to boundary
changes is achieved.

Last, the interactive aspect needs to be addressed. Therefore, the run times of different
tasks were recorded and listed in Table 3. The crucial step is the calculation of the
interpolation result, which takes on average 0.2s. This value meets the pre-defined design
goal of below 0.5s.

To summarize the discussion, we can say that the proposed method works satisfyingly,
although individual components could be improved. Especially for the interpolation scheme,
as well as for the point cloud registration problem, other methods might improve the overall
result.

6 Conclusions

We have introduced an interactive approach for exploring deviation measurements of sheet
metals, to help with the determination of viable boundary adjustments necessary to eliminate
or significantly reduce deviations. Our improvement of existing methods is the design and
implementation of an interactive system framework that can be utilized intuitively by an
inspection engineer to identify quality shortcomings and quickly enforce countermeasures
to positively affect sheet metal behavior in an assembly. Our system was driven by the
design and quality objectives employed in today’s automotive industry. Our system is
especially helpful to an inspection engineer during the early stages of production when it
is desirable to evaluate multiple combinations of boundary adjustments in a small amount
of time. As our interactive system supports the real-time exploration of such combinations,
it represents a substantial acceleration of the decision-making process thereby reducing
time and cost. We have validated our methods and prototype system by applying them to
simulated and experimental data. Our validation results support the effectiveness of our
system for real-world scenarios.

Regarding potential directions for future research, it is possible to consider the use of
other data interpolation or approximation schemes, instead of inverse distance weighting.
Further, other point cloud registration methods could be utilized.
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