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ABSTRACT

We present a method for extracting boundary surfaces from seg-
mented cross-section image data. We use a constrained Potts
model to interpolate an arbitrary number of region boundaries be-
tween segmented images. This produces a segmented volume from
which we extract a triangulated boundary surface using well-known
marching tetrahedra methods. This surface contains staircase-like
artifacts and an abundance of unnecessary triangles. We describe an
approach that addresses these problems with a voxel-accurate sim-
plification algorithm that reduces surface complexity by an order of
magnitude. Our boundary interpolation and simplification methods
are novel contributions to the study of surface extraction from seg-
mented cross-sections. We have applied our method to construct
polycrystal grain boundary surfaces from micrographs of a sample
of the metal tantalum.

Keywords: Surface extraction, Polygonal meshes, Visualization
in Physical Sciences, Life Sciences and Engineering.

Index Terms: I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling—Boundary Representations I.4.6 [Image
processing and computer vision]: Segmentation—Region growing,
partitioning; J.2 [Computer Applications]: Physical Sciences and
Engineering

1 INTRODUCTION

Triangle meshes are a common representation of surface structures.
They are convenient for visualizing surfaces using computer graph-
ics hardware, and they provide a succinct and precise representa-
tion of a surface which can be used for further applications, such as
simulations. In many imaging applications, a triangle mesh must be
constructed from some other representation of the structure, such as
a volume image (voxels) or a stack of planar curves. The problem
of extracting a surface from either form of data has been studied
extensively in the computer graphics and visualization fields. In
this paper we make novel contributions to the study of construct-
ing surfaces from planar boundary curves and extracting separating
surfaces from segmented volumes. We describe a method for in-
terpolating segmented region boundaries between planar sections
which can track an arbitrary number of regions, and we introduce
an algorithm to extract a simplified, voxel-accurate triangle mesh
from the resulting segmented volume.
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Our method extracts crystal grain boundaries of polycrystalline
materials, given serially sectioned micrographs as input. The con-
figuration of most materials of technological importance consists
of polycrystalline aggregates. The properties possessed by these
polycrystals are a function of the size, morphology, phase, and spa-
tial correlation of the constituent crystals, along with any additional
constituents such as precipitates and inclusions, and defects such
as voids and cracks. The spatial relationship of these features is
therefore important toward understanding the relationship between
structure and property that is central to the materials science dis-
cipline. The development of predictive material models also relies
on accurate representations of structure. Although two-dimensional
sections reveal many microstructural features that may be statisti-
cally captured through stereological approaches, for many cases a
three-dimensional reconstruction is necessary to fully interpret the
structure.

A sample of the metal tantalum was ground and imaged at inter-
vals of 5 microns, and each image has sub-micron resolution. Two
types of images were captured, a gray-valued optical image and
an electron back-scatter diffraction (EBSD) image which measures
the crystallographic lattice orientation of the metal [1]. These im-
ages can been seen in Figure 1. Because the EBSD images capture
more information than the optical images, automatic segmentation
of these images produces more accurate crystal grain boundaries.
However, the EBSD scanner takes considerably more time to cap-
ture an image than the optical scanner. For this reason, EBSD im-
ages are taken only every fifth section, at a spacing of 25 microns.
This difference in sampling densities, between the in-slice imaging
directions and the through-slice sectioning direction, makes it dif-
ficult to stack the segmented images into a coherent volume. Grain
boundaries vary significantly between segmented slices, as one can
see in Figure 1(d).

Our problem is closely related to a common problem and prac-
tice in medical image processing: tomographic images are hand-
segmented to identify features of interest, but due the time it takes
to segment by hand, these segmentations are only performed on
a relatively small subset of the given sections. Binary segmenta-
tions can be smoothly interpolated using distance fields, and if there
are multiple segmented features, each feature can be smoothed in-
dividually and then the collection of smoothed boundaries can be
patched together to form a multi-labeled volume [2]. If, however,
there exist several hundred or thousand features whose boundaries
need to be interpolated, it may not be practical to treat each feature
individually.

We present a boundary interpolation method that can track an
arbitrary number of boundaries. This interpolation is accomplished
using a simple physical model, called the Potts model. Each voxel
in the volume is given some segmentation label, and a local en-
ergy function is defined using the segmentation labels and optical
gray-values of a neighborhood of voxels. Voxels with known seg-
mentation labels are kept fixed while we attempt to find a labeling



(a) EBSD (b) Optical

(c) One segmented slice (d) Three consecutive slices

Figure 1: Two types of imagery: (a) electron backscatter diffraction
or EBSD, and (b) optical. The high quality of EBSD images allows
for robust automatic segmentation (c), but because they take signifi-
cantly longer to acquire, EBSD images may be captured sparsely. In
such cases, segmentation boundaries can vary dramatically between
slices (d).

of unknown voxels which minimizes the total energy of the seg-
mentation.

After interpolating the planar boundary curves, we extract a
boundary surface between regions. We use the well-known march-
ing tetrahedra method of Nielson and Franke [24]. This algorithm
constructs a surface by considering a small number of segmenta-
tion configurations in a tetrahedral domain. These cases are illus-
trated in Figure 2. Without any additional information (such as a
scalar field) to define the surface geometry, we start with the mid-
point surface, halfway between differently labeled voxels. The mid-
point surface exhibits staircase artifacts which must be smoothed,
and it contains many more triangles than are necessary to represent
the boundary surface. To mitigate both of these issues, we use a
combination smooth-and-simplify algorithm. In order for materi-
als scientists to evaluate the results of the boundary interpolation,
we would like for the smooth-and-simplify algorithm to change the
boundary surface as little as possible. On complex datasets, the
marching tetrahedra algorithm can produce triangle meshes con-
sisting of several million triangles, so some mesh simplification is
desired to allow for interactive exploration of the results. To bal-
ance these two goals, we have developed a smooth-and-simplify
algorithm which guarantees that the boundary surfaces remain con-
fined to those tetrahedra which generate them, while reducing the
number of triangles by an order of magnitude.

2 RELATED WORK

The problem of creating surfaces from planar cross-sectional curves
has been studied extensively. There are various solutions to the
problem that rely on graph optimization [9], Delaunay triangula-
tions [4], implicit surfaces [15, 26] and other techniques. The paper
by Braude et al. [6] contains a brief survey of the field. We fol-
low the approach of Weinstein’s scanline-surfacing algorithm [28],
solving the surface reconstruction problem in a voxelized space us-
ing a separating surface algorithm.

Separating surfaces can be extracted from a segmented volume in
one of two ways, either by first decomposing the hexahedral voxel
cells into five or six tetrahedral cells, or by operating directly on the

hexahedral cells. Both approaches then create triangle surfaces in
the interiors of cells which separate differently labeled cell vertices.
Tetrahedral methods were developed independently by Müller [22]
and Nielson & Franke [24]. Hexahedral methods can be considered
multi-region generalizations of marching cubes [19], and thus im-
port similar topological ambiguities. Hege solved these ambiguities
with detailed case analysis [12], as did Wu and Sullivan [30], while
Bischoff and Kobbelt subdivided ambiguous voxels [3]. Bischoff
and Kobbelt allow the user some control over the topology inside a
cell, while all other methods, ours included, arbitrarily decide the
topology a priori, which could lead to unwanted artifacts.

If there are no additional geometric constraints, such as volume
fraction information, then one has to choose arbitrarily where to
place surface vertices. An obvious choice is to place them at the
midpoints of edges of the underlying hexahedral voxel mesh. How-
ever this leads to aliasing artifacts. In a binary segmentation, these
artifacts can be smoothed before a surface is extracted by filtering
a scalar function defined by the segmentation [29, 23], or the sepa-
rating surfaces can be smoothed after they are created, using some
form of constrained smoothing [25]. Reitinger paid special atten-
tion to smoothing across the non-manifold edges in a multi-region
separating surface [27].

In large volumes it may be desirable to simplify the smoothed
surface. Numerous methods for simplifying triangle surfaces have
been developed. Luebke surveyed the field with an emphasis on
practical applications [20]. In scientific applications, considering
the geometric error caused by simplification is important. Kalvin
and Taylor provided error bounds by merging nearly-coplanar faces
into so-called superfaces, and bounding the distance between a
superface and its constituent triangles [16]. Guéziec descibed a
method that tracks error bounds at vertices and preserves volume
by carefully placing new vertices when an edge is collapsed [11].
The error-bounded simplification methods most similar to our own
are the simplification envelopes of Cohen et al. [7] and the permis-
sion grids of Zelinka and Garland [31]. Both methods create a tol-
erance volume around the initial mesh and forbid any modification
which moves the mesh outside of this volume. Simplification en-
velopes are created by an offset surface from the original mesh, and
permission grids are created by rasterizing the mesh onto a voxel
grid.

Bertram et al. considered an application that poses many of the
same challenges as ours: constructing non-manifold separating sur-
faces from segmented, time-varying magnetic resonance images of
the human heart [2]. Multiple regions (anatomical features of the
heart) are manually segmented in sparsely distributed slices of the
volume image. Region boundaries are interpolated between seg-
mented slices by interpolating the signed distance fields of these
boundaries. The interpolated signed distance field of every region
is considered, and a voxel is assigned the segmentation label of the
closest region. Separating surfaces are extracted on the dual voxel
grid, placing surface vertices inside cells of the primal grid. The
surface is smoothed with a Laplacian filter, subject to the constraint
that each vertex remain in the voxel that generated it.

Our method offers two main advantages over some of the meth-
ods mentioned above. First, whereas the method of Bertram et al.
calculates the distance field separately for each region boundary,
the computational effort required for our boundary interpolation is
independent of the number of regions. This is highly desirable in
situations when the number of regions is very large, such as in our
metal micrograph application. Second, our surface smoothing and
simplification approach eliminates both sampling artifacts and ex-
cess triangles without introducing error. If smoothing and simplifi-
cation are treated as separate steps, as done by Reitinger et al. [27]
and Wu & Sullivan[30], there is a possibility that surface simplifica-
tion will be hindered by aliasing artifacts which are not completely
removed in the smoothing step. This effect is illustrated in Figure 7.
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Figure 2: Tetrahedral cases.

Figure 3: Boundary surface for a three-region segmentation with one
sphere and two boxes. The non-manifold boundary edges are shown
by red tubes and the boundary vertices are shown by black spheres.
There are two vertices, four edges and six facets – one between each
pair of regions, and one between each region and the surroundings.

3 BACKGROUND

We are given a stack of segmented images which represent serial
cross-sections of some volume. We call the segmented features re-
gions, and each pixel of each image is given a label to associate it
with a region. The boundary between two regions forms a planar
boundary curve, and where three or more regions meet, multiple
planar curves come together at a boundary vertex. In our appli-
cation, regions are crystal grains, which are polyhedron-like struc-
tures with nearly planar facets and nearly straight edges. When a
sectioning plane intersects a grain, facets appear as planar boundary
curves, and grain edges appear as vertices of these curves. Grain
vertices, however, are rarely captured in the sectioning plane and
their locations can only be inferred.

In three-dimensional space, two adjacent regions are separated
by a surface which we refer to as a boundary facet, although it need
not be planar. Two facets between the same two regions are dis-
tinct if the facets are disjoint, i.e., the regions touch at two separate
places. Three or more facets meet at a boundary edge, and multi-
ple edges meet at a boundary vertex. We refer to the collection of
boundary facets, edges and vertices as the boundary surface. Topo-
logically, the boundary surface is part of a cell complex, with the
region interiors being the three-dimensional cells. We assume this
complex is closed so that all facets are bounded by edges if they are
bounded at all, and all edges are bounded by vertices unless they
form closed loops. We can ensure this property by extending the
segmented volume with a layer of “void” labels.

Avoiding topological ambiguities is a concern for any boundary
extraction method. We take the approach of imposing a tetrahe-
dral domain over the rectilinear voxel grid, following Nielson and
Franke [24]. Each hexahedral cell of the voxel grid is subdivided
into five tetrahedra. Vertices of the tetrahedra are labeled with their
region identifier. To avoid confusion between a tetrahedral vertex
of the voxel grid and a triangular vertex of the separating surface,
we refer to the former as a domain vertex and the latter as a surface
vertex, and we use the same convention for edges and triangles.

We classify tetrahedra and triangles of the domain by counting

the number of distinct labels at their vertices. Figure 2 illustrates
these cases. If a domain tetrahedron has two labels among its four
vertices, then it is a facet-type tetrahedron and some patch of a facet
passes through its interior. This patch intersects three or four faces
of the tetrahedron, and these faces are also referred to as facet-type
faces. If a tetrahedron has three labels, then it is an edge-type tetra-
hedron and some boundary edge passes through the interior. This
boundary edge enters the tetrahedron at one face, and leaves it at
another face. These two faces are also edge-type, and the remain-
ing two faces are facet-type. A tetrahedron with four distinct labels
is a vertex-type tetrahedron. It joins four boundary edges and six
boundary facets, and all four of the tetrahedral faces are edge-type.
Any tetrahedron, triangle or edge of the domain with vertices that
are all similarly labeled is called interior-type.

A triangle mesh is a collection of vertices, pairs of the vertices
(edges) and triplets of vertices (triangles). It is called a manifold
triangle mesh without boundary if for every point on the surface we
can find a small enough ball, centered on this point, which contains
a piece of the surface that is homeomorphic to a plane. If the lo-
cal area around some point is homeomorphic to a half-plane, then
the surface has a boundary. In the subsequent discussion, a mani-
fold triangle mesh is one in which every edge is shared by exactly
two triangles. If an edge is incident on only one triangle, it is a
boundary edge. If every edge is incident on one or two triangles,
and every vertex is incident on zero or two boundary edges, then
the mesh is manifold-with-boundary. A vertex which is incident on
a non-manifold edge is a non-manifold vertex. We ignore other de-
generate cases, such as a singular vertex shared by the tips of two
cones, because the separating surface algorithm does not produce
surfaces in these configurations.

We represent the boundary surface as a non-manifold triangle
mesh. It can be decomposed into manifold pieces which are the
facets. These facets are represented by manifold-with-boundary tri-
angle meshes. The boundaries of the facets meet at non-manifold
boundary edges. A property of the marching tetrahedra surface
extraction algorithm is that three boundary facets meet at every
boundary edge, and four boundary edges will meet at every bound-
ary vertex. (It is a coincidence that these are the same numbers of
faces and edges meeting in a three-dimensional Voronoi diagram,
which looks very much like our polycrystal microstructure, and in-
deed many cellular structures in nature.) Figure 3 illustrates a sim-
ple boundary surface example with three regions, plus a void region
for the surroundings.

4 BOUNDARY INTERPOLATION

We start with a rasterized representation of the planar boundary
curves for each slice, i.e., a segmented image. These images have
been registered, and correspondences have been made between re-
gions in adjacent slices, so that the same feature has the same label
throughout the entire stack. At this point, a separating surface can
already be extracted from the segmented volume using Weinstein’s
scanline-surface algorithm [28], which we call “nearest-neighbor”
boundary interpolation. If the spacing between segmented slices is
adequately small, this will suffice and we can move on to extract-
ing and simplifying the surface. However, if the spacing is large,
then the segmentation may change dramatically from one slice to
the next, and we want to smoothly interpolate the boundary curves
between slices. We accomplish this using the Potts model.

The Potts model has received attention from the computer vision
community as a model for early vision, as a special case of Markov
random fields [5]. It has also been studied by materials scientists
as a model of the formation and motion of crystal grain boundaries
in cooling metals [13]. Indeed it is this overlap between computer
vision and materials science that makes the Potts model particularly
attractive for our application. In the computer vision setting, the



(a) A spiral (b) One region

(c) Nearest neighbor (d) Potts without the optical
coefficient

(e) Potts with the optical co-
efficient

(f) The optical data

Figure 4: A synthetic segmentation on a 1283 voxel grid (a), with
one region distinguished (b). The boundaries of every fifth slice have
been interpolated using nearest-neighbor (c) and Potts interpolation
without and with an optical coefficient (d,e). One slice of the optical
volume dataset is shown in (f), corrupted by Gaussian noise. No-
tice that near the center of the spiral, where the boundaries move
more slowly, the Potts interpolation can adequately smooth the sur-
face without an optical coefficient, but on the outer edge of the spiral
the boundary moves too fast and the information from the gray im-
age is needed. In all images, the surface has been smoothed but not
simplified.

(a) Without optical (b) With optical

Figure 5: Incorporating optical data into the Potts energy function
improves fidelity of the boundary reconstruction in the regions with
unknown labels. In this image, the segmentation labels are repre-
sented by color and the optical data is mapped to brightness.

Potts energy of a pixel i in a labeled image L is

EP(i) = ∑
j∈Ni

U(i, j) ·T (Li 6= L j). (1)

N is the neighborhood of pixels – in 3D we use a 26-voxel neigh-
borhood. U is some image-dependent function and T (true) =
1,T (false) = 0. Without an image-dependent weight, the Potts en-
ergy simply penalizes any neighboring pair of pixels which are la-
beled differently. In computer vision applications, a labeling which
minimizes the Potts energy for the whole image is sought as a
discontinuity-preserving restoration or segmentation of the image,
so that all regions with similar gray values are compactly clustered.
Boykov et al. showed that minimizing the Potts energy is NP-hard
and provided an efficient graph-cut algorithm which approximates
the minimum within a factor of two [5]. However, the complexity
of their algorithm depends on the number of segmentation labels,
which we consider to be unbounded. To trade guaranteed optimiza-
tion results for scalability we use a Monte Carlo method, such as
simulated annealing [17], the complexity of which is independent
of the number of labels.

We use the Potts model to find likely region boundaries between
slices in which the boundaries are known. The stack of segmented
images is resampled onto a segmented volume L, where each image
occupies a slice of the voxel grid according to its physical location
within the material volume. Slices of the volume which do not have
any boundary information are initialized with random segmentation
labels. We then iterate the following Monte Carlo procedure:

1. Pick a voxel i at random from a slice which does not have
segmentation information. Save its label l0 = L(i). Calculate
p0 = EP(i), the Potts energy for that voxel.

2. Calculate the set LN = {L( j)| j ∈ N(i)}, the set of all labels of
voxels adjacent to voxel i.

3. Pick at random a label l1 from LN . Assign voxel i the label l1
and recalculate the new Potts energy p1 = EP(i).

4. Pick a random number x ∈ [0,1]. If x < exp(−(p1 − p0)/t),
or if p1 < p0, accept the new label l1, otherwise reject it and
restore the old label l0.

Here, t is the temperature parameter in simulated annealing. We
restrict the procedure to those voxels whose segmentation labels
are not already known, but the voxels with known grain labels par-
ticipate in the energy function EP. The entire system is therefore
in a state that is very close to the local minimum we are search-
ing for, and since those fixed voxels do not change their labels, the
system consistently converges to the desired minimum. Because of
the strong influence that fixed voxels have on the system, it is not
necessary to use a complicated cooling schedule for simulated an-
nealing. Instead we use a constant non-zero temperature which is
smaller than the expected Potts energy of a random labeling. We
find that, for the energy scale given by Equation 1 and a 28 voxel
neighborhood, t = 0.9 is a good choice. Segmentation labels ag-
gregate into smoothly varying regions which agree with the known
segmentation, but borders between regions may fluctuate due to the
non-zero temperature. To fix borders we “quench” the simulation
by setting t = 0, causing the system to monotonically transition into
a local minimum. We monitor the process visually in order to de-
termine when to quench the system, but fully automatic cooling
schedules can be used if automation is required. Convergence can
be detected by monitoring the rate at which voxel labels change,
and stopping when it falls below a threshold.

If additional information is known about the space between fixed
slices, we can incorporate that into the Potts energy through the
image-dependent function U in Equation 1, or optical coefficient. If
we have a scalar function B(i)∈ [0,1] that tells us the likelihood that
a voxel i is on a boundary, we can set U(i, j) = 1−B( j). This will



reduce the influence that voxel j has on the Potts energy of voxel i,
so that the energy will be lower when boundaries of the segmenta-
tion coincide with boundaries of B. Since our optical micrographs
are brighter in grain interiors and darker on grain boundaries (Fig-
ure 1(b)), we simply take the negative image as B, or more simply,
the positive image as U . Figure 5 shows the effect of incorporating
this optical coefficient into the Potts energy. Figure 4 shows the
Potts interpolation of a synthetic segmentation. These results are
discussed in Section 6.

5 SURFACE EXTRACTION

After boundary interpolation we move on to extracting the bound-
ary surface. If the volume is small it may be sufficient to first build
the entire separating surface, smooth it and then simplify it. In
large datasets with many regions and facets, we can save consider-
able memory by treating each facet separately. The triangle surface
of a facet is first constructed, and then smoothed and simplified us-
ing the algorithm described in Section 5.1, with the constraint that
the triangles adjacent to non-manifold boundary edges cannot be
removed. These triangles serve as “hooks” which will be later used
to glue the facets together along the edges. We keep references to
these triangles in a hash table keyed on the edge-type tetrahedra
that generated them. Since each facet surface is simplified before
the next is built, we can reclaim the memory used for the surface
vertices and edges. After all facet surfaces have been built and sim-
plified, we glue them together at the boundary edges and then fur-
ther simplify the entire mesh.

5.1 Smooth-and-simplify Algorithm
Rather than first smoothing the surface and then simplifying it, we
perform both simultaneously by iteratively collapsing an edge and
then immediately smoothing the neighborhood around the remain-
ing vertex, while constraining the surface to remain in the domain
tetrahedra that generated it. Figure 6 illustrates this for a simple 2D
case. Our smooth-and-simplify algorithm is guided by the follow-
ing intuition: Any surface which correctly separates voxels of dif-
ferent regions is “correct” with respect to the data. Among all such
surfaces, we would like the one with the fewest triangles. Finding
this minimal surface is NP-hard [21], so we approach the problem
in a greedy manner – we try to collapse every edge, and if an edge
cannot be collapsed, try to collapse it again later after the geometry
of the local neighborhood as changed.

We maintain a priority queue of surface edges. There are nu-
merous methods for defining the edge priority, and many of them
favor an edge whose collapse will cause the least deviation from
the starting mesh, as indicated by some measure of geometric error.
We start with the midpoint surface, which is full of aliasing artifacts
that we do not wish to preserve, so we avoid any effort to maintain
fidelity to the starting mesh. Instead we rely on the constraining
domain tetrahedra to guide the surface geometry. We choose the
shortest surface edge to collapse first.

When collapsing an edge we must choose a location for the new
surface vertex. If both edge vertices are manifold, we choose the
new vertex by minimizing the sum of squared distances to all of the
triangle planes incident on both vertices. We find this vertex using
the quadric error optimization of Garland and Heckbert [10]. Note
that estimates of error from the original surface are not propagated
through mesh modifications, as is commonly done. Instead, the
quadric is computed “from scratch” for each edge collapse. Placing
new vertices in this way, rather than simply using the midpoint of
the collapsed edge, prevents the surface from shrinking and keeps it
farther away from the constraining domain tetrahedra. Additionally,
sharp features of the surface are enhanced, as can be seen in Fig-
ure 8. If one of the edge vertices is non-manifold, we pick this as the
new vertex. Manifold edges which connect two non-manifold ver-
tices are not allowed to collapse. When collapsing a non-manifold

(a) Segmentation (b) Midpoint surface (c) Ideal surface

Figure 6: A simple 2D example illustrating our surface extraction ap-
proach. The separating surface from the segmentation in (a) is ex-
tracted by imposing a triangular domain over the pixels and finding
the midpoint surface (b). We attempt to simplify all possible edges of
the surface subject to the constraint that the surface remains in the
triangles between differently labeled pixels.

edge, we again place the new vertex by minimizing the quadric er-
ror of the set of triangle planes incident on both vertices. When a
non-manifold edge is incident on a boundary vertex (a vertex which
connects four non-manifold edges) we pick the new vertex to be that
boundary vertex. Boundary vertices are kept fixed. A simplification
step follows the following procedure:

1. Remove the shortest edge from the queue.
2. If the edge cannot be collapsed, go to step 1. Section 5.2

describes the tests used here.
3. Collapse the edge, producing a new vertex v.
4. Smooth all vertices adjacent to v.
5. Update the priorities of all edges adjacent to v.
6. If any edge adjacent to v is not in the queue, then put it in the

queue.

Smoothing is performed using a bilaplacian filter, also called the
recursive “umbrella operator” by Kobbelt et al. [18], with the added
constraint of the collision test in Section 5.2. We do not smooth
only to improve the visual appearance of the mesh, but to allow for
more edges to be collapsed. The domain tetrahedra form a sim-
plification envelope that constrains the surface, but this envelope
is jagged and the surface will come into contact with it in many
configurations that might be avoided. By applying a smoothing op-
erator after each edge collapse, we redistribute the surface vertices
so that edges which may not have been able to collapse are given
another chance to do so.

5.2 Surface Modification Tests
The first test, called the topology test, ensures that we do not al-
ter the topology of the mesh. Following Dey et al. [8], let the link
of a vertex, Lk v, be the set of edges and vertices which intersect
some triangle incident on v, but which do not intersect v. Let the
link of an edge, Lk uv, be similarly defined. Then the topology
test for contracting edge ab is Lk a∩Lk b = Lk ab. Some varia-
tions of this test, such as in Hoppe et al. [14], additionally check
for the case of a tetrahedron collapsing into a degenerate triangle.
We note that this additional check is subsumed by the collision test
mentioned below. The second test, inversion test, prevents triangles
from inverting. We check the normal direction of the oriented tri-
angle before and after the modification, and if the normal flips, the
modification is not allowed. The third test, collision test, prevents
surface triangles from leaving the volume spanned by domain tetra-
hedra which define the facet. This ensures that the surface correctly
separates the segmented regions. There are two versions of this test,
one for manifold edges and one for non-manifold edges.



For manifold edges within a facet, a simplification envelope is
formed by exterior faces of the interior-type tetrahedra on either
side of the facet. One such envelope is shown in Figure 7(c). It
may be the case, however, that the interior of a region is made up
of domain edges and vertices, but not of whole domain tetrahedra
and triangles. This can happen, for instance, if the region consists
of one or two voxels, or if it contains two large volumes connected
by a thread-like structure. To handle these cases we also check for
collision with domain edges and vertices.

Triangle-triangle and triangle-edge collisions are tested using
standard static collision detection methods. However, to check for
collision with a domain vertex we need to use a triangle-point dy-
namic collision test. When performing an edge collapse, two or
three surface triangles are removed, and the remaining triangles in
the neighborhood each have one of their vertices moved to a new
location. We sweep out a tetrahedron formed by the old triangle
and its new vertex. If this tetrahedron contains a domain vertex, the
modification is not permitted. We enumerate all domain tetrahedra
that might intersect a given surface triangle with a flood-fill. First
we locate a domain tetrahedron that intersects the surface triangle,
then flood all neighbors of this tetrahedron as long as their faces in-
tersect the surface triangle. This might also be accomplished with
more sophisticated triangle-voxel rasterization, however we find the
flood-fill is simple and robust, if not optimally efficient.

For non-manifold edges, we restrict the polyline of non-manifold
vertices to only intersect edge-type tetrahedra. Before a non-
manifold edge is modified, we follow the line segment of the edge
through the tetrahedral mesh. If this segment intersects any tetra-
hedron that is not edge-type or vertex-type, the modification is not
permitted.

6 RESULTS AND DISCUSSION

Figure 4 shows the results of Potts boundary interpolation on a
synthetic dataset. A five-region spiral was rendered on to a 1283

voxel grid. Figure 4(b) shows one of these regions. To simu-
late a sparse sampling of the segmentation in one dimension, we
removed all segmentation information except for every fifth slice.
Figure 4(c) shows the reconstruction of the full volume using only
every fifth slice. In this image the surface has been extracted from
the 1282 ×25 voxel volume, then stretched out in the slicing direc-
tion. Figure 4(d) shows the results of Potts interpolation without
an optical coefficient. Clearly the Potts energy defined in Equa-
tion 1 penalizes boundary surface area, and therefor segmentations
with minimal surface area are favored. Further, it is known that an
unconstrained Potts model simulation moves boundaries by mean
curvature motion [13]. However, since the Potts energy is de-
fined over a small neighborhood of a regular lattice, we are only
minimizing discrete approximations of surface area and curvature.
When boundaries vary only slightly between slices, this discrete
approximation suffices, but if boundaries change drastically then
smooth boundaries will have an insignificant energetic advantage
over staircase-like boundaries, due to discretization effects. No-
tice in Figure 4(d) how the boundary becomes progressively less
smooth as we move from the center of the spiral outward, since the
segmentation boundary is moving faster along the outer edge of the
spiral. By including an optical coefficient in the Potts energy, we
can coerce the boundary into regions which are believed to be more
appropriate, by offering it an energetic advantage in these regions.
This boundary belief is quantified by the optical image, which may
be noisy. (Surely, if it was a high-quality image we could seg-
ment it automatically.) Figure 4(f) shows one slice of the spiral
boundary image, which has been corrupted by Gaussian noise, and
Figure 4(e) shows the segmentation produced by incorporating this
boundary image into the Potts energy.

Figure 7 shows a comparison between two separating surfaces:
one which has been smoothed with a Laplacian filter (7(a)) and

Figure 8: A synthetic 643 dataset with one sphere superimposed
over two abutting boxes. The midpoint surface contains over 133,000
triangles, and the simplified surface contains less than 1,000. Using
quadric optimization to place new vertices enhances sharp features
in the manifold facet surfaces, such as the sides of the boxes.

then simplified using quadric error metrics (7(b)), and another pro-
duced by our smooth-and-simplify algorithm (7(e)). We compare
our method to quadric error-based simplification because it is a
common simplification method and it has been used before to sim-
plify separating surfaces of segmented data [27]. Both simplified
surfaces in Figure 7 have been reduced from 8912 triangles to 242.
In Figure 7(a) we can see that sampling artifacts from the voxel grid
have not been completely smoothed. Any simplification method
that attempts to preserve mesh geometry will also preserve these
artifacts, as can be seen in Figure 7(b). The inner simplification
envelope is shown in Figure 7(c), and in Figure 7(d) we can see
that this envelope crosses the surface produced by quadric-based
simplification, and thus some domain vertices lie on the wrong side
of the separating surface. It is true that we could prevent these er-
rors by not simplifying so aggressively, but there is no way to know
how many triangles can be simplified before errors occur, without
using some kind of error bound. Since our smooth-and-simplify al-
gorithm incorporates the envelope as a hard constraint, we do not
need to specify a target surface mesh size, rather we let it remove
all the triangles it can without causing errors.

Figure 8 illustrates the simplification results on a simple non-
manifold separating surface. The surface is simplified from 133,534
triangles down to 986. This large reduction is the result of the many
co-planar triangles on the sides of the boxes, which can be aggre-
gated into very large triangles, similar to superfaces [16]. Placing
new vertices by quadric optimization enhances sharp edges of the
boxes. In smooth areas of the volume, such as on the surface of the
sphere, the smoothing operator tends to evenly distribute vertices
and triangles have nice aspect ratios. However, near sharp features
and non-manifold edges, topological and geometric constraints can
cause long, thin triangles to form. We acknowledge that, in cer-
tain applications, these “bad” triangles can cause problems. We
currently make no effort to avoid such triangles.

Figure 9 shows the microstructure of a sample of tantalum mea-
suring approximately 1.6mm along the longest dimension. Fig-
ure 10 shows a closer view where grains on the sample boundary



(a) (b) (c) (d) (e)

Figure 7: A sphere in a 323 segmented volume. In (a) we see the smoothed midpoint surface, and in (b) it has been simplified according to
quadric error metrics. In (c) we see the inner simplification envelope of the sphere, and in (d) a portion of the envelope “pokes” through the
surface. Notice how the quadric error metric attempts to preserve highlighted sampling artifacts that were not completely smoothed. Our method
(e) ignores these artifacts. The surface in (a) contains 8912 triangles, and the surfaces in (b) and (e) both contain 242 triangles.

Dataset BI M NM
Tantalum, (800×213×71), Fig. 9 10 min. 1 hr. 5 min. 12 min.

Spiral, (1283), Fig. 4 90 sec.
Sphere and two boxes, (643), Fig. 8 40 sec. 3 sec.

Table 1: Running times for boundary interpolation (BI), manifold facet
extraction (M) and non-manifold simplification (NM)

have been removed. The Potts model boundary interpolation was
performed on an 800×213×71 voxel grid. The segmentation con-
sists of 19,037 grains and 93,554 facets. The unsimplified surface
contains 23,754,424 triangles, and the simplified surface contains
2,303,982 triangles. Because facets were simplified as they were
extracted, using the two-stage algorithm described in Section 5, no
more than 8,149,974 triangles were in memory at any point in the
process. Table 1 lists the running times for the boundary interpola-
tion and surface extraction, performed on an Intel Core Duo (single-
threaded) 2.16GHz computer with 2GB RAM. Profiling reveals that
the majority of time is spent in the triangle-triangle intersection col-
lision test, which checks for collisions between surface triangles
and domain triangles. We believe that using a hexhedral domain
combined with one of the more complicated separating surface al-
gorithms [12, 30, 27, 2] is likely to reduce the computational cost of
these collision tests, since this could allow for fast triangle-to-voxel
rasterization to be used for collision detection, similar to permis-
sion grids [31]. Further research into this area could improve per-
formance significantly. Additionally, even though few of the other
surface reconstruction methods are designed to handle the datasets
we consider here, a critical comparison between our method and
others is needed, using datasets with fewer regions, in order to de-
termine where our method fits in the rich taxonomy of surface re-
construction methods.

7 CONCLUSION

We have described a new method for extracting smooth, simpli-
fied separating surfaces from segmented cross-sections. The first
step of our method interpolates segmentation boundaries between
cross-sections using a constrained Potts model. The second step
is a voxel-accurate mesh simplification algorithm that both reduces
the excessive triangle count of marching-tetrahedra and smooths
artifacts that result from the underlying hexahedral mesh. Both of
these goals are achieved by attempting to find the simplest triangle
surface that separates segmented regions. Our boundary interpo-
lation and surface simplification methods are novel contributions
to the state of the art in three-dimensional image data processing
and analysis. Our boundary interpolation method contributes to the
study of surface reconstruction from planar contours, especially in

the case of surfaces which partition 3D space into a large number
of small regions. The results of our simplification algorithm make
it clear that marching-based surface extraction for segmented vol-
umes produces an over-abundance of triangles which are not neces-
sary to correctly represent the separating surface.

We have applied our method to construct the crystal grain bound-
ary surface of a serial-sectioned sample of the metal tantalum. The
sample is dense with surface geometry, containing over 19,000 seg-
mented regions. Our boundary interpolation accurately tracks grain
boundaries between sparse segmented slices, and our simplification
algorithm reduces the number of triangles in the initial separating
surface by a factor of ten without introducing any error. Our meth-
ods can be applied to other imaging tasks which involve tracking
hundreds or thousands of features using sparse segmentation in-
formation, which is the case in cellular microscopy and other bio-
medical imaging applications.
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