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Abstract

The force fields used in molecular computational biology are not math-
ematically defined in such a way that their mathematical representation
would facilitate the straightforward application of volume visualization
techniques. To visualize energy, it is necessary to define a spatial map-
ping for these fields. Equipped with such a mapping, we can generate
volume renderings of the internal energy states in a molecule. We de-
scribe our force field, the spatial mapping that we used for energy, and
the visualizations that we produced from this mapping. We provide im-
ages and animations that offer insight into the computational behavior of
the energy optimization algorithms that we employ.

1 Introduction

A central focus in post-genomic biology is the prediction of the three-dimensional
(3D) structure – the native structure – of proteins and their interactions. The
3D structures of proteins have typically been determined by means of X-ray
crystallography and nuclear magnetic resonance (NMR) spectroscopy. While
an increasing number of individual 3D structures are known from these exper-
imental approaches, it is an unfortunate reality that only a small fraction of
those structures have been solved due to their cost and time constraints. The
need for shorter turnaround times generates great interest in more effective ap-
proaches. Among them, computational methods are a promising alternative
to both complement and guide the experimental ones. Furthermore, computa-
tional methods can potentially provide insight into and understanding of the
behavior of proteins on a level difficult to attain by experiments alone.

Computational methods are based on the hypothesis that the native struc-
ture of a protein corresponds to a global minimum of its free energy surface.
Therefore, the protein structure prediction problem is often approached as a
high-dimensional optimization problem. The objective function to be mini-
mized can be computed by various formulae, such as CHARMm, GROMOS,
ECEPP, and AMBER. Finding the global minimum of the energy surface is an
extremely difficult task for several reasons:
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1. the ability of energy functions to accurately model protein interactions is
uncertain;

2. the number of local minima increases exponentially with the size of the
protein;

3. the energy functions are ill-conditioned; and

4. the lack of effective global optimization methods that can deal with such
large-scale problems.

We have implemented an energy visualization system to help researchers
understand the complex biological systems they are trying to simulate. This
system permits us to animate the folding process by recording the steps of an
optimization procedure in terms of atom positions, energy states, and gradients.
Our goal is that, through animation, we can observe changes in the force fields
over time, and analyze the relationship that these fields have to a molecule’s
evolving structure. We can also evaluate the algorithm’s behavior in comparison
to expected results, and monitor its progress.

Because the objective function assigns a single scalar value to an entire pro-
tein, it is difficult to visualize the relationship between the energy function and
protein structure in an effective way. We use a straightforward calculation to
map selected components of the objective function back to the positions of the
atoms comprising the protein, enabling volume visualization techniques to dis-
play the two in superposition. These combined visualizations lead to a better
understanding of both the objective function and the ongoing optimization pro-
cess.

The energy visualization system is implemented in conjunction with the
energy computation plug-in architecture of the ProteinShop application soft-
ware [3, 5, 6, 7]. ProteinShop is a graphical environment developed to create
low-energy structures for use as initial configurations in a global optimization
process. Therefore, it supports on-the-fly calculation of a protein structure’s
internal energy using the same function used by the global optimization algo-
rithm. This feature allows users to judge the overall quality of the structures
generated. To be useful in a more general context, ProteinShop provides a
plug-in system that allows users to specify their own energy formulations.

Integration with ProteinShop allows the energy visualization to be utilized
in conjunction with the expanding set of steering and analysis features in that
application. Use of the plug-in architecture will make possible the comparative
analysis of different energy computation formulae and optimization algorithms
on specific inputs. We expect that the pending release of ProteinShop under
an open-source license will facilitate more rapid expansion of the repertoire of
algorithms that are available in its plug-ins.

In the future, ProteinShop’s visualization of molecular force fields will be
applicable to more than protein folding applications. It will also assist in anal-
ysis of molecular docking and the stability of multiple-protein structures. The
visualization system only requires the ability to measure force fields in relation
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to the positions of atoms, residues, and secondary structures. As capabilities
are added to the calculator and optimization systems, this visualization system
will support them. Moreover, this visualization approach can find application
in the analysis of high-dimensional optimization problems in general.

2 Related work

ProteinShop (Figure 1) was originally designed to support a protein structure
prediction method involving several members of our group [3]. This method
is based on two phases. The first phase generates initial structures, which are
local minima. The second phase improves upon the initial structures using both
global and local minimizations. Because there is no global optimization algo-
rithm that can deal with the large number of variables involved in this type
of problem, the global optimization phase improves the initial configurations
through global optimizations in subspaces of the full-dimensional space. One
advantage of this approach is that it can be parallelized by selecting different
subsets of dihedral angles and performing small-scale global optimizations on
those subsets. Those small-scale global optimizations produce a number of min-
ima in the chosen subspaces. A number of those conformations are selected for
local minimizations in the full variable space. The new local minima are merged
into a list of possible solutions ordered by energy value. The process repeats
iteratively until no further lowering of energy is observed between consecutive
iterations. The global optimization process can be viewed as a search through
a large tree of possible solutions. Each node of this tree corresponds to a local
minimum and its children nodes to the local minima generated from it by per-
forming global optimizations on a subset followed by local minimizations of the
full dimensional space.

ProteinShop provides support for the first phase of the protein structure
prediction method. Guided by the energy function, it quickly creates a variety
of protein configurations and locally minimizes them to find low-energy can-
didates for the global optimization phase. To that end, it includes a plug-in
to compute the AMBER energy of a protein (see Section 3.1) and to perform
local minimization of this energy. The local minimizations are performed us-
ing the Limited Memory BFGS algorithm (LBFGS), as implemented in the
OPT++ toolkit [9], running interactively inside the ProteinShop window. In
this context, our energy visualization system allows real-time visualization of
the protein minimization process that drives the protein to its local minimum
with the goal of studying, analyzing, and comparing energy functions as well as
local minimization algorithms.

ProteinShop also supports the second phase of the structure prediction
method by providing a graphical environment to monitor and steer the global
optimization process. ProteinShop supports interaction with the configuration
and subspace selection module of the global optimization process while it is
running and provides access to its internal data structures. By using this data,
ProteinShop can create a graph of the entire tree of possible configurations
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Figure 1: ProteinShop.

generated by the global optimization process thus far and make them accessi-
ble for viewing and manipulation by the user. The user can locally optimize
the manipulated structure and insert it back into the global optimization pro-
cess. The idea is that a knowledgeable researcher who is following the global
optimization process can make changes to certain structures, returning them
to an energy-decreasing path. In this context, the energy visualization system
allows users to analyze important information such as which configurations are
forming hydrophobic cores and which areas of a configuration are more likely
to produce a larger drop in energy, making them good candidates for further
minimization. The energy visualization system helps users focus the search on
the most promising areas of the tree, thus reducing the time needed to find a
solution.

3 Force field visualization

The energy visualization system renders the force fields as a semitransparent
cloud around the various geometric “tinkertoys” that can be used to display
the molecule’s structure. Where the cloud is thickest, the forces are strongest.
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Where the cloud is wispy or nonexistent, the forces are reaching equilibrium.
Rendering is straightforward, done by hardware with volume textures. The
user controls the resolution detail of the texture and all important aspects of
the transfer function, which is tailored to ProteinShop’s functionality.

Section 3.1 describes the force field calculator implemented in ProteinShop’s
AMBER plug-in. Section 3.2 describes the pipeline for the energy visualization.
Although we only look at AMBER in this context, other force fields can be
visualized for comparative or analytical purposes by changing the plug-in.

3.1 AMBER

The AMBER force field (Assisted Model Building with Energy Refinement) is
used to evaluate the stability of the molecule in response to local changes in its
configuration produced by the modeling tools in ProteinShop. The configura-
tion of the molecule is defined by the positions of its atoms. The terms of the
force field are defined by the differences between the states of local elements in
the configuration (bond angles, distances, etc.) from locally defined equilibrium
values. The greater the difference, the higher the energy. When the energy is
minimized, the molecule is assumed to be in a stable state.

The force field definition consists of five terms, which can be visualized in-
dividually. The force field definition is based on [10]:

Etotal =
∑

bonds

KR(R − R0)2 +

∑

angles

Kθ(θ − θ0)2 +

∑

dihedrals

Kφ

2
[1 + cos(nφ − γ)] +

∑

nonbonded pairs i,j

[
Ai,j

R12
i,j

− Bi,j

R6
i,j

+
qiqj

εrε0Ri,j

]
.

In the following, we discuss the meaning of the various variables appearing in
this formula. The formulation shows only four terms; we produce an additional
nonbonded term for certain pairs of atoms that are separated by exactly three
bonds, called “1-4 nonbonded energy”. To visualize these energies we map them
back to locations in space, averaging them in a limited volume that is concen-
trated around the positions of the contributing atoms (two atoms for bonded
and nonbonded pairs, three atoms for angles, and four atoms for dihedrals).
These terms are illustrated in Figure 2.

We visualize the force field terms individually to attain a better understand-
ing of the relative influence exerted by different terms. For this reason, we refer
to the energy terms associated with the ith atom and their gradient vectors on
an individual basis as:
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Figure 2: Visualized optimization targets in the AMBER formulation: bond
radius R, bond angle θ, dihedral angle φ, nonbonded radius Ri,j , and 1-4 non-
bonded radius R1−4. There are actually two dihedral angles along the backbone
of each residue, called φ and ψ (not shown).

• Bond: Ai
1 and ∇Āi

1.

• Angle: Ai
2 and ∇Āi

2.

• Dihedral: Ai
3 and ∇Āi

3.

• 1-4 Nonbonded: Ai
4 and ∇Āi

4.

• Full nonbonded: Ai
5 and ∇Āi

5.

The gradients are based on the first derivative of the AMBER formulation.

3.2 Energy rendering

The energy rendering system is built on top of ProteinShop’s older energy
visualization feature [3], which remains available to users. In particular, the
controls for that system are also used by the new system. Including both the
original settings and the new ones added for this system, the user has a total of
8 settings to control the transfer function and determine the general appearance
and information conveyed by the energy cloud. The assemblage of these settings
is in Figure 3.

1. Channel: The user can show either the subset sum of the energy terms
selected in the discriminator, or the subset sum of their gradient magni-
tudes.
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2. Discriminator: This is a block of toggles in the user interface through
which the user can select an arbitrary subset of the energy component
terms to be visualized. Those not selected will be ignored. This setting and
setting 3 (clamp) were part of ProteinShop’s original energy visualization
functionality.

3. Clamp: This interval helps the user eliminate outliers from the data,
which might otherwise hide detailed information elsewhere.

4. Resolution: The user can set the resolution in texels per angstrom (Å).
The selected resolution may be automatically lowered to observe con-
straints imposed by the platform’s physical memory and OpenGL ren-
dering capabilities.

5. Radial specifier: The user specifies a multiplier and coefficient type for
the radial basis function. The coefficient type can be either uniform (×1Å)
or relative; in the latter case equal to either of each atom’s physical or Van
der Waals radius. The final radius is defined in Å.

6. Classifier: The user can specify one classification function, which maps
atoms to a limited range of integers [0,m), where m is the number of
classifications in the function’s range. The classifier’s domain consists of
everything ProteinShop knows about the atoms, including their element
types, positions, topological relationships, current force field states, and
the secondary structures and residues that they belong to.

7. Normalizing interval: This interval determines how the cumulative
atom energy values from the input channel are normalized into the do-
main of the color function (below). It can be computed automatically
based on the current energy levels or set to an arbitrary value.

8. Color function: Each integer in the classifier’s range is associated with
a color function. The color function maps the atom’s energy to a color.
The colors from all classifications are combined in a weighted average to
produce the final color and transparency of the texture.

The atom energy store in Figure 3 is the AMBER plug-in, which provides
real-valued energy component terms and gradient vectors for each atom in the
molecule. These numbers are processed according to the channel selected to
produce a single floating point value for each atom. Only the component terms
selected in the discriminator are included. If no terms are selected in the dis-
criminator, every atom’s value will be zero. The number of toggles in the dis-
criminator, c, is determined by the plug-in. For our AMBER plug-in, c = 5
for the terms illustrated in Figure 2. If, for example, a solvation term is added
to the force field, it will appear in the user interface as a sixth toggle in the
discriminator.

Let the discriminator function D(j) = 1 if the jth energy component is
selected and 0 if not, 0 ≤ j < c. We compute the value ei of the ith atom as

7



Figure 3: Energy visualization pipeline used in ProteinShop.

ei =
c−1∑

j=o

D(j) ·
{

Ai
j for subset sum

‖∇Āi
1‖ for gradients

}
. (1)

The value of ei is then clamped, and spread through the texel block by means
of the radial basis and classification functions. The radius of the basis function s
is determined by the radial specifier, equal to the product of a multiplier chosen
by the user with a slider and one of three coefficients: a constant (chosen with
another slider), the atom’s radius, or the atom’s Van der Waals radius. The
basis function f(ri) is a smooth curve similar to those used for the implicit
modeling of molecular surfaces [1]. It depends on the texel’s distance ri from
the center of each atom:

R(ri) =

{
1 − 3r2

i

s2 + 2r3
i

s3 if ri < s
0 otherwise

}
. (2)

The voxel block store holds texel magnitudes for each classification. Let the
classification function L(i, k) = 1 if the ith atom belongs to the kth classification
and 0 if not; 0 ≤ k < m and 0 ≤ i < n, where n is the number of atoms in the
molecule. Given the atom energy value ei (1), the radial basis R(ri) (2), and
the classifier L(i, k), the texel magnitude tk becomes

tk =
n−1∑

i=0

ei · R(ri) · L(i, k). (3)

The normalizing interval N(tk) maps texel magnitudes to the unit interval
(clamp and scale) for use with color functions. The color function C(N(tk))
implements an arbitrary continuous color map. ProteinShop provides a dozen
of these, including intensity functions (ranging from a component color at 0 to
white at 1 through different paths), constant functions, and invisibility to hide
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selected parts of the molecule. The final texel color t is computed from the
classified texel magnitudes tk (3) as a weighted average, defined as

t =
∑m−1

k=0 N(tk) · C(N(tk))
∑m−1

k=0 N(tk)
. (4)

4 Results

It is possible to implement this pipeline in O(n · (s · q)3) time, where q is the
resolution of the texture grid, by classifying each atom and determining which
portion of the texture grid it will affect prior to iterative computation of (3). The
pixel transfer operations will require O(N3) time in the size of the texel block
regardless, but hardware makes this part of the computation relatively fast. In
practice, depending on the size of the molecule and the resolution chosen, the
pipeline takes anywhere from a fraction of a second to half a minute or more,
but all of the textures seen here were produced in less than ten seconds on an
obsolete machine (Pentium III, 733 MHz) with no 3D texture capability at all.
Once generated, the textures can be viewed at interactive refresh rates, given
suitable graphics hardware.

Three classifiers were implemented to demonstrate the system. The default
classifier is called the unity function, defined as L(i, 1) = 1,∀i ∈ [0, n). The
configuration shown in Figure 4 was locally optimized inside ProteinShop by
our energy plug-in. A playback feature is available that records the state of
each iteration in the minimization to a binary file, allowing later analysis and
review. This feature can be used to produce animation frames, or simply to flip
back and forth between selected states in order to produce images like these,
which show the sum of the AMBER energy terms for each atom before and after
minimization.

The second classifier distinguishes atoms belonging to dipoles forming hy-
drogen bonds from the others. Figure 5 shows two views of 1pgx made with
this classifier that are identical except in their energy rendering. The utility of
the invisible color function is demonstrated by its use in this case, because the
dipole atoms are small in number. The force fields of atoms from small classes
can be overwhelmed or obscured by large numbers of atoms in other classes.

The third classifier distinguishes atoms belonging to hydrophobic residues
from those belonging to hydrophilic residues, and both of these from atoms
whose residues are neither hydrophobic nor hydrophilic. A larger radial specifier
was used in Figure 6 to obtain a better understanding of the overall shape of the
molecule. This classifier can be used to evaluate the effects of solvation terms
in the force field.

5 Conclusions and future work

The classifiers and color functions are implemented in a highly modular way that
makes the process of adding new functions to the source code and user interface
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Figure 4: Configurations of CASP6 target 209 before and after local minimiza-
tion inside ProteinShop. The intensity of color shows the relative magnitude
of the AMBER energy terms for each atom.

very simple. The actual time required depends on the complexity of the function,
but a rich set of classifiers can easily be created based on ProteinShop’s existing
functionality. Scientists may also find it useful to build data mining tools on
this framework. Such a system would exploit existing hooks in the framework to
create instantiable functions that can be edited by the user through a customized
user interface. As a simple example, a classifier might be edited through a
checkbox list of element names, and in this manner form a two-set partition of
the elements. As a more complex example, the editor of a compound classifier
might allow the user to specify one input classifier, and then associate each
element of that input’s range with another classifier.

To support future analyses of protein docking and interaction, the rendering
system must be expanded to support the force fields of multiple molecules. This
will also require work elsewhere in ProteinShop, but new classifiers to support
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Figure 5: Two views of 1pgx showing gradients over hydrogen bond sites. Above,
atoms that belong to bonded dipoles are green; all other atoms are red. Below,
atoms not belonging to bonded dipoles are hidden.

docking analysis will be needed. For example, a docking classifier might distin-
guish atoms dominated to varying degrees by inter-molecular forces from those
that are not. This functionality would be highly dependent on the calculator
plug-in, which is another general area that calls for additional work. Additional
plug-ins will allow different force field formulations to be comparatively analyzed
on a visual basis.
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