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ABSTRACT
Visualization based on the topology of scalar fields defined over
three-dimensional (3D) domains can provide valuable insights. Ex-
isting methods use topology to identify interesting features or to
treat individual contours (connected components of isosurfaces) as
distinct entities for isosurfacing or interval volume rendering. We
extend these ideas to direct volume rendering. We use the contour
tree to define a segmentation of the 3D domain and then apply in-
dependent color maps to topologically uniform regions of the field,
hiding or highlighting regions as needed.

1. INTRODUCTION
Volume rendering is one of the core techniques used for scientific

and medical visualization, assigning optical properties to points in
the 3D domain of a scalar field and computing the resulting in-
tensity at an image plane [8]. The color map, ortransfer function
that assigns the optical properties is applied uniformly in the field,
and is normally based on the density value at a given point. While
this approach provides an overview of an entire data set, it lacks
the flexibility to distinguish between distinct features that share the
same value. If a region of interest is enclosed by an “uninteresting”
region, occlusion generally prevents the effective visualization of
the interesting region.

There has been much work on defining transfer functions which
express interesting features in the data. Improved methods utilize
additional derived quantities such as gradient magnitude [7], but
they still apply the same transfer function uniformly throughout
the domain. Other methods use segmentation information to mod-
ify a transfer function [12] or to apply different rendering methods
to different regions [5]. Recently, statistical learning-based meth-
ods have been introduced for interactive volume data segmentation,
see [13], for example. The idea underlying such methods is to have
a user specify interactively what regions in a data set constitute a
“feature.” By pointing out such regions, it is then possible to char-
acterize them by scalar field behavior in a local neighborhood, and
to use the resulting characterization for segmentation.

Our method is similar to segmentation-based approaches, as we
use different transfer functions for different regions of the data. Our
segmentation comes directly from the underlying topological struc-
ture of the data, as it is expressed by theReeb graphof the scalar
field.

Reeb graphs depict the level-set topology of a function. In a
2D scalar field, such as a terrain, level-sets are lines of constant
elevation, like the contours on a hiker’s topographic map. In 3D,
they form surfaces, orisosurfaces. At a given elevation, the level-
set will contain distinctly connected components, orcontours. If
we trace the connectivity of these contours across all elevations,
we obtain a Reeb graph. The nodes of the graph representcritical
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Figure 1: 2D example of a segmentation defined by a contour
tree. (a) Terrain data set showing topological zone segmenta-
tion. (b) Contour tree of the terrain, with edges color-coded
based on the corresponding topological zones.

pointswhere components split or merge, such as when two peaks
meet at a saddle. If the domain of the scalar field contains holes,
the Reeb graph may contain cycles. Otherwise, the graph is called
acontour tree[1]. Because scientific data sets often lack holes, and
contour trees are easier to compute than general Reeb graphs, they
have been given special attention in scientific visualization litera-
ture [11, 6, 14, 3, 9].

This work extends previous contour-tree-based methods for iso-
surface extraction. Carr and Snoeyink [2] treat the individual con-
tours of an isosurface as separate entities. This allows for the outer
component of a surface to be removed so that inner details are re-
vealed.

2. METHOD
We generalize the method of Carr and Snoeyink in the frame-

work of volume rendering. Whereas they extract isosurfaces cor-
responding to points on the edges of the contour tree, we define
transfer functions along entire edges of the tree. For a given point
p with density f (p), we first determine which contour of that level-
set containsp. This contour is represented by an edge in the tree,
and the transfer function for this edge is used to colorp. The func-
tionality of “hiding” regions which occlude features of interest can
be duplicated by using transfer functions which are 100% trans-
parent for these occluding regions. Takahashi et al. [10] describe
transfer functions which express topological features. Our method
allows these tools to be applied pricesly on a per-contour basis,



rather than globally across all contours.
Often, data acquired through scanning devices contains noise

which creates an unmanageable number of critical points in the
contour tree. It becomes necessary then to simplify the contour
tree. Edges of the contour tree which represent tiny volumes, or
span small density ranges, are removed. Transfer functions are
specified on edges of the simplified tree, and are then propagated to
the multitude of edges which were removed. The simplified tree is
stored as a hierarchical structure, so that fine details can be revealed
on demand. See [4] for details on simplification of contour trees.

We have implemented our rendering algorithm on graphics hard-
ware, running at interactive frame rates. This allows for transfer
functions to be modified quickly so that data can be explored by
“peeling” through the layers where topological changes occur. Hid-
den peaks or voids in the data can be discovered by removing outer
layers and working inwards.

3. RESULTS

Figure 2: Simulation data set with contour tree.

Figure 3: CT scan. Note that the air in the lung is the same
density as the air outside the body, yet rendered differently. The
other lung was removed to show the ribs.
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rendering of attributed volume data. InIEEE Visualization
1998, pages 255–262, Los Alamitos, California, 1998. IEEE
Computer Society Press.

[13] F.-Y. Tzeng, E. Lum, and K.-L. Ma. An intelligent system
approach to higher-dimensional classification of volume
data.IEEE Transactions on Visualization and Computer
Graphics, 11(3):273–284, May/June 2005.

[14] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and
D. R. Schikore. Contour trees and small seed sets for
isosurface traversal. InProceedings of the 13th ACM Annual
Symposium on Computational Geometry (SoCG), pages
212–220. ACM Press, 1997.


