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Abstract
The Morse complex can be used for studying the topology of a function, e.g., an image or terrain
height field when understood as bivariate functions. We present an algorithm for the computation
of the discrete Morse complex of two-dimensional images using an edge-based data structure. By
using this data structure, it is possible to perform local operations efficiently, which is important to
construct the complex and make the structure useful for areas like visualization, persistent homology
computation, or construction of a topological hierarchy. We present theoretical and applied results
to demonstrate benefits and use of our method.
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1 Introduction

Morse theory [37] is primarily used for the study of a function’s topology by establishing the
topological relationships between its critical points, i.e., its extrema and saddles [18]. Algo-
rithms and models for Morse complexes have become increasingly important as fundamental
building blocks of computational topology with applications in image analysis, e.g., for image
segmentation, object skeletonization and classification. Relevant literature for Morse-Smale
complexes includes [8, 27, 42], discrete Morse complexes are covered in [17, 30, 50] and
persistent homology is discussed in [11, 15, 19, 20, 33, 50].

In many image processing problems, functions represent a space with scalar measures over
it. This is, for instance, the case of height fields (terrains). The domain of such functions is
sampled and, therefore, the continuous Morse theory is not directly applied. The adaptation
of the continuous theory to sampled data has been studied in [9, 18, 53], for example, where
the authors use the simulation of smooth notions to guide the computation and produce
what is called a Morse-Smale complex [53].

The discrete Morse theory, formulated by Forman [21, 22], is another adaptation of the
Morse theory to discrete structures. It was explored in works such as King et al. [31] and
Lewiner et al. [34]. Robins et al. [44] provided algorithms for computing discrete Morse
complexes through an image analysis approach.

Our contribution is an algorithm- and data structure-driven approach to compute the
discrete Morse complex of two-dimensional images. The complex is similar to the Morse-
Smale [9, 18, 26, 45, 53] approach and the method described by Robins et al. [44]. We
introduce a specialization for the specific case of 2D image functions of the approach
described by Robins et al. [44] and show that the specialized algorithms are optimized for the
case where paths emanate from saddles, instead of using the breadth-first search discussed
in [44]. We contribute a complete, detailed description of an algorithm to extract paths
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from a vector field given as input, resulting in the discrete Morse complex of an image. The
idea is similar to the one presented by Edelsbrunner et al. [18] for Morse-Smale complexes;
we differ by using the discrete approach of [44]. In addition, we show that the complexes
can be easily implemented by means of an edge-based data structure. Furthermore, since
we use an edge-based data structure, the complex is suitable for computing topological
persistence [6, 10, 12, 14, 35, 40, 51] and topological hierarchies [43, 49], as well as for
visualization purposes.

In Sections 2 to 4, we present basic concepts on topology of images, discrete Morse
complexes and data structures. These concepts are used in the algorithms and in the
modeling of the resulting complexes, which are discussed in detail in Sections 5 to 7. In
Section 8, we show the application of the discrete Morse complex to compute the persistence
and hierarchical representations of images. Finally, we present some concluding remarks in
Section 9.

2 Images as Cell Complexes and Topological Data Structures

A p-cell, of dimension p, is the basic element to construct the discrete domain which is a cell
complex. It is defined as a topological space homeomorphic to a p-ball Bp = {x ∈ Rp : |x| ≤ 1}.
The first three low-order p-cells are 0-cells (also known as nodes), 1-cells (edges) and 2-cells
(faces). Even though the secondary names are commonly used in computer science, the
concept of a face is a different one in topology, as we will state soon. Therefore, to be
consistent with the topology and computational topology literature, we choose to use the
primary names. We will denote a p-cell as αp or simply α whenever the dimension is clear
from the context.

The boundary of a p-cell consists of cells of lower dimension that limit the cell. A face of
a p-cell σp is a cell τk, with k ≤ p, which is part of the boundary of the p-cell. The p-cell σp

is called a coface of τk. The bounding relations of face and coface will be stated as τk ≺ σp

and σp ≻ τk.
A cell complex K is a finite collection of cells that satisfies the following requirements:

(1) all the faces of a cell in the complex also belong to the complex, and (2) the intersection
of any two cells is either empty or a face of both cells. A p-complex is a cell complex such
that all its cells have dimension less than or equal to p. A subcomplex of a cell complex K is
a subset of cells L ⊆ K such that L is also a cell complex.

An image is viewed as a function f : D → R, defined on a subset of the discrete lattice,
D = {(x, y) ∈ Z2 | 1 ≤ x ≤ M, 1 ≤ y ≤ N}. A point in D, and its value, is called a
pixel. An image can be modeled by a regular two-dimensional cell complex K, as described
by Kovalevsky [32]. Kovalevsky adopts a model where pixels are 2-cells since both are
area-related elements. The dual of this representation is also commonly used, for example,
in Robins et al. [44]. We adopt this latter model, such that an image is a regular complex K

with 0-cells corresponding to the pixels in D. The 2-cells are usually squares or triangles
defined by a pixel and some of its closest pixels in D. The 1-cells are faces of the 2-cells. An
example of such a model is shown in Figure 1.

Different data structures can be used to model cell complexes [16, 20, 24, 27, 52]. Since
we are interested in two-dimensional cell complexes, planar edge-based data structures, such
as the half-edge or the quad-edge, are efficient for our purposes [5, 25, 36]. As we will show in
our algorithms, efficient computation can be performed through an edge-based data structure,
since it allows adjacency operations to be computed in constant time. Hereafter, we will
assume that the complexes are all modeled by means of an edge-based data structure.
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0-cell

1-cell

2-cell

Figure 1 Digital image modeled as a cell complex K. Pixels are 0-cells of the complex which also
have cells of dimension 1 and 2 to explicitly define the topology of the image.

3 Discrete Morse Theory

The discrete Morse theory, formulated by Forman [21], is an adaptation to discrete structures
of the Morse theory [37], which relates the critical points of a function f to the topology of
the domain.

A discrete Morse function on a cell complex K is a function f : K → R such that, for
every σ ∈ K, f takes a value less than or equal to f(σ) in at most one coface of σ and takes
a value greater than or equal to f(σ) in at most one face of σ. Figure 2 shows an example of
a discrete Morse function.
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Figure 2 Example of a discrete Morse function. The values of the function are placed over each
cell.

Given a discrete Morse function f , a discrete vector field V is a collection of pairs of cells
(αp, βp+1) in K defined whenever αp ≺ βp+1 and f(βp+1) ≤ f(αp). A pair (αp, βp+1) can
be thought of as a discrete tangent vector leaving α and oriented towards β. Pictorially, the
vector is represented by an arrow from α to β. Figure 3 shows the vector field of the Morse
function presented in Figure 2.

minimum

minimum

minimum

saddle

saddle

saddle

maximum

Figure 3 Example of a discrete vector field and critical cells of a discrete Morse function. A
V -path is shown in blue.
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A cell σp ∈ K is critical of index p if all of its cofaces take strictly greater values in
f and all of its faces are strictly lower in f [21, 22, 44]. In a two-dimensional cell complex,
minima are 0-cells, saddles are 1-cells and maxima are 2-cells. Figure 3 shows examples of
critical cells of a discrete Morse function. Every cell belongs to a pair in the vector field,
except for critical cells.

Another important concept related to vector fields is that of flow. The analogue of
a streamline in a continuous function is called a V -path, which is a sequence of cells
αp

1, αp+1
1 , αp

2, αp+1
2 , αp

3, . . . , αp+1
r−1, αp

r , such that (αp
i , αp+1

i ) ∈ V , αp+1
i ≻ αp

i+1, and αp
i ̸= αp

i+1,
for all i = 1, . . . , r − 1. A V -path is a non-trivial closed V -path if αp

r = αp
1 for r ≥ 2.

Forman [21] presented a discrete vector field V without non-trivial closed paths as the
discrete analogue of the continuous gradient vector field. Notice that V -paths alternate
between cells of dimension p and p + 1, therefore, we could explicitly refer to a type of path
as a (p, p + 1)-path, for instance, a (0, 1)-path alternates between cells of dimension 0 and 1.
Figure 3 shows a V -path in blue. The vector field V of the input complex K is computed
using the algorithm presented by Robins et al. [44], which returns the pairs of cells in V and
the critical cells.

4 Modeling the Discrete Morse Complex

We process two complexes. The first one is the complex K of the input image with its
discrete vector field V derived from a discrete Morse function. Pairs of cells can be stored as
an attribute of cells in K. The second complex is the discrete Morse complex M that we
will compute. Both complexes are modeled through an edge-based data structure, such as
the half-edge or the quad-edge.

In order to avoid confusion when referring to cells in K or cells in M , from now on, we
will use Greek letters for cells in K and Latin letters for cells in M . Particularly, we will use
vp or up to denote a 0-cell in M and e to denote a 1-cell in M . A cell vp will correspond
to a p-cell in K and e will denote a boundary relation between cells in K. Figure 4 shows
two complexes K and M and the corresponding cells. The 0-cells in M can be regular or
critical according to the cells they correspond to in K. The 1-cells in M explicitly model the
boundary relation between two cells in K. The symbols ⊚, ⊕ and ⊙ will henceforth denote
critical 0-cells in M related to 0-, 1- and 2-cells, which are also critical in K. If not critical,
the 0-cell will be drawn with the symbol ◦.

⊕ ◦◦
◦
◦
⊙ ◦
◦
◦
⊕ ◦◦◦◦◦◦◦◦

◦
◦
◦
⊚
◦
◦ ◦ ◦ ◦ ◦ ◦

◦ ⊚
◦
◦
⊕◦
◦
◦
⊚◦

critical 0-cell v0 (minimum)

critical 0-cell v1 (saddle)
critical 0-cell v2 (maximum)

1-cell e (boundary relation)

regular 0-cell v1

regular 0-cell v0

regular 0-cell v2

Figure 4 Complex K with M placed over it. The index p of a cell vp in M is related to the
dimension of the corresponding cell in K.

Before presenting the algorithms, we introduce alternative definitions of V -paths to reflect
the explicitly modeled paths used in the algorithms. In two dimensions, a discrete Morse
complex can have two types of V -paths: (0, 1)-paths and (1, 2)-paths. We denote such paths
as QV -paths in the complex M we are computing. Definitions for both cases are presented
next.
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▶ Definition 1. Given a (0, 1)-path α0
1, α1

1, α0
2, . . . , α1

r−1, α0
r in V , a (0, 1)-path in M , leaving

v1
0, is a sequence of 0-cells (denoted by v

{0,1}
i ) and 1-cells (denoted by arrows) v1

0 → v0
1 →

v1
1 → v0

2 → . . . → v1
r−1 → v0

r where v0
i → v1

i are the cells related to a pair (α0
i , α1

i ) ∈ V and
v1

0 is related to a critical cell α1 ≻ α0
1, α1 ̸= α1

1.

Notice from this definition that the (0, 1)-path leaves a 1-cell and arrives to a 0-cell,
making explicit the connection of critical endpoints and following the intuitive notion of
a flow going downwards from a saddle to a minimum cell. In a similar way, a (1, 2)-path
definition is presented, but now the path leaves a 2-cell towards a 1-cell.

▶ Definition 2. Given a (1, 2)-path α1
1, α2

1, α1
2, . . . , α2

r−1, α1
r in V , a (1, 2)-path in M , arriving

to v1
r , is a sequence of 0-cells (denoted by v

{1,2}
i ) and 1-cells (denoted by arrows) v2

0 → v1
1 →

v2
1 → v1

2 → . . . → v2
r−1 → v1

r where v1
i → v2

i are the cells related to a pair (α1
i , α2

i ) ∈ V and
v2

0 is related to the cell α2 ≻ α1
1, α2 ̸= α2

1.

5 Extraction of QV -Paths

The algorithm for extracting the QV -paths connecting critical cells is based on searching
the paths out of 1-cells. This approach enables efficient computation of the paths in the
2D setting when compared to a breadth-first search [44], since the algorithms consider only
paths that may connect critical cells and avoid multiple traversals of cells along sub-paths
common to more than one path.

5.1 Initializing QV -Paths from a Saddle

The initialization of QV -paths out of a saddle in K is performed by identifying all of its
possible V -paths and including them in the resulting complex M . Up to four V -paths can
be expected to go out of a 1-cell since a 1-cell has two faces and at most two cofaces [4].
Given a critical 1-cell α1 of K, we start all QV -paths arriving and leaving a 0-cell v1

α ∈ M

related to α1 (see Figure 5). In our examples, we use cell complexes of triangles. Regardless,
the concepts discussed are not dependent on an image’s representation by triangular or
quadrilateral 2-cells.

α1
β0γ0

σ2

τ2

(a)

⊕ ◦vα vβ

(b)

⊕◦ vαvγ

(c)

⊕
◦

vα

vσ

(d)

⊕
◦

vα

vτ

(e)

⊕◦ ◦
◦

◦vα
vβvγ

vσ

vτ

(f)

Figure 5 Given a critical 1-cell in V (a): create the QV -paths out of it (b)-(e) and arrange them
in the ring of edges out of the vertex related to the 1-cell (f).
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The 1-cell α has two faces, β0 and γ0; and also two cofaces, σ2 and τ2 (Figure 5a). We
create the 0-cells in M related to each face and coface of α1 in K, as well as the four 1-cells
that model the boundary relations. This can be observed in Figures 5b to 5e. At the end,
the ring of 1-cells out of vα (a cyclical ordering of the 1-cells leaving a 0-cell v) needs to be
adjusted to maintain consistency of the edge-based data structure. All the operations take
constant time when using an edge-based data structure. For a better understanding of the
operations to create and connect the cells, one could refer to [25]. The connection of cells,
for example, can be easily performed through the Splice operation described by Guibas and
Stolfi [25]. As part of the creation of 0-cells their attributes are properly set, i.e., index p of
vp and indicator of a cell’s critical status.

It is important to note that the resulting paths agree with Definitions 1 and 2. Let vα

be v1
0 in Definition 1, two QV -paths of the form v1

0 → v0
1 are now in the complex M , with

v0
1 being vβ in one path and vγ in another. Both paths are related to a trivial V -path of

the form α0
1 in V . Similarly, we have two paths of the form v2

0 → v1
1 . However, as explained

as part of the discussion of the path extraction algorithm, it is more convenient to think of
(1, 2)-paths as being computed in a backwards fashion. In such a manner, one could think
of vα to be v1

r and vσ and vτ to be v2
r−1 in Definition 2. Therefore, two paths of the form

v2
r−1 → v1

r are obtained, both related to a trivial V -path of the form α2
r in V .

5.2 Expanding QV -paths
After the initialization, we will iteratively expand the QV -paths. From the previous discussion,
we recall (0, 1)-paths are initialized to grow in a forward manner and (1, 2)-paths are to be
grown backwards. Expanding forward a (0, 1)-path means to grow the initial QV -path to
v1

0 → v0
1 → v1

1 → v0
2 (related to a path α0

1, α1
1, α0

2 in V ), according to Definition 1. Likewise,
expanding backwards the initial (1, 2)-path means to grow the QV -path to v2

r−2 → v1
r−1 →

v2
r−1 → v1

r (related to a path α2
r−1, α1

r−1, α2
r in V ), according to Definition 2. Therefore,

the expansion of the QV -paths is basically obtained by considering a pair (α0, α1) or a pair
(α1, α2), in the input vector field V , as well as a face or coface of α1 that is not paired with
it.

▶ Definition 3. Given a (0, 1)-path v1
0 → v0

1 → . . . → v1
k−2 → v0

k−1 and its related V -path
α0

1, α1
1, . . . , α1

k−2, α0
k−1, the expanding triple of the path is the set of cells {α0

k−1, α1
k−1, α0

k}
such that (α0

k−1, α1
k−1) ∈ V and α1

k−1 ≻ α0
k, with α0

k−1 ≠ α0
k, that allows growing

the QV -path to v1
0 → v0

1 → . . . → v1
k−2 → v0

k−1 → v1
k−1 → v0

k with related V -path
α0

1, α1
1, . . . , α1

k−2, α0
k−1, α1

k−1, α0
k.

Consider the (0, 1)-path vα → vβ in Figure 5b. The cells in the expanding triple are
shown in Figure 6a following the V -path out of β0

o , namely, β0
o , β1 and β0

d. The endpoints
of an expanding triple are indexed with an “o” or a “d” to make it explicit where the flow
enters the path and where it goes to.

α1
β0

o
β1

β0
d

γ0

σ2

τ2

(a)

α1
β0γ0

σ2
d

σ1σ2
o

τ2

(b)

Figure 6 Expanding triples for a (0, 1)-paths and a (1, 2)-path.
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▶ Definition 4. Given a (1, 2)-path v2
k+1 → v1

k+2 → . . . → v2
r−1 → v1

r , its related V -path
α1

k+2, α2
k+2, . . . , α2

r−1, α1
r and α2

k+1 related to v2
k+1, the expanding triple of the path is the set

of cells {α2
k, α1

k+1, α2
k+1} such that (α1

k+1, α2
k+1) ∈ V and α2

k ≻ α1
k+1, with α2

k ̸= α2
k+1, which

allows growing the QV -path to (0, 1)-path v2
k → v1

k+1 → v2
k+1 → v1

k+2 → . . . → v2
r−1 → v1

r

related to a V -path α1
k+1, α2

k+1, α1
k+2, α2

k+2, . . . , α2
r−1, α1

r.

The expanding triple for the (1, 2)-path vσ → vα in Figure 5d is composed of the cells σ2
o ,

σ1 and σ2
d, as shown in Figure 6b.

A QV -path may not have an expanding triple, however, if it does, then it is unique.

▶ Proposition 5. The expanding triple of a (0, 1)-path in M is unique.

Proof. Given v1
0 → v0

1 → . . . → v1
k−2 → v0

k−1 related to α0
1, α1

1, . . . , α1
k−2, α0

k−1 is a (0, 1)-
path that has an expansion, suppose the expanding triple is not unique. Let us then call
two of the expansions α0

1, α1
1, . . . , α1

k−2, α0
k−1, β1

k−1, β0
k and α0

1, α1
1, . . . , α1

k−2, α0
k−1, γ1

k−1, γ0
k.

If β1
k−1 ̸= γ1

k−1, it means there are pairs (α0
k−1, β1

k−1) and (α0
k−1, γ1

k−1) in V . However, by
definition of a vector field, any cell is paired once in V . Consequently, α1

k−1 = β1
k−1 = γ1

k−1.
The paths can still be different if β0

k ̸= γ0
k. In such a case, the 1-cell α1

k−1 should have three
faces: α0

k−1, β0
k and γ0

k. That is not possible by definition. ◀

▶ Proposition 6. The expanding triple of a (1, 2)-path in M is unique.

Proof. Given v2
k+1 → v1

k+2 → . . . → v2
r−1 → v1

r related to α1
k+2, α2

k+2, . . . , α2
r−1, α1

r is a (1, 2)-
path that has an expansion, suppose the expanding triple is not unique. Let us call two of these
expansions β1

k+1, β2
k+1, α1

k+2, α2
k+2, . . . , α2

r−1, α1
r and γ1

k+1, γ2
k+1, α1

k+2, α2
k+2, . . . , α2

r−1, α1
r. If

β2
k+1 ̸= γ2

k+1 then the 1-cell α1
k+2 should have three cofaces: α2

k+2, β2
k+1 and γ2

k+1. That is
not possible. Since α2

k+1 = β2
k+1 = γ2

k+1, the paths can still differ if the pairs (β1
k+1, β2

k+1)
and (γ1

k+1, γ2
k+1) are in V and β1

k+1 ≠ γ1
k+1. Again, by definition of V , any cell is paired

once, and β1
k+1 = γ1

k+1 since β2
k+1 = γ2

k+1. ◀

Given a cell α0 in the input vector field V , we are able to retrieve the 1-cell paired with
α0 in constant time. The second face of a 1-cell can also be computed in constant time with
an edge-based data structure. Therefore, retrieving the expanding triple is an O(1) operation.
Retrieving the expanding triple in a (1, 2)-path is similar and also efficient.

Considering again the paths obtained after the initialization steps, these were of the form
v1

0 → v0
1 and v2

r−1 → v1
r . Now, given the paths in Figures 5b and 5d, the vertices vβ and vσ

and the expanding triples of Figures 6a and 6b, we are able to form v1
0 → v0

1 → v1
1 → v0

2 and
v2

r−2 → v1
r−1 → v2

r−1 → v1
r , as shown in Figures 7a and 7b.

⊕ ◦

◦

◦

v1
0 v0

1

v1
1

v0
2

(a)

⊕
◦

◦
◦

v1
r

v2
r−1

v1
r−1

v2
r−2

(b)

Figure 7 One step expanded QV -paths obtained with the expanding triples of the initial (0, 1)-
and (1, 2)-paths shown in Figures 5b and 5d.
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5.3 Stop Conditions
The paths must be expanded until a termination condition is met. An expanding triple is
not found for a (0, 1)-path when the path reaches a critical cell. A (1, 2)-path does not have
an expanding triple either when it reaches a critical cell or the boundary of the cell complex.

▶ Proposition 7. A (0, 1)-path v1
0 → v0

1 → v1
1 → v0

2 → . . . → v1
k−1 → v0

k has no expanding
triple if the 0-cell, α0 ∈ K, related to v0

k is critical.

Proof. If α0 is not critical, then, by definition, it is paired in V . A pair (α0
i , β1

i ) in a V -path
is always followed by a 0-cell α0

i+1 which is a face of β1
i other than α0

i which must also exist
since every 1-cell has two faces. If α0 is critical, then it is not paired in the vector field and,
therefore, no expanding triple can be found. ◀

▶ Proposition 8. A (1, 2)-path v2
k → v1

k+1 → v2
k+1 → v1

k+2 → . . . → v2
r−1 → v1

r has no
expanding triple if one of two conditions is true:
1. the cell α2

k, related to v2
k, is critical;

2. the cell α2
k is paired with a 1-cell, α1 ∈ V , which has no coface in K other than α2

k.

Proof. Condition 1. If α2 is critical, then it is not paired in V and, therefore, no expanding
triple out α2 can be found. Condition 2. If α2 is not critical, then it is paired in V , with a
1-cell α1. The 1-cell is in K since all the faces of a cell must be in K. Given the pair cell α1,
if its two cofaces are in K, then an expanding triple for the path is found, since there is a
coface α2

k−1 ̸= α2
k. Otherwise, if there is no other coface other than α2

k, then no expanding
triple can be found. ◀

From these conditions, it possible to expand a whole QV -path. However, some additional
stop conditions will be introduced. These are based on the fact that V -paths can merge and
branch.

Consider a particular 0-cell α0 in a complex K and suppose it is paired with a 1-cell in
the vector field V of the complex. Let also α0 be a face of k 1-cells in the complex. Except
for the 1-cell paired with α0, each one of the other 1-cells either is paired or is a critical
1-cell. If l ≤ k of these 1-cells are paired with a 0-cell, then there are l V -paths containing
the cell α0 and, therefore, at least l paths merge into α0. Figure 8a shows an example of a
cell at which three V -paths merge.

α0

(a)

α2

(b)

Figure 8 Example of an 0-cell shared by three V -paths and a 2-cell shared by two V -paths.

Now let α2 be a 2-cell in K paired in V with one of its 1-cell faces. If the α2 has k 1-cell
faces, then these cells may be paired with a 0-cell, paired with a 2-cell or be a critical cell. If
l ≤ k of them are paired with 2-cells, the V -path containing α2 will have l V -paths out of it,
in other words, the path branches into l V -paths. Figure 8b show a V -path which branches
into two V -paths.
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Both merging and branching cases are considered stop cases when a QV -path reaches a
cell in a path already processed. In Figure 9a, the path ending at the 0-cell v is currently
being processed. When the path is expanded from v, it merges with a second path that has
been already computed (Figure 9b). From that point on, the expansion of both paths is
exactly the same (a consequence of a unique expanding triple). It is also simple to deal with
branching cases. The two (1, 2)-paths shown in Figure 9c become one in Figure 9d. Notice
that, since (1, 2)-paths are traversed in a backward fashion, the branching case of (1, 2)-paths
is algorithmically similar to the merging case of (0, 1)-paths and we are able to deal with
both cases in a similar way.

◦ ◦ ◦ ◦

◦

◦

◦

v

(a)

◦ ◦ ◦ ◦ ◦

◦

◦

◦

v

(b)

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦

◦
◦

◦
◦v

(c)

◦
◦

◦
◦

◦
◦

◦

◦
◦

◦
◦

◦

◦
◦

◦
◦

v

(d)

Figure 9 Examples of QV -paths that merge and branch.

A path can be fully extracted by iteratively computing the expanding triples and testing
the stop conditions. All these computations can be performed in constant time, therefore,
extracting a path takes linear time on the size of the V -path.

The paths of a discrete Morse complex are exactly the QV -paths with critical cells as
endpoints. However, there may be (1, 2)-paths that do not end at a critical 2-cell. That
follows from the second condition of Proposition 8. In order to obtain only the paths of the
Morse complex, it suffices removing a (1, 2)-path if one of its endpoints is not a critical cell
(see Figure 10). This process can be easily performed with the data structure in linear time
on the size of the path. Alternatively, one could add a dummy critical cell when the second
condition of Property 8 is satisfied.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ⊕
◦

◦ ◦ ◦ ◦ ◦ ◦ ⊚
◦
◦
⊕◦
◦

◦
◦
◦ ◦ ◦◦

◦
◦
◦
◦
◦
◦
⊚◦

⊕
◦

◦
◦
◦
◦
◦

◦ ◦ ◦ ◦ ◦ ⊙
◦

◦

◦
◦ ◦ ◦ ◦ ◦ ◦

◦
◦
◦
◦
◦
⊕◦ ◦ ◦ ◦ ◦ ◦◦

◦
◦
◦
◦
◦

◦ ◦ ◦ ◦ ◦

Figure 10 The rightmost path does not end in a critical cell. That could happen in case the
path reaches the image boundary.
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It is now possible to extract all QV -paths in a discrete Morse complex. It suffices to
go through all the saddles of the input complex extracting all of its paths. If the complex
has N saddles, then 4N paths will be processed. If the size of the i-th path is Li, then the

algorithm will require O(
4N∑
i=1

Li) time.

6 Disentangled Complex

Since the extracted paths can merge or branch, we call the complex described in the previous
section an entangled complex. For some applications, it is important that certain cases, such
as merging and branching, do not occur. In the following, we will show how to separate
merged and branched paths and keep them independent of each other.

QV -paths merge or branch at a given 0-cell along their extent. We will define that 0-cell
v ∈ M a knot if it is not critical and its degree (number of paths arriving and leaving) is
greater than two. Figure 9b shows a knot v of degree three. A knot of branching paths is
shown in Figure 9d.

If a knot is present, it means that l paths have a common subpath that occurs after a
merging case or before a branching case. The idea to disentangle all knots can be thought of
as a method that pushes forward (backward) a knot, along the common subpath of merging
(branching) paths, until a critical endpoint is reached.

The basic operation works locally at a knot separating the paths one step forward
(backward). For such, we need a knot v1 and the 0-cell v2 towards which v1 is pushed. The
edge e1 between v1 and v2 is the common subpath to be separated into the k paths entangled
in v1. For the case shown in Figure 11a, two paths merge into v1, the knot is pushed forward
to v2 along the edge e1. Using the edge-based data structure, it suffices to disconnect each
one of the k paths from the ring of 1-cells of v1. A new 0-cell v is then created for each path
in order to substitute v1 in that path. A 1-cell e is created to connect v to v2. In such a
manner, all paths are disentangled by one step. Figure 11b shows the result for the example
path. A new application of the process will disentangle the paths one step further, resulting
in the paths shown in Figure 11c. The operation involves traversing the rings of 1-cells of v1
and applying constant time computations. The operation takes constant time on average,
since the average degree of a planar graph is strictly less than six [28].

It suffices to continue pushing forward (backward) the knot vertices to fully separate
paths. Similar to the approach to extracting the QV -paths, we proceed from saddles in M

and follow all of its paths disentangling the knots until another critical cell is found. The
resulting paths are then disjoint. For visualization purposes and to maintain the planarity
of the complexes, the geometrical position of the paths can be perturbed infinitesimally, so
that they are positioned parallel to each other. Figure 11d shows the result of disentangling
the knots. If the number of saddles is N and each saddle can have up to four paths, the

algorithm again will require O(
4N∑
i=1

Li) time.

7 Simplified Morse Complex

The complex obtained by the method discussed above can be used for simple visualization,
but it is not efficient for many practical tasks, such as computing Betti numbers or hierarchies
of the complex. For such tasks, one would intend to obtain the critical cells connected by
QV -paths in constant time, without traversing all paths.
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Figure 11 Example of untangling knots of a merged path. In (a), the common subpath between
v1 and v2 is split so that the two paths arriving at v1 are then separated in (b). The process is
applied once again to obtain the separated paths in (c), and, by iterating along the whole common
subpaths, fully separated paths are obtained (d).

We present a simplified version of our discrete Morse complex such that the 1-cells connect
critical cells. The path between the critical cells are stored in a list as an attribute of the
1-cells. With such a complex, we obtain the objective of a model that is easy to manipulate
through local operations, but that can also be used for visualization purposes.

We consider subpaths called simplification kernels, depicted in Figures 12a and 12b. The
kernel is formed by the set of cells {e, v1, e1, v2, e2, v3}. We chose such a kernel to maintain
the property that a path alternates between cells of different dimensions. If the destination
of e is not a critical cell, then we can argue that a kernel can be found. Consider a (0, 1)-path
u1

0 → u0
1 → u1

1 → u0
2 → . . . → u1

r−1 → u0
r, as in Definition 1. The saddle in the origin of e is

u1
0 and the destination is u0

1 in the path. By definition, the subpath u0
1 → u1

1 → u0
2 should be

present in the path. These are exactly the cells needed to form the kernel. The same ideas
can be applied to a (1, 2)-path.

The 1-cell e has as origin a saddle in M . The cells v1 and v2, as well as e1 and e2, are
removed from the complex and the 1-cell e is connected to v3. The result of the simplification
of the complex from Figure 12a is shown in Figure 12b.

Finding kernels and simplifying them must be repeated until the 1-cell e finally connects
critical 0-cells. The endpoints of e shown in Figure 12b still are not both critical. Therefore,
a new kernel is found and simplified. The result is the edge e shown in Figure 12c that
connects critical cells and the process stops. The time complexity is linear in the size of the
path. Again, the process must be repeated for each path, implying that a fully simplified

complex is obtained in O(
4N∑
i=1

Li) time. The resulting complex for our example is shown in

Figure 12d.

8 Persistence and Topological Hierarchies

We present applications of the discrete Morse complex for analysis of image functions and
important topological computations, such as persistence of critical cells [13, 23, 38, 39] and
simplification of a topological structure to produce a hierarchical representation [35, 46, 49].
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Figure 12 Simplification of subpaths and resulting discrete Morse complex. In (a) a kernel is
used to exchange a subpath by a unique 1-cell (b). The process is repeated in (b) and stops since
critical cells are now directly connected (c). In (d) the discrete Morse complex connects only critical
cells.

We use elevation functions comprising one synthetic image and four real-world terrain
height field data [41, 48]. The synthetic image was computed as h(x, y) = sin x + sin y

multiplied by an exponential g(x, y) = exp
(

− x2+y2

2σ2

)
, with x and y in the interval [−40, 40]

and σ = 6. The image is shown in Figure 13a and its resulting discrete Morse complex in
presented in Figure 13b. The information on the image set and the number of critical cells
of each type in the resulting discrete Morse complexes are given in Table 1.

(a) (b)

Figure 13 Discrete Morse complex (b) of the synthetic sinusoidal image (a). The colors in (b)
represent the persistence of critical points, ranging from low persistence (blue) to high persistence
(red), with intermediate values in yellow and green.

The complexes were employed to compute the persistence of critical points and hierarchical
decompositions of the complexes through cancellation of low persistent topological features.
These topological features are 0-cycles and 1-cycles, which, in a two-dimensional space, are
related to connected components and holes in the level sets of the images. The number of
cycles in the level sets, along with persistence, was computed with the algorithm described



R. D. da Silva, H. Pedrini, and B. Hamann 18:13

Table 1 Images used in the experiments. The second column lists the resolution (in pixels) of
the images, third to fifth columns report the number of cells in each dimension in the respective
cell complexes, whereas sixth to eighth columns report the number of critical points in the Morse
complex.

Image
Resolution Image Complex Morse Complex

(pixels) 0-cells 1-cells 2-cells Minima Saddle Maxima

Sine 256 × 256 65536 130560 65025 49 84 36
Crater Lake 336 × 459 154224 307653 153430 355 713 359
Cumberland 1201 × 1201 1442401 2882400 1440000 8058 23138 15081
Death Valley 1201 × 1201 1442401 2882400 1440000 27964 46319 18356
Mars 936 × 949 888264 1774643 886380 568 4293 3726

by Zomorodian [54]. The algorithm requires a total ordering of the critical points in the
Morse complex, which was obtained by assigning the grayscale value of each critical cell to
the corresponding point in the Morse complex. For details on the subject, one should refer
to specialized literature [29, 53, 54].

The image in Figure 13b depicts in different colors the persistence of each critical point in
the discrete Morse complex of the sinusoidal image (Figure 13a). The color scale varies from
blue to red, representing low persistence and high persistence. Intermediate values are shown
in yellow and green intensities. The critical points of higher persistence are positioned in the
center of the image and the persistence decays from these points to points in the boundaries
of the image. This effect is due to the exponential function added to the sinusoidal function.
The 0-cycles and 1-cycles of the image are summarized in the graphs of Figure 14. The cycles
are sorted by persistence and it can be noticed that the persistence increases following an
exponential behavior, as expected.
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Figure 14 Graphs that illustrate the respective persistence for each 0- and 1-cycle in the sinusoidal
image. The sorted persistence of the cycles grows exponentially, except for the last 0-cycle, which
has infinite persistence. The horizontal line presents the median for reference.

The graphs for number of cycles versus persistence for the real images are shown in
Figure 15. The persistence axis is shown in logarithmic scale, so that the values can be
better analyzed. These graphs show a common characteristic: a small amount of cycles with
high persistence and a great amount of cycles with very low persistence. These very low
persistent cycles may be due to topological noise of the data. An important task is then the
removal of such topological noise, as explored in [9] and [18]. Cleaning the topological noise
may be interesting for better understanding the function or the phenomenon being studied.
The data structure of our complex allows easy and fast manipulation of the complex for
simplifications. We implemented the operation as described in [18].
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Figure 15 Graphs that illustrate the respective persistence for each 0- and 1-cycle of real elevation
terrain images. The sorted persistence shows a small amount of cycles with high persistence and
a great amount of cycles with very low persistence. The horizontal line presents the median for
reference.

It can be noticed that noisy topological features are mostly concentrated in low persistent
points. By suppressing low persistent features, the discrete Morse complex becomes cleaner.
This effect is reflected in the hierarchy of simplified discrete Morse complexes, shown in
Figure 16. In the initial complexes, the island in the middle of the lake does not stand out,
since there are many low persistence features. As the simplification progresses, topological
features of low prominence are removed and important topological features are preserved.

We have also computed the hierarchy for a face image, as shown in Figure 17. Initially,
there is a high concentration of feature areas with non-relevant details. The details are
removed as the levels in hierarchy are traversed and features located at the eyes, nose and
mouth stand out. This example shows how the simplification of the complexes can be used
to capture significant topological information of images and suggests that it can be useful for
image classification. The image was obtained from the AT&T Laboratories Cambridge [2].
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(a) DEM (b) original (c) pers. > 8 (d) pers. > 16 (e) pers. > 32

Figure 16 Hierarchy for the Crater Lake image.

(a) face (b) original (c) pers. > 8 (d) pers. > 16 (e) pers. > 32

Figure 17 A hierarchy of discrete Morse complexes computed for a face image.

Finally, we discuss computational time and memory usage (Table 2) for each step in
the construction of the discrete Morse complex. The algorithms were implemented1 using
the C programming language and the experiments were performed on a computer with an
Intel i7 core (1.8GHz and 8GB RAM memory) with Ubuntu 18.04. The quad-edge [25] data
structure was used for the complexes. In addition, for the images already covered in the
previous discussion, we provide information for the Berkeley Segmentation Data Set and
Benchmarks 500 (BSDS500) [1]. The dataset consists of 500 images of two different sizes,
i.e., 152 images of 312×481 pixels and 348 images of 481×312 pixels.

Table 2 shows the mean computational time and memory usage for the BSD dataset. Even
though our implementation used the quad-edge data structure for the image complex and for
the discrete vector field, it would be possible to reduce memory cost with memory-efficient
data structures [20]. In addition, the image complex and the vector field are no longer
necessary after computing the discrete Morse complex. The Topology Toolkit (TTK) [7, 47]
supports Morse-Smale computation. In Table 3, we provide execution time and memory usage
using TTK (version 0.9.8) filters in the ParaView software (version 5.6.1) [3]. The software
output values are reported. Our implementation of our algorithms is efficient, as can be seen
in columns 4 to 6 in Table 2. The computation of the vector field, the input to our algorithms,
needs to be improved, as has not yet been optimized for images of large dimensions. This
efficiency improvement is possible, since TTK also computes the vector field at the reported
times. TTK triangulates complexes as well, instead of using a quadrilateral grid, which could
potentially increase computational time. It is our plan to improve efficiency related to path
computations and fine-tune our implementation for better run time performance.

1 Code available at https://pessoal.dainf.ct.utfpr.edu.br/rdsilva/codes/morse.zip.
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Table 2 Computational time and memory usage for each step of the algorithm. Time and
memory is reported for each step: image cell complex (Img), computation of the vector field (VF),
computation of the paths (Paths), disentangling the paths (Dis.) and contracting the paths (Con.).
The contract step does not increase the memory, therefore we report the complex storage size after
disentangling and contracting steps as a unique value.

Time (seconds) Memory (megabytes)

Image Img VF Paths Dis. Con. Img VF Paths Dis./Con.

BSD 0.067 1.542 0.500 0.427 0.377 92.90 169.49 119.04 173.14
Sine 0.027 0.569 0.114 0.004 0.004 39.30 70.97 4.98 4.98
Crater Lake 0.067 1.493 0.330 0.089 0.064 92.88 168.80 26.13 44.43
Cumberland 0.611 15.743 3.737 2.117 1.711 868.94 1571.61 428.79 1091.62
Death Valley 0.618 15.948 4.349 2.030 1.786 868.93 1572.64 609.087 998.90
Mars 0.383 9.236 2.075 0.682 0.514 534.81 967.08 148.58 345.81

Table 3 Computational time (four threads) and memory usage from TTK using ParaView.

Image Time (seconds) Memory (megabytes)

Sine 0.158 1.48
Crater Lake 0.458 6.38
Cumberland 4.841 148.10
Death Valley 5.479 132.16
Mars 2.733 -

9 Conclusions

We have presented and analyzed algorithms for computing the discrete Morse complex for
two-dimensional images. We model a Morse complex with an efficient edge-based data
structure, e.g., a winged-edge or a quad-edge structure, to guarantee constant-time local
operations applied to a Morse complex.

The presented algorithms ensure that only paths in a vector field that may lead to paths
in a Morse complex are processed. The algorithms deal with merging and branching in
order to produce a consistent representation of the model. The simplified Morse complex
can be manipulated in a straightforward manner and is useful to perform local topological
operations. The model used for the complex is suitable for data analysis and visualization.

The presented theoretical and experimental results show the effectiveness of our algo-
rithms. For example, the complex is suitable for the computation of homological persistence
numbers [53], removal of topological noise [51], and hierarchical representation of the dis-
crete Morse complex [18]. Computation times show that our algorithm has a performance
comparable to that used in the Topological Toolkit (TTK). However, memory requirements
of our algorithms should be reduced, and we plan to address this issue in future work.
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