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Abstract. Many interesting segmentations take the form of cell com-
plexes. We present a method to infer a 3D cell complex from of a series
of 2D cross-sections. We restrict our attention to the class of complexes
whose duals resemble triangulations. This class includes microstructures
of polycrystalline materials, as well as other cellular structures found in
nature. Given a prescribed matching of 2D cells in adjacent cross-sections
we produce a 3D complex spanning these sections such that matched 2-
cells are contained in the interior of the same 3-cell. The reconstruction
method considers only the topological structure of the input. After an
initial 3D complex is recovered, the structure is altered to accommodate
geometric properties of the dataset. We evaluate the method using ideal,
synthetic datasets as well as serial-sectioned micrographs from a sample
of tantalum metal.

1 Introduction

Cross-section imaging is a common technique used to study and analyze the
structure of materials. A series of planar cross-sections through a specimen is
generated and the cross-sections are used to reconstruct a 3D representation.
A related, well-studied problem in computer graphics and visualization asks to
construct a surface from a set of curves lying in the cross-sections. There have
been many solutions suggested for the two-phase version of this problem, in
which the reconstructed surface divides space into two “phases” and hence can
be a manifold. For example, the zero-surface of a continuous scalar function
divides the domain into two phases: points with negative values and points with
non-negative values. In this paper we consider the multiphase generalization of
this problem, in which the non-manifold separating surface divides space into
multiple phases. This distinction in illustrated in Figure 1.

Solutions to the problem of constructing a surface from cross-sections can
be divided into two types: mesh-based ones, operating on an irregular collection
of vertices, edges and faces, and voxel-based ones, operating on a 3D array of
sample points. See the papers by Nonato et al. [6] and Braude et al. [1] and the
references therein for examples of mesh and voxel-based solutions, respectively.
Previous solutions to the multiphase problem have all been of the voxel-based
type. See the paper by Dillard et al. [3] and references therein for examples.



Fig. 1. In a two-phase segmentation (top)
every point is incident on at most two re-
gions. In a mult-phase segmentation (bot-
tom) there are “triple points.”

Fig. 2. A ∆-complex, in solid dots and
lines, and its dual ∆∗-complex in hollow
dots and dashed lines.

We present a novel mesh-based solution to the multiphase segmentation re-
construction problem. In voxel-based methods, topological and geometric prop-
erties are conflated, which is beneficial if one wants to optimize some geometric
criterion (e.g., smoothness) without being hindered by topological constraints
(e.g., genus). In the multiphase problem, however, direct control over recon-
structed topology can be important. An example of this kind of control is given
by Nonato et al. [6] in their mesh-based β-connection method, a solution to the
two-phase reconstruction problem. Their method provides a user with control
over the reconstruction topology through a parameter β. Higher values of β favor
reconstructed surfaces of higher genus. Our method supports a similar type of
control in the multiphase setting: The user can prescribe that two regions in two
adjacent cross-sections should be path-connected, or not. A significant challenge
in the mesh-based setting is the avoidance of self-intersections in the constructed
surface, a problem that most voxel-based methods avoid by design.

The data we consider are serial-sectioned micrographs of polycrystalline ma-
terial. Each phase represents a grain, a region of uniform crystal structure. The
ability to prescribe connections between 2D cross-section regions is important
when the imaging mode provides more information than just region boundary
geometry. In the case of metal micrography, electron back-scatter diffraction
(EBSD) measures crystallographic orientations, and we therefore prescribe a
connection between two cross-section regions if their orientations are similar
and they are relatively close to each other.

2 Definitions

Many of the terms are familiar from simplicial complexes, with subtle yet im-
portant differences in definition. A d-simplex ∆d ⊂ Rd is the convex hull of
d + 1 affinely independent vertices. A face of a simplex is the (d − 1)-simplex
obtained by removing a vertex. Let ∂∆d be the union of all faces of ∆d, and
∆̊d = ∆d \∂∆d. Let the sequence (v0 . . . vd) be an ordering of the vertices of ∆d,
then the ordering of the ith face is (−1)i(v0 . . . v̂i . . . vd) where the “hat” indi-
cates that vi is removed and a negative coefficient swaps the first two vertices of
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the sequence. Let X be a topological space and let σ : ∂∆d → X be a continuous
map. A new space Y = X ∪σ ∆d is obtained from X by attaching a cell to X,
giving Y the quotient topology of X ∪ ∆d/∼, where y∼σ(y) for all y ∈ Y . A
d-dimensional cell complex, or just d-complex, is a topological space constructed
by attaching cells of dimension no greater than d. A ∆-complex is a collection
of maps σi : ∆d → X such that:

1. The restriction σi|∆̊d is injective, and each point of X is in the image of
exactly one such restriction. We say that σi is a d-cell, and let σ̊i denote the
restriction. Referring to σi in the context of a set refers to its range.

2. Each restriction of σi to one face of ∆d is one of the maps σj : ∆d−1 → X,
identifying the face of ∆d with ∆d−1 by the linear homeomorphism that
preserves the ordering of vertices. We say that σi is attached to σj .

3. The restriction σi|∂∆d is injective.
4. A set A ⊂ X is open iff σ−1

i (A) is open in ∆d for each i.

Conditions 1, 2 and 4 follow Hatcher [4]. We impose condition 3 to prevent
degeneracies such as loops. This class of complexes contains simplicial complexes,
but is broader. For instance, we may have multiple 1-cells each incident on the
same pair of 0-cells. Informally, one may think of a ∆-complex as a triangulation
with curved edges and faces.

Two cells σi and σj are incident on each other if σi ∩ σj 6= ∅. Two d-cells
are adjacent if there exists a (d − 1)-cell and a (d + 1)-cell on which they are
both incident. Let all 0-cells be incident on a single (−1)-cell, and if σi and σj
are of maximal dimension, let them be adjacent only if they are incident on a
common (d − 1) cell. Since we are concerned here only with 2-complexes and
3-complexes we make the following abbreviations: A vertex is a 0-cell. An edge
is a 1-cell. A face is a 2-cell, and henceforth only a 2-cell. A tetrahedron is a
3-cell of a ∆-complex. A 2-complex that is also a ∆-complex is a 2∆-complex,
and a 3∆-complex is defined analogously. The valence of a vertex is the number
of edges that are incident on it.

Let C be a cell complex. C′ is a subcomplex of C if C′ is a cell complex and
C′ ⊆ C. The closure of a set of cells is the smallest subcomplex containing it.
Two d-complexes C and C′ are isomorphic if there exist bijections Mk : Ck → C′k,
0 ≤ k ≤ d, such that if cells a, b ∈ C are adjacent then so are Mk(a) and Mk(b).
Two d-complexes C and C∗, are duals if there exist bijections Dk : Ck → Cd−k,
0 ≤ k ≤ d such that if a, b ∈ C are adjacent then so are Dk(a) and Dk(b). For
example, in a pair of dual 3-complexes, tetrahedra of one complex are mapped
to vertices of the other, and faces to edges. Our method is restricted to a certain
class of segmentations because it exploits the structure of the dual complex. In
particular, the dual must be a ∆-complex. Correspondingly, we call the complex
that represents the segmentation a ∆∗-complex. An example of dual ∆ and
∆∗-complexes is shown in Figure 2.

A bijection f is a homeomorphism if both f and f−1 are continuous. If such
f exists, its domain and range are homeomorphic. A ∆-complex is a manifold
if for every vertex v, the union of the interiors of cells incident on v (the star
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of v) is homeomorphic to the open unit ball {x : ‖x‖ < 1} ⊂ Rd. The relevant
implication is that every (d− 1)-cell in a manifold d-complex is incident on two
d-cells. A complex is a manifold with boundary if the star of every vertex is
homeomorphic to the open unit ball or the half-ball {x : x1 ≥ 0, ‖x‖ < 1} ⊂ Rd,
and its boundary is the closure of those (d − 1)-cells that are incident on only
one d-cell. A ∆-complex is a sphere if it is homeomorphic to the standard sphere
{x : ‖x‖ = 1} ⊂ Rd, and a ball is homeomorphic to {x : ‖x‖ ≤ 1}.

A homotopy between two continuous functions f, g : X → Y is a continuous
function h : [0, 1]×X → Y , such that h(0, x) = f(x) and h(1, y) = g(y). Denote
the existence of h by f ' g. X and Y are homotopy equivalent if f ◦g ' idY and
g ◦ f ' idX , where idX(x) = x ∈ X. A space is contractible if it is homotopy
equivalent to a point. Crucially, if S is a contractible subcomplex of C, then the
complex C′ obtained by replacing S with a vertex is homotopy equivalent to C
[4]. Because homotopy equivalence is transitive, we may also replace S by any
other contractible complex.

2.1 Edge Flip

An important operator for 2∆-complexes is the edge flip, which modifies a com-
plex by replacing two adjacent faces. Let face f be attached to edges s, r and
q, spanning vertices a, d and c. Similarly, face g is attached to edges r, t and p
spanning vertices a, c and b. This is shown in Figure 3(a). We flip the edge r by
first removing f and g, then removing r, then reattaching r′ to b and d, then
reattaching faces f ′ and g′ to edges r′, p, q and r′, s, t, as shown in Figure 3(b).
The flip consumes f and produces f ′.

In a 2D simplicial complex, a flip must not be performed if the vertices to be
connected by the new edge are already connected. Doing so collapses the space
because every simplex is uniquely determined by its vertices. This constraint is
overly restrictive because a ∆-complex admits multiple edges between the same
pair of vertices. Let the apex of a triangular face with respect to an edge e be
the vertex of that face which is not incident on e. In a manifold 2∆-complex,
we allow an edge e to flip if the apexes of its two incident faces, f and g, are
not the same vertex. If this is the case, then the closure of {f, g} is contractible
and the complex resulting from the flip is homotopy equivalent to the original.
If the two apexes of f, g are the same, then flipping e creates a loop. While
not immediately changing the topology of the complex, loops complicate further
operations such as edge contractions, so we avoid them altogether. An example
of a non-flippable edge is shown in Figure 3(c), labeled r.

2.2 Edge Contraction

An edge contraction modifies a 3∆-complex by merging two adjacent vertices.
We decompose the edge contraction into three operations that contract a 1-
cell, some 2-cells and some 3-cells. Collapsing the initial edge removes the edge
e and one vertex. The resulting complex is not a ∆-complex: every face that
was incident on e is now a 2-cell incident on only two edges. To restore the

4



(a) (b) (c)

Fig. 3. (a) and (b) show the process of flipping edge r. In (c), edge r is not flippable.
The apexes of f and g with respect to r are both b, so flipping r would create a loop.

∆-complex property we contract these 2-cells, but this still does not create a
∆-complex: every tetrahedron that was incident on e is now a 3-cell incident on
only two faces, resembling a triangular “pillow.” We finally contract these 3-cells
to restore the ∆-complex property. This process is shown in Figure 4.

Fig. 4. An edge contraction.

This operation is decidedly different from the edge contraction operation for
simplicial complexes. For that operation, the condition to preserve the topology
of the complex is much stricter [2]. In ∆-complexes the condition is more relaxed:
As with edge flipping, we forbid edge contractions that create loops. If vertices
u and v are both incident on the same pair of edges, then neither of those edges
may be contracted. As a consequence of condition 3 in the definition of a ∆-
complex, the closure of every cell is a contractible subcomplex, and thus the
intermediate complexes during the edge contraction process are all homotopy
equivalent. Avoiding the creation of loops suffices to preserve condition 3. To
see that the result is a ∆-complex, note that every tetrahedron incident on the
contracted edge is turned into a valid face, and every incident d-cell, d < 3,
is removed. This holds only as long as C′ has enough vertices to satisfy the
definition of a ∆-complex.

3 Algorithm

The problem is defined as follows: Let K1 and K2 be two 2-sphere ∆-complexes,
and let P be a prescribed matching between their vertices, such that each vertex
is matched with at most one other vertex, and that vertex is in the other complex.
These complexes are the duals of cross-sections of a segmentation, and their
vertices represent the regions or “phases” of that segmentation. The output is
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a 3-sphere ∆-complex C that contains subcomplexes C1 and C2 isomorphic to
K1 and K2, respectively. Additionally, for vertices u and v, u ∈ K1, v ∈ K2, if
(u, v) ∈ P , then the isomorphisms Mi : Ki → C map u and v to the same v′ ∈ C.
In other words, C connects K1 to K2 and unifies matched vertices.

K1 and K2 are first combined to create a single ∆-complex K. To do so,
nest K1 inside K2, then find two faces, f1 and f2, from K1 and K2, respectively,
and connect them with a ball 3∆-complex containing f1 and f2 on its boundary,
like a triangular prism. Call this prism F . If possible, F should be chosen so
that its three pairs of vertices each match under P . Next, two new vertices are
created, v1 and v2, and each vi is connected to Ki by a cone Vi, which is a
ball 3∆-complex containing vi as a vertex and Ki as its boundary. The cone Vi
lies on the side of Ki opposite F . The result, V1 ∪ V2 ∪ F = B is a 3-ball. The
boundary of this ball, A, is a 2-sphere formed by faces of Ki and F . Figure 5
shows a cut-away diagram of this construction.

Fig. 5. The initial ∆-complex. Nested
spheres K1 and K2 are connected by a solid
prism F . Vertex v1 is connected to the inte-
rior of K1 by solid cone, and likewise v2 is
connected to the exterior of K2. The union
of these cones and F forms a ball, and the
complement of this is a sphere bounded by
the surface A.

(a) EF move

(b) RV move

Fig. 6. The two boundary operations
used to modify the active surface. The
EF move effectively flips an edge, and
the RV move removes a vertex.

The algorithm fills in the space bounded by A, turning B into a 3-sphere.
This is accomplished by attaching tetrahedra to A in one of two ways. In each
case, B is extended by one additional tetrahedron, and A is updated to track the
boundary of B. A loses vertices in the process, until it eventually reduces to one
of two 4-vertex configurations, at which point the algorithm terminates. This
is ensured because A remains a 2-sphere throughout the process. All operators
take place on the surface A so one can think of A as the “active surface.” The
two operations on A are the following: An EF operation adds a tetrahedron c to
B by attaching it to two adjacent faces in A. After updating A to track the new
boundary, we see that the edge between these faces is flipped. An RV operation
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attaches c to three mutually adjacent faces of A, effectively removing a vertex
from the boundary of B. These operations are illustrated in Figure 6.

Edge flips, vertex removals and edge contractions are applied in a goal-
directed way. We call a vertex who has no matching a “loner,” and likewise,
two matched vertices “mates.” The goal is to remove every loner and contract
an edge between every mated pair. To remove a loner w, we perform EF moves
until the valence of w is three, then remove w by an RV move. If u and v are a
mated pair then we use EF moves to flip all edges along a shortest path from u
to v through the faces of A. Doing so is always possible, and causes u and v to
become adjacent via a shared edge which is subsequently contracted, producing
a new loner vertex.

Let a face path of a 2∆-complex be a path between vertices u and v consisting
of a sequence of faces fi, 0 ≤ i ≤ n, such that u is incident on f0 and v is incident
on fn, and each fi is adjacent to fi+1. A face path is shortest if no other face
path between u and v has fewer faces. When we refer to “the edges of a face
path” we mean a sequence of edges ei such that fi and fi+1 are both incident
on ei, i.e., the edges one crosses when walking along the path. By the length of
a face path we mean the number of edges, which is one less than the number of
faces. In the proofs below, all complexes are assumed to be 2-spheres without
loops.

Lemma 1. The first edge of a shortest face path between distinct, non-adjacent
vertices u and v is not incident on u.

Proof. Let u, w1, w2 be the vertices of f0. If e0 = uw1, then u is also incident
on f1 and the path is not shortest. By the same logic, e0 6= uw2, leaving only
e0 = w1w2. ut

Lemma 2. The first edge of a shortest face path between distinct, non-adjacent
vertices is always flippable.

Proof. By Lemma 1, u is incident on f0 and not incident on e0, so u is the apex
of f0 with respect to e0. If e0 is not flippable, then u is also the apex of f1. If
u is then incident on both faces, and no shortest face path from u to any other
vertex passes through e0. ut

We call a face path flippable if the first edge is flippable, and after flipping
it the remaining path is flippable or empty. The previous lemma implies that
shortest face paths are flippable.

Lemma 3. Let ei, 0 ≤ i ≤ n, n ≥ 1, be the edges of a flippable face path between
distinct, non-adjacent vertices u and v. Flipping ei in order of increasing i results
in a ∆-complex in which u and v are adjacent.

Proof. Let n = 1, then flipping e0 immediately connects u and v. Now let ei,
0 ≤ i ≤ k be the edges of a face path between x and u of length k. Assume that
by flipping each ei in sequence, a face s is created with u and x incident on s.
Let w be the apex of s with respect to edge ux, let t be the other face on edge

7



ux, and let y be the apex of t with respect to ux. (By assumption y 6= u.) After
flipping edge ux, y is made adjacent to u. The length of the face path between
y and u was k + 1, so the claim follows from induction on k. ut
Lemma 4. Any sequence of l flips, transforming 2∆-complex C0 to Cl, and caus-
ing vertices u, v not adjacent in C0 to become adjacent in Cl, defines a face path
between u, v in C0 of length at most l.

Proof. Let Si be a sequence of sets of faces, where Sl contains a face of Cl
incident on u and v. Construct Si−1 from Si as follows: Remove from Si the
faces produced by flip i. There are three cases where zero, one or two faces
are removed. If one face r is removed, add to Si−1 the two faces p, q that are
consumed by flip i. If Si was a connected face path, then so is Si−1 because any
face s adjacent to r in Ci is adjacent to one of p or q (which are themselves
adjacent) in Ci−1, or s is consumed by the flip. If two faces are removed, Si
remains connected for the same reason. Thus, if Sl contains a single face, then
all Si are connected face paths. Vertices u and v are each incident on faces of
Si for all i, and therefore the path in S0 connects them. At each iteration, the
cardinality of S is increased by at most 1, so the cardinality of S0 is at most
l + 1. ut
Corollary 1. If the shortest face path between u and v has length l, then no
sequence of fewer than l flips can make u and v adjacent.

The previous lemma and corollary allow us to guarantee that no mated pair
of vertices become inadvertently connected by multiple edges, so that when the
time comes to merge this pair the edge contraction is always possible. We define
the cost of removing a vertex to be the number of EF moves required to remove
it from the active surface. When removing a loner v the cost is |3 − valence v|,
because the valence of v must first become three using EF moves before v can
be removed with an RV move. When merging a pair of mated vertices u and v,
the cost is the length of the face path between u and v.

Lemma 5. If every mated pair of vertices is either non-adjacent or adjacent
by one edge before an iteration, and the iteration performs the cheapest vertex
removal, then the same is true after an iteration.

Proof. Let c be the number of edge flips needed to remove the vertex. No face
path of length c− 1 or less exists between any pair of mated vertices, and thus
by Corollary 1, performing c− 1 flips does not cause any mated pair to become
adjacent. After performing c− 1 of the c flips needed to remove the vertex, it is
still true that no other mated pair is adjacent. Flipping a single edge can only
add one edge between any pair of non-adjacent vertices, implying that after the
final flip every mated pair is still connected by at most one edge. ut

If A starts with n vertices, then we perform exactly n − 4 iterations. In
each iteration we perform the cheapest move sequence to merge a mated pair or
remove a loner. After n− 4 iterations, what results is a ∆-complex in one of two
configurations: either a tetrahedron or the complex shown in Figure 2, which is
a tetrahedron that has had one edge flipped.
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Lemma 6. Any sphere 2∆-complex with four vertices is isomorphic to either
the boundary of a tetrahedron or the complex shown in Figure 2.

Proof. If each edge is attached to a different pair of vertices, then the edges form
a complete graph. The other possibility is that two edges, e and f , are attached
to the same pair of vertices, u and v. Because the complex is a 2-sphere, the
path from u along e to v and back along f to u separates the complex into two
balls which must each contain one of the remaining vertices. ut

The algorithm is summarized as follows:

1. Connect the two input spheres with a prism, and fill in the interior of each
sphere with a cone. Initialize A to the boundary of the space between the
spheres.

2. If A has four vertices, stop. If A is isomorphic to the complex in Figure 2,
apply an EF operation to transform it into a tetrahedron.

3. Determine the cheapest sequence of EF and RV moves that either removes
a loner or connects a mated pair.
(a) If the cheapest operation is to remove a loner, then perform EF moves

until valence is three, then perform an RV move.
(b) If the cheapest operation is to connected a mated pair of vertices, then

find a shortest face path between them. Flip those edges in sequence, then
contract the resulting edge between the pair. Mark the newly merged
vertex as a loner.

4. Update A and goto 2.

Main Theorem. The 3-sphere ∆-complex constructed by this algorithm con-
tains subcomplexes isomorphic to K1 and K2, and this isomorphism identifies
vertices of K1 and K2 that match under P .

Proof. After first constructing A, C already contains K1 and K2 as subcom-
plexes. No edge between two vertices of K1 or two vertices of K2 is ever con-
tracted, nor any such face removed, so the output complex still contains these
subcomplexes. Every matched pair of vertices from K1 and K2 is connected by
flipping the edges of the shortest face path between them (Lemma 3.) Doing
so does not create loops (Lemma 2) nor does it create multiple connections be-
tween any mated pairs (Lemma 5) and so the edge between the pair can always
be contracted. Every iteration of the algorithm removes one vertex from A while
maintaining that A is a 2-sphere ∆-complex, so when the algorithm terminates
(Lemma 6) the complex is a 3-sphere.

4 Discussion

An initial 2-sphere can be constructed from a segmented planar image by adding
an additional region containing everything “outside” the image. The algorithm
can be extended to multiple input cross-sections by turning each one into a 2-
sphere and sequentially nesting these spheres like the layers of an onion, then
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performing the algorithm on the cavity between each pair of consecutive layers.
After the algorithm finishes, the cells representing the “outside” are removed,
leaving a 3-ball to be embedded in R3. Most of this embedding is prescribed
by the boundary curves of the cross-sections, but the vertices created by the
algorithm (dual to tetrahedra of the ∆-complex) need to be placed. We place
them by iteratively moving them toward the average position of nearby vertices.
Placing them without self-intersections is a challenge.

A straightforward implementation of the algorithm has a run-time complex-
ity bounded by O(n3) in the worst case, where n is the number of vertices in the
initial complex. There are exactly n−4 iterations, each iteration having to deter-
mine the cheapest move. The cost of mating a pair is the length of the shortest
face path between vertices, which can be determined by an O(n) breadth-first
search. There can be as many as O(n) mated pairs, thus an upper bound on the
running time of O(n3). In practice, the lengths of shortest face paths are much
less than O(n). There is usually a path of nearly constant length close to the
interface between K1 and K2 in A. Further, if we have already found a shortest
path of length l, we can cut future searches short. These two facts make the
practical running time nearly linear for well-behaved inputs.

5 Results

To evaluate the 3D models produced by the algorithm, we have reconstructed two
types of synthetic ideal cellular structures. Figure 7 shows the reconstruction of
a polycrystal microstructure that has been simulated using the Potts model [5].
The algorithm was run on three different sets of cross-sections of the simulation
lattice. One containing every plane of lattice sites, one containing every third
plane, and one containing every fifth plane. The cross-sections were extracted
from the lattice using marching-triangles, and subsequently simplified using an
area-preserving polyline simplification method.

Fig. 7. Three reconstructions of a simulated microstructure on 423 cubic lattice. Some
exterior grains have been removed for illustration. The solid lines are reconstructed
grain edges and the dashed lines are input cross-sections. From left to right the distance
between cross-sections is 1, 3 and 5 voxels.
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Figure 8 shows the reconstruction of a group of cells called truncated octahe-
dra. Each cell is bounded 14 faces, six squares and eight hexagons. Figure 8(a)
shows the initial output of the algorithm, in which the reconstructed faces are
not all squares and hexagons, a consequence of ambiguity. However this is a good
starting point for further refinement, as the faces contain multiple polylines from
adjacent cross-sections, which allows the estimation of a plane fitting the face,
or a local region of it. Using this information we have modified the reconstructed
complex to achieve the correct cell structure, shown in Figure 8(b).

(a) (b)

Fig. 8. Two reconstructions of a group of truncated octahedra. Reconstructed edges
of the complex are drawn with solid lines and the input cross-sections are drawn with
dashed lines. The left image shows the output of the algorithm as presented. The right
image shows the complex after local topological modifications guided by the cell face
geometry.

This modification process is the subject of ongoing research, so we only sketch
the method here. Notice in Figure 8(b) that not every cell edge intersects a
cross-section. We group such ambiguous edges into clusters. In the dual, this
edge cluster is a cluster of ∆-tetrahedra bounded by non-ambiguous ∆-faces.
The interior of the cluster is deleted and then re-tessellated using the following
heuristic: Non-ambiguous ∆-faces are associated with lines defined by the triple
points from consecutive cross-sections, and during re-tessellation we favor cre-
ating ∆-tetrahedra whose faces are associated with lines that come closest to
intersecting. Not every edge of the ∆∗-complex intersects enough cross-sections
to define a line, but if there are a sufficient number of non-ambiguous edges and
faces then their gemoetry can be used to resolve topological ambiguities.

Figure 8(b) was created by placing the unconstrained vertices—those not
lying in a cross-section—to minimize the sum of squared distances to the planes
of incident faces. This strategy produces accurate reconstructions if ambiguities
are correctly resolved, but can cause severe self-intersections if they are not.

Figure 9 shows the reconstruction of a sample of tantalum. The sample was
subjected to impact and consequently it exhibits deformed polycrystal grains and
a number of small and large voids. There are 1976 cells in total. The running
time of the main portion of the algorithm was approximately 30 seconds on a
computer with a 2.1 GHz processor. The cross-sections were observed using an
EBSD microscope, at a spacing of 25µm. A larger portion of this same dataset
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has been previously reconstructed using a voxel-based method [3]. The cross-
sections in Figure 9 are sparse, and the planar boundary curves are complex, so
there are some self-intersections.

Fig. 9. A portion of a reconstruction of 13 cross-sections of a sample of shocked tan-
talum. The input cross-sections are indicated by horizontal lines.

Conclusion

We have presented an algorithm for reconstructing a 3D cell complex from a se-
ries of 2D cross-sections. Given any matching of regions between cross-sections,
the algorithm produces a cell complex that connects matched regions. Self-
intersections remain an outstanding issue. The constructed complex is guaran-
teed to have simple topology, but embedding it in R3 may not be straightforward.
Indeed since any matching between cross-sections is permitted, it is quite easy
to produce intractably tangled cell complexes. The embedding the reconstructed
complex in R3 remains an area of future research.
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