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A central problem in image processing and computer vision is the computation of corresponding interest
points in a given set of images. Usually, interest points are considered as independent elements described
by some local information. Due to the limitations of such an approach, many incorrect correspondences
can be obtained. A specific contribution of this paper is the proposition of a topological operator, called
Local Morse Context (LMC), computed over Morse complexes, introduced as a way of efficiently comput-
ing neighborhoods of interest points to explore the structural information in images. The LMC is used in
the development of a matching algorithm, that helps reducing the number of incorrect matches, and
obtaining a confidence measure of whether a correspondence is correct or incorrect. The approach is
designed and tested for the correspondence of narrow-baseline synthetic and specially challenging
underwater stereo pairs of images, for which traditional methods present difficulties for finding correct
correspondences.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The correspondence or matching of image interest points is a
basic step in computer vision that is used to find corresponding
locations in different images for tasks such as image stitching,
image registration, scene reconstruction, object detection and
recognition [3,27,31,34,37,47,53]. A well explored advantage of
the correspondence of interest points is that it allows matching
in the presence of occlusions and changes in scale and orientation
[46]. Furthermore, more reliable matching of images can be com-
puted [11] and might be used to compute denser correspondences
[30]. However, the approach may fail depending on the image
acquisition method, noise corruption, and transformations
between images [38].

This paper investigates the correspondence of interest points as
an auxiliary step for establishing a denser set of correspondences
to further construct 3D models and merge point clouds produced
from images acquired at different time steps (video frames). The
considered images are challenging, such that we should avoid
incorrect matches due to multiple regions with similar
characteristics. Furthermore, the confidence of a match being cor-
rect should be measured.

The basic stages for corresponding interest points between
images include: (1) interest point detection, (2) description, and
(3) matching. After these steps, (4) filtration (as SIFT-ratio) and
(5) model fitting (RANSAC) are commonly used. We define these
steps as the basic framework.

Interest points are usually considered as independent elements
described by some limited local information, basically, the appear-
ance of patches of pixels surrounding the point location [46]. The
limited local information clearly is not able to discriminate
between interest points in some cases. The difficulty arises from
patches related to two interest points not having enough dissimi-
larity between them. Examples of such cases occur in smooth
regions, repeated patterns and symmetries. Therefore, images with
different regions of high similarity often incur in problems of dis-
crimination due to the limited information to compute descriptors.

Besides such difficulties, many other may occur. For example,
for the underwater images considered in this paper, besides the
morphological nature of the regions in the images, which may cre-
ate highly similar structures, noise may be present due to particles
in the water and the acquisition may produce distortions and illu-
mination differences.
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Fig. 1. Examples of incorrect matches computed due to regions of high similarity. The descriptor by itself is not able to discriminate between some regions. The zoomed
regions show the pixel level texture similarities that produce close descriptors and consequently difficulties for the correspondence of interest points.
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Commonly, the correspondences of images (step 3 of the frame-
work) are computed by pairwise comparison of their interest point
local descriptors, such as performed by k-nearest neighbor algo-
rithm [34,46]. This approach is computationally efficient and suit-
able for real-time applications or for problems that deal with
massive amounts of data. However, the difficulties arising from
point detection and description are propagated and not properly
handled at the matching stage. Fig. 1 shows some examples of
incorrectly matched points.

The neighborhood relation proposed in this paper is mainly
evaluated at the matching level. We use the neighborhood relation
to produce local restrictions to the set over which correspondences
are searched for. The idea is that, for the narrow-baseline images
considered in this paper, spatially close interest points in one
image should be related to spatially close putative correspon-
dences in a second image.

Cases of incorrect correspondences are very common and there
are some different levels in which it is possible to consider ways of
eliminating them. At the early detection step, it is possible to
threshold the detected interest points by using a measure of
importance or of how salient the interest point is. In such a man-
ner, it is possible to avoid detecting interest points in highly homo-
geneous regions.

At the matching level, approaches such as the one used in the
Scale-Invariant Feature Transform (SIFT), the SIFT-ratio [32], per-
form a comparison of similarity between the k-closer matches of
an interest point (usually k is 2) and, therefore, when they are
too similar in terms of descriptors, the matches are removed. At
another level, approaches such as RANdom SAmple Consensus
(RANSAC) [17] use a model fitting to find a transformation such
that outliers are removed from the correspondence set. It is clear
that all these approaches reduce the number of correspondences.
In fact, the initial number of correspondences invariantly suffers
a drastic reduction. Fig. 2 shows an example of correspondences
Fig. 2. Examples of output matches obtained through SIFT method. Incorrect corresponde
and many regions do not contain any paired points.
obtained through the application of interest point thresholding
and SIFT-ratio. A set of good matches is acquired and can be useful
in many applications, such as registration. However, the corre-
spondences are usually very sparse.

A region growing approach is presented in [6] for correspon-
dence verification. The method outperforms the selection of SIFT.
However, it is still a method that produces sparse number of corre-
spondences. A small number of correspondences may not be
enough for obtaining denser matches for some images, such as
the ones considered in this paper.

Alternatively, the structural relations between interest points
can be introduced to obtain more global information for the
matching process. Such relations are commonly modeled by using
graphs and allow the exploration of structural arrangements to
better discriminate regions in images. Successful applications to
find or discriminate sparse number of interest points [7,22,25,51]
have been reported. However, finding correspondences within
dense sets of points using graphs is still a challenging problem.
Algorithms for this purpose are computationally expensive and
sensitive to noise in the data [28,40,52]. Much of the efforts to
solve correspondences based on graphs consider such structures
to connect all interest points [4,10,14,19,40,45], which makes the
limitations of graph matching even more severe when the number
of interest points is dense.

Computational topology is a field gaining importance for ana-
lyzing images at qualitative, structural and abstract levels
[2,5,9,15,16,29,39]. In this work, we present an approach based
on the topology of functions, given by Morse complexes, to defin-
ing locally meaningful connectivity of interest points. We have
devised and tested the method for obtaining correspondences in
images to demonstrate its contributions:

� A general neighborhood relation which can be adapted to differ-
ent applications.
nces are filtered out, however, the number of correspondences is drastically reduced



(a) 0-cell (b) 1-cell (c) 2-cell

Fig. 3. Examples of cells of dimension up to two. Figure adapted from [20].

(a) A cell complex (b) Not a cell complex

Fig. 4. Sets of cell that satisfy (a) and that do not satisfy (b) the cell complex
conditions. Figure adapted from [54].

0-cell

1-cell

2-cell

Fig. 5. Digital image modeled as a cell complex K. Pixels are 0-cells of the complex
which also have cells of dimension 1 and 2 to explicitly define the topology of the
image.
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� A manner of avoiding incorrect correspondences in high simi-
larity images.
� An approach to evaluating the confidence of a correspondence

being correct.

The matching algorithm developed is conceptually similar to
pixel-based seed-growing methods such as [6,8,23,30] that have
been proved useful. These are, however, mostly post-processing
steps used after the matching of interest points. Our algorithm dif-
fers in its objective as it is used to compute more correct corre-
spondences through an interest point-based growing. We
essentially consider the three first steps of the basic image corre-
spondence framework already mentioned. In the first step, we
include the computation of the Morse complex and, consequently,
the introduction of a neighborhood relation between interest
points. This relation is used in the matching step (step 3 of the
framework). In details, the steps are:

1.1. Detection of interest points: performed by identifying min-
imum and maximum Morse critical cells.

1.2. Topology computation: the connection between interest
points is also obtained by using the Morse theory.

2. Description of interest points: this is performed through
traditional descriptors such as HOG and SIFT.

3. Matching: the topological connections between interest
points are used to produce a matching algorithm that
restricts the search space and, by doing so, tries to avoid
incorrect correspondences and produce a higher number
of correct correspondences. In the current version of the
method, rotation and scale transformations are not present
in the tested datasets.

We use this framework to show that the topological informa-
tion given by the Morse complex can be used to solve ambiguities
produced by similar regions and augment the number of correct
correspondences. The presented method is designed for the
narrow-baseline images of our underwater application and it is
shown to be effective. We believe that the method can be
extended, in the future, to other types of images with wider base-
lines by generalizing the Morse complex to multiple scales and
adapting the score measure presented in this paper.

The text is organized as follows. Section 2 presents basic con-
cepts of Morse theory used in our approach. The proposed topolog-
ical neighborhood is formulated in Section 3. In Section 4, the
matching algorithm is developed. Experimental results are pre-
sented and discussed in Section 5. Section 6 concludes the paper
with final remarks.

2. Background

This section reviews concepts required as basic foundation for
the development of our neighborhood operator and matching algo-
rithms. We present how images are modeled using cell complexes
and how the discrete Morse complex is obtained from them. For a
more complete understanding of the concepts one should refer to
references in algebraic topology and computational topology
[18,20,55].

2.1. Cell complexes

A p-cell is the building block to define a cell complex. The first
three low-order p-cells are the 0-cells or nodes, 1-cells or edges
and 2-cells or faces. Even though the secondary names are com-
monly used in computer science, we will avoid them. The concept
of face is different in topology, as we will state soon. Therefore, to
be consistent with the literature, we choose to use the primary
names. Fig. 3 shows examples of p-cells up to dimension two.
We suppress the superscript of a p-cell ap, denoting it a, whenever
the dimension is clear from the context.

The boundary of a p-cell consists of cells of dimension less than
p that form the limit of the p-cell. The face of a p-cell rp is a cell sk,
with k 6 p, which is part of the boundary of the p-cell. The p-cell rp

is called a coface of sk. As such, we can say that the face of a cell
bounds it. The bounding relations of face and coface will be stated
as sp � rk and rp � sk.

A cell complex K is a finite collection of cells such that all the
faces of a cell in the complex also belong to the complex and the
intersection of any two cell is either empty or a face of both cells.
Fig. 4 shows examples of sets of cells that satisfy and that do not
satisfy the conditions of cell complexes.
2.2. Images as cell complexes

Images are ordinarily a function f : D! R defined on subset of
the discrete lattice, D ¼ fðx; yÞ 2 Z2j1 6 x 6 M;1 6 y 6 Ng, such
that a point p of D along with its value f ðpÞ is called a pixel. An
image can be modeled by a regular 2-dimensional cell complex
K, as arguments Kovalevsky [26]. Following the model of Robins
et al. [41], the complex K has 0-cells related to the pixels over D.
The 2-cells are squares/triangles defined by a pixel and some of
its closest pixels in D. The 1-cells are faces of the 2-cells. An exam-
ple of such a model is shown in Fig. 5.



Fig. 8. Example of discrete Morse complex M.
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2.3. Discrete Morse theory

The discrete Morse theory relates the topology of a smooth
function f with its critical points (maxima, minima and saddles),
encoding all topological changes in the level sets of a function [18].

A function f : K ! R is a discrete Morse function if, for all
ap 2 K; f takes a value less than or equal to f ðapÞ in at most one
coface of ap and takes a value greater or equal to f ðapÞ in at most
one face of ap,

]fspþ1 � apjf ðspþ1Þ 6 f ðapÞg 6 1; ð1Þ
]fkp�1 � apjf ðkp�1ÞP f ðapÞg 6 1; ð2Þ

where ] denotes set cardinality. Given a discrete Morse function, a
cell ap 2 K is critical if all cofaces take strictly greater values and
all faces take strictly lower values in f,

]fspþ1 � apjf ðspþ1Þ 6 f ðapÞg ¼ 0; ð3Þ
]fkp�1 � apjf ðkp�1ÞP f ðapÞg ¼ 0: ð4Þ

In a two dimensional cell complex, critical 0-, 1- and 2-cells are,
respectively, called minima, saddles and maxima. Fig. 6 shows the
critical cells of an example cell complex.

A discrete Morse function on a complex K defines a discrete vec-
tor field V by pairing ap � bpþ1 whenever f ðbpþ1Þ 6 f ðapÞ [18] and
producing a collection of pairs fap � bpþ1g such that each cell is
in at most one pair. An example of Morse discrete vector field is
shown in Fig. 7. The pairs of cells are depicted by drawing an arrow
from a cell towards its coface in the pair.

Given a vector field V, the V-paths between critical cells can be
used to compute the discrete Morse complex (DMC), M [41]. A
V-path is a sequence of cells

ap
1;b

pþ1
1 ;ap

2;b
pþ1
2 ;ap

3; . . . ;bpþ1
r�1 ;a

p
r ð5Þ

where ap
j ;b

pþ1
j 2 V ;bj � ajþ1, and aj – ajþ1, for all j ¼ 1; . . . ; r � 1.

Fig. 8 shows an example of a DMC where critical cells are connected
by V-paths modeled using edges. Critical cells of maxima, minima
and saddles are respectively depicted by the symbols �;} and 	.
minimum

saddle

maximum

Fig. 6. Morse critical cells. Minima, saddles and maxima are respectively Morse
critical cells of dimension 0, 1 and 2.

Fig. 7. Discrete Morse vector field with pairs of cells depicted by arrows.
Algorithms for computing the vector fields and the Morse complex
are presented and analyzed in the paper of Robins et al. [41].
3. Local Morse Context

In this section, we define image interest points in terms of crit-
ical Morse cells and, mainly, introduce the Local Morse Context
(LMC) operator to obtain the neighborhood relation of these inter-
est points.
3.1. Morse complex and critical cells

As described in Section 2.3, minima and maxima are Morse crit-
ical cells. In computer vision, such features are usually obtained
from a derivative of the input image function [35]. In the same
manner, we use a derivative of the input image, the Laplacian of
the Gaussian (LoG) [46], modeled as an image cell complex (see
Section 2.2), to construct the discrete Morse complex
(Section 2.3). Fig. 9 illustrates the process. Given the input image,
the LoG of it is computed and used to obtain the DMC.

Critical cells of maxima and minima are analogous to the max-
ima and minima points usually detected as interest points of
images. For that reason and to be in accordance with the proposed
method, interest points will denote Morse critical cells and we will
use both terms interchangeably in the remaining of the text.
Critical Morse cells can also be saddles, however, they are not
stable to perturbations in the input function and are not used as
interest points. Therefore, given the DMC M, of an image, with n
critical cells ap

k ; k ¼ 1; . . . ;n, we define the interest points to be
the set of minima and maxima

C ¼ fap
k ja

p
k 2 M with p ¼ f0;2g; k ¼ 1; . . . ;ng: ð6Þ

Usually, an image interest point is a pixel for which the neigh-
borhood relation is defined over its closest pixels in the discrete
lattice (such as a 4- or 8-neighborhood). Such relations do not
allow an easy determination of which interest points are close to
each other. By using the discrete Morse complex, it is possible to
define the neighborhood as a relation over closest interest points.
The computation of such a relation is the topic of the next section.
3.2. Local Morse Context

The Local Morse Context (LMC) is a relation over the DMC for
acquiring information regarding the neighborhood of interest
points. Initially, some additional topological concepts are pre-
sented to support the definition of the LMC.

A subcomplex of a complex K is a subset of cells L # K such that
L is also a cell complex. The star of L contains all cofaces of
L; StðLÞ ¼ fa 2 Kja � s 2 Lg. The closure of L is the smallest subset



LoG DMC

Fig. 9. Example of LoG and DMC of an image.
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of K containing L;ClðLÞ ¼ fs 2 Kjs � a 2 Lg. The link of L is the
boundary of its star, LkðLÞ ¼ ClðStðLÞÞ � StðClðLÞ � f;gÞ [55].

The main concepts of the proposed method are presented next.
Given an interest point ak 2 C (see Section 3.1), the star of order i
(or i-th iterated star) of ak; StiðakÞ, is a recursion

StiðakÞ ¼
ak if i ¼ 0
StðakÞ if i ¼ 1
StðClðSti�1ðakÞÞÞ otherwise:

8><
>: ð7Þ

The i-th order local Morse link (LML) of ak is defined to be the
link of the i-th iterated star of ak,

LMLiðakÞ ¼ fsjs 2 LkðSti�1ðakÞÞg: ð8Þ

The i-th order Local Morse Context of a critical cell ak is defined
as the set of minimum and maximum critical cells in the LMLs up
to order i,

LMCiðakÞ ¼ fspjsp 2 LMLjðakÞ; p ¼ 0;2; j ¼ 1: . . . ; ig: ð9Þ

Fig. 10 illustrates the computation of the LMC2 given a particu-
lar critical cell a. The second column shows the iterated stars of
order 0 and 1, of a, while the third column presents the respective
links, namely LML1 and LML2. The selection of maxima and minima
is performed next, producing the sets shown in the fourth column.
Finally, the union of the two sets of the fourth column produces the
LMC2, as can be seen in the rightmost image. Notice that the LMC is
a nested operator, that is,

LMC0ðakÞ# LMC1ðakÞ# 
 
 
 # LMCiðakÞ: ð10Þ

Fig. 10 shows the LMC1 in the lighter region inside the darker
rectangle related to the LMC2.

The order of the LMC controls the extent of the neighborhood to
be used. The higher is the order, the larger is the number of con-
nected points and the region covered by the neighborhood.
Therefore, more global information is captured as the order
increases. Fig. 10 shows how the LMCs of order 1 (first row of
fourth column) and 2 (fifth column), computed for a critical cell
a, influence in the region covered around a.
Fig. 10. Example of computing the LMC2 of a maximum critical cell a. Increasing the orde
The neighborhood given by the LMC makes it possible to
explore the local structural information to characterize a pattern
and/or increase the information of a local descriptor. Since the
LMC is computed over a Morse complex, the neighborhood is based
on the topology of a function and, therefore, it is expected to be
independent of geometrical transformations that may be applied
to the function.

4. Image matching using the LMC

This section presents how the LMC can be used to correspond
points in pairs of images. Initially, we show a method for corre-
sponding points within two LMCs, which is the core step for
obtaining the correspondences between images. The correspon-
dence of LMCs is used to guide the matching and, as a consequence,
it helps to avoid incorrect matches due to similarities (as explained
in the introduction).

4.1. Matching of LMCs

Given a critical cell ak of a Morse complex M1 and a critical cell
bl of a Morse complex M2, let their LMCs be LMCiðakÞ and LMCiðblÞ,
as illustrated in Fig. 11. Clearly ak and bl are corresponding points
as can be noticed by the high similarity of the regions depicted in
Fig. 11a and b. It can also be noticed that, as expected, the LMCs are
also very similar, suggesting that the correspondence of LMCs can
be formulated as the correspondence of structured data. The task
becomes a graph matching problem which is well known and have
various proposed solutions [10,19,50].

The standard solution of graph matching is carried out by
means of graph isomorphisms or subgraph isomorphism if the
graphs have different sizes. However, these methods can only find
a solution if there is a perfect match [49]. In real world applica-
tions, finding isomorphisms is unfeasible because identical struc-
tures are very unlikely to occur due to noise and distortions
present in the data.

There are many factors that may introduce noise and inaccuracy
to image data. Such differences are probable to occur in the LMCs
r augments the number of critical points in the set and expanding the neighborhood.



(a) (b)

Fig. 11. Example of a pattern between two related critical cells. Missing or added
critical cells are likely to occur. Correspondences are represented with numbers.
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as well. Taking one of the LMCs as a base for comparison, some of
its critical cells may be missing in the second LMC or some cells
that do not appear in the first LMC could be added to the second
LMC. In Fig. 11, one minimum point is missing in the second set
and one maximum point appears in the second set, but not in
the first.

Noisy or inconsistent cases are also a concern of various appli-
cations and extensively studied [4,10,19,40,44,48]. Usually, the
matching constraints are relaxed in search of non-exact correspon-
dences. The problem is known as inexact graph matching. We solve
our problem with a method based on eigendecomposition
approaches [43,45,50], specifically the one proposed by Scott and
Longuet-Higgins [43], that provides an elegant solution with
one-to-one correspondences and no explicit iterations.

Suppose LMCiðakÞ has m interest points, rr ; r ¼ 1; . . . ;m; and
LMCiðblÞ has n interest points ss; s ¼ 1; . . . ; n. Let drs ¼ dist

ðdescðrrÞ;descðssÞÞ be the Euclidean distance between the
descriptors ðdescÞ of rr and ss. The original method [43] uses
distances between point coordinates, however, we use distances
between descriptors, as proposed in [13], since this variation
provided better results. Individually, each feature can be described
by some local measure such as in HOG [12], HSC [42], SURF [1] or
SIFT [31].

The method computes an m� n matrix G with pairwise
affinities

Grs ¼ exp
�d2

rs

2t2

 !
ð11Þ

of interest points, where the parameter t controls the degree of
proximity between descriptors and it is suggested to be 4 in [45].
Perfect matches ðdrs ¼ 0Þ have affinity value 1. The farther the dis-
tance between descriptors, the more the affinity approaches 0.

A singular value decomposition (SVD) of G is performed

G ¼ UDVT ð12Þ

where U is an m�m orthogonal matrix, D is a m� n diagonal
matrix and VT is the transpose of an n� n orthogonal matrix V.
Every element of the principal diagonal of D is replaced by 1 to cre-
ate the matrix E. The association matrix is computed as

P ¼ UEVT ð13Þ

such that the rows of P index the interest points in LMCiðakÞ and the
columns index the interest points in LMCiðblÞ.

If Prs is the largest element both in row r and column s, then a
strong correspondence will be achieved. However, if Prs is the lar-
gest element in its column but not in its row, or, similarly, in row
but not in column, then multiple points compete for the match and
the correspondence is weak. Correspondences in the LMCs are
obtained by retrieving the strong correspondences of P. The
numbers in Fig. 11 show the correspondence between the two
LMCs in our example.

4.2. Image match

Let CI and CJ be the sets of interest points of two images I and J
and also let S be a set with some correctly matched pairs ðak; blÞ,
called seeds, such that ak 2 CI and bl 2 CJ . Assume S is given (we
show one way to compute it in Section 5). These sets are the inputs
for Algorithm 1, which computes all the correspondences from CI

to CJ starting from the initial matches in S. The key idea is to
increase the number of matchings at each iteration from matches
already computed.

Algorithm 1. LMCImageMatching.

An auxiliary queue Q is initialized in line 1 of the algorithm with
the seeds in S. In the example of Fig. 12a, the set of seeds starts
with three correspondences. Line 3 removes one putative match
ðak; blÞ from Q and line 4 computes the correspondences of the
interest points in their LMCs (see matching of LMCs in
Section 4.1). The correspondences in the LMCs provide new
matches ðrr ; ssÞ in the neighborhoods of ak and bl. In the loop of
line 5, the new matches are checked against possible previous
matches of the same interest points. The loop goes through all
ðrr ; ssÞ obtained checking whether the distance ðdistÞ between
the descriptors (desc) of rr and ss is closer than the descriptors
of rr and a possible match previously found for it (line 6). The pre-
vious match is retrieved by the function pair. If the descriptors of
rr and ss are closer, then pairðrrÞ will be set to ss and the putative
match ðrr ; ssÞ will be inserted into the queue (lines 10 and 11). In
such a way, new matches will be computed from the LMCs of r and
s in a subsequent iteration of the outer loop of line 2. The condition
in line 7 tests if a previous match of r is in the queue and, if so, it is
removed in line 8.

From the set of seeds, the number of correspondences grows
until all interest points are matched, that is, until the queue Q
becomes empty. The matching of LMCs, performed in line 4,
enforces that interest points in a neighborhood of I are matched
in the corresponding neighborhood of J. Therefore, the LMC guides
the acquisition of new matches in Algorithm 1.

Fig. 12b–d depict different iterations in the growing process:
initial, intermediary and final. The initial steps of Fig. 12b show



(a)

(b)

(c)

(d)

Fig. 12. Correspondences growing from initial seed set (a). The LMC locally guides
the matches (b and c) until all interest points have correspondences established.

R.D. da Silva et al. / J. Vis. Commun. Image R. 30 (2015) 299–311 305
that the matches follow local restrictions. In such a manner, it is
possible to avoid many incorrect matches as when using only the
information of descriptors to perform the correspondences.
Fig. 12c shows that the growing fronts from different seeds meet
at some point. If the seeds were correctly initiated, and conse-
quently the matches grew correctly, then the matches at the
boundary of the fronts would agree and the growing process would
stop due to the test of line 6. However, if the matches do not agree,
one front will take over another front, correcting the previous
matches. That can happen if one of the seeds is not a true match.
In such a case, the matches will be corrected by the front of the cor-
rect seed. That means that the set S does not necessarily need to
contain only correct matches, but at least one. When all the fronts
meet and no better matches are found, the process stops as shown
in Fig. 12d.
5. Experimental results

In this section, we present experimental results that show the
effectiveness of the LMC to improve the matching of interest points
and also to compute a score that characterizes correct and incor-
rect matches. The latter result is applied in the selection of seeds
for Algorithm 1 and it is part of the setup of parameters for the
algorithm.

5.1. Datasets and ground truth

We used three datasets to evaluate our method. The first data-
set contains synthetic stereo pairs at three different baseline sepa-
rations and ground truth disparity maps. The dataset is made
available by the University of Alberta [36]. The second one is the
Middlebury Stereo Datasets that also provides ground truth dispar-
ity maps [33]. The third dataset consists of pairs of underwater
images taken from the bottom of lakes in Antarctica.

The first and second datasets are used as reference images since
they have been used in the literature as benchmarks for stereo
image pairs. These datasets also make available disparity maps
that allow to directly evaluate the correctness of obtained matches.
The synthetic images of the first dataset are built with different
types of textures that contain repeated patterns and similar
regions. The second dataset is composed of different types of
real-world scenes.

The third dataset, due to several reasons, is more challenging in
terms of matching interest points. These are non-calibrated images
depicting ridged and peaked morphologies found on the bottom of
lakes that create complex structural formations. In many cases,
similar structures can be found all over the images, making it dif-
ficult for local descriptors to capture the differences between some
regions. Besides the morphological nature of the regions in the
images, many other difficulties arise from the acquisition of under-
water images, such as distortions, illumination differences, and
noise produced by particles in the water. A subset of images is
shown in Fig. 13.

Unlike synthetic and Middlebury pairs, which have an available
ground truth, the pairs of underwater images do not have a known
ground truth characterizing matches in the images. Therefore, as in
works that address a similar problem [34], we estimate a ground
truth. Instead of a homography matrix, we use a fundamental
matrix [21] to compute the ground truth due to the nature of the
images in this work. Given a pair of images to be matched, a set
of visually confirmed matches is chosen and used to compute the
fundamental matrix. In such a way, it is possible to perform the
rectification of the images and estimate corresponding regions
between the two input images on the rectified image.

The tested datasets are composed of 90 pairs of synthetic
images, 21 pairs of Middlebury images and 21 pairs of underwater
images. Synthetic and underwater images were subdivided into
subsets of validation images (9 synthetic pairs and 6 underwater
pairs), used to set parameters; and of test images (81 synthetic
and 16 underwater images) pairs, used to measure the quality of
the matchings. The Morse complexes and interest points were
obtained following the description in Section 3.1.

5.2. Evaluation metrics

In order to evaluate our results, we use metrics based on the
number of correct and false matches, namely recall and
1-precision, since they are widely employed for similar evaluations
[24,34].

Given the Morse interest points for all of the images in a data-
set, two interest points a and b are considered a match if the
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Fig. 13. Examples of images used in our experiments: (a)–(c) synthetic images from [36]; (d)–(f) Middlebury samples [33]; and (g)–(i) underwater images.
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distance between their descriptors (Chi-squared distance in our
experiments) is below a threshold t. A match is correct (true posi-
tive) if the interest points correspond to the same physical location
(as determined by a ground truth), whereas a match is false (false
positive) if the matched interest points correspond to different
physical locations.

The correct correspondence of physical locations is determined
by the overlap error [34]. Suppose A and B are the regions around a
and b, respectively, for which the descriptors are computed. The
overlap of A and B is defined by the ratio of the intersection and
union of the regions �S ¼ 1� ðA \ TBÞ=ðA [ TBÞ under a transforma-
tion T. The transformation T is given by the disparity for the syn-
thetic and Middlebury image pairs and by the rectification
matrices for the underwater image pairs. As in [34], we assume
that a match is correct if �S < 0:5, so that the area covered by
two corresponding regions is less than 50% of the region union.

Recall and 1-precision are defined as [24]:

recall ¼ number of true positives
total number of positives

ð14Þ

and

1� precision ¼ number of false positives
total number of matches ðcorrect or falseÞ :

ð15Þ
The total number of positives for the given dataset is computed by
comparing the overlap error of all interest points. The recall versus
1-precision graphs are obtained by varying the value of t.

5.3. Method setup

In this section, we discuss how to tune the following parame-
ters of the matching algorithm: (i) order of the LMC used to grow
matches; (ii) order of the LMC to score matches and select seeds;
and (iii) number of seeds.

We used the histogram of oriented gradients (HOG) [12], a well
known descriptor, to describe each interest point of the images.
The descriptor is computed within a region of 17� 17 pixels
around each interest point. However, the proposed method is not
attached to a specific descriptor. The Gaussian filter used for the
LoG, as described in Section 3.1, has size 7� 7 and r ¼ 1:5.

5.3.1. Order of LMC to grow matches
This test evaluates the choice of the LMC order to grow the

number of matches in Algorithm 1. The order is chosen to maxi-
mize the confidence of the resulting matches. For these tests, the
seeds for Algorithm 1 were visually chosen so that the algorithm
grows from true matches.

The results for the four orders studied are shown in Fig. 14, both
for synthetic and underwater datasets. The LMC of order 1 achieves
the best results for this test. This behavior can be expected since
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Fig. 14. LMC order influence on growing the number of matches. The lower orders
have a higher recall value. Therefore, the LMC-based algorithms performs better if
the neighborhood considered to grow matches is smaller, the search for new
correspondences in related regions between images is more restrict.
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Fig. 16. Geometrical property for score where corresponding points in LMCs have
similar distances to the horizontal lines.
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the local restriction to grow is loosened as the order increases,
allowing farther points to be matched. At lower orders, the local
restriction is stronger, meaning that points that are close to one
region of the base image should correspond to close points in the
related region of the pair image. In this case, the LMC works as a
neighborhood analogous to 4-pixel, 8-pixel or 16-pixel neighbor-
hood of an image, except that in the LMC the neighbors are interest
points instead of pixels.

5.3.2. Order of LMC to score matches
The second test we performed was to choose an order of the

LMC to score matches and consequently estimate correct and
incorrect matches. This is another application of the LMC we intro-
duce and apply directly to choose seeds for our matching algo-
rithm. Alternatively, SIFT-ratio could be a measure to choose
seeds. However, in the experiments for our underwater test cases,
it is possible to notice that there is a significant amount of true pos-
itives with SIFT-ratio higher than 0.8 (Fig. 15), also confirming the
self-similarities of regions in the images.

Given two matched interest points ak 2 M1 and bl 2 M2, we
intend to estimate if they are a correct match. The LMCs of two
matched points have relational information that can be used to
increase the knowledge of how reliable their matching is.

If ak and bl are correctly matched, it is expected that their LMCs
share similar structural relations, since the corresponding regions
of the images are the same. Therefore, given a correspondence of
the points in their LMCs, it is possible to obtain a measure of
how similar the two patterns are. We propose to compute a match-
ing score as

scoreðkr ; ssÞ ¼ ]fðkr ; ssÞjPrðkrÞ � PrðssÞg ð16Þ

where ðkr; ssÞ are corresponding cells between LMCs that have val-
ues PrðkrÞ and PrðssÞ for some property on the structural patterns.
The symbol ] denotes set cardinality so that the score counts the
number of corresponding cells that agree with respect to property
Pr. The property can be some invariant characteristic shared by
the images in one application. Notice that the range of score values
is dependent on the number of points in the LMCs.

Taking Fig. 16 as an example, we need to find a property that
holds for the pairs of images from our dataset. The images consid-
ered in this work present perspective transformations which do
not preserve angles and ratios of lines linking interest points. Let
the central circles be a matched pair of points ðak; blÞ to be scored.
The other circles are interest points in the LMCs such that the num-
bers define their correspondences. Consider also the horizontal
lines based on ak and bl. Due to the nature of the stereo pairs,
the points in the contexts may have significant horizontal displace-
ments relative to the central point. However, the distances from
corresponding points in the LMCs to the horizontal lines are
expected to be similar (see vertical, solid lines in Fig. 16).

We use this fact to score matches. Given a match pair ðak; blÞ, we
define its score as

scoreðak; blÞ ¼ ]fðrr ; ssÞjdispðak;rrÞ � dispðbl; ssÞ 6 cg ð17Þ

where dispðak;rrÞ ðdispðbl; ssÞÞ is the vertical difference from the
points rr ðssÞ in the LMC of ak ðblÞ to the horizontal lines of ak ðblÞ.
The difference between displacements is signed to differentiate
between points lying below and above the horizontal lines. The con-
stant c controls how much the vertical distance can differ between
corresponding points. For our images, we have found that c ¼ 3
leads to satisfactory results. In our example, except from interest
points identified with values 3 and 8, the displacements of five
interest points are approximately the same. Therefore, the score
for the matching ðak;blÞ equals 5 and it suggests that the matching
is probably a correct one. This is the behavior studied in the follow-
ing tests.



Table 1
Best scores for each order of LMC. For each order of LMC, the best score was chosen,
that is, a correspondence scored with this or a greater value is mostly probable to be
correct (fifth column) and the probability of finding such a correspondence is also
high (fourth column). Higher orders perform better in this case. We find out that an
order of 3 and score 11 are good choices for measuring the confidence of
correspondences.

Dataset Order Score Number of matches True positives

(from total of matches)

Synthetic 1 2 0.81 0.94
2 5 0.84 0.95
3 9 0.85 0.96
4 13 0.85 0.96

Underwater 1 2 0.43 0.75
2 7 0.55 0.90
3 11 0.59 0.91
4 15 0.59 0.90
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Fig. 17. Relation between the number of seeds and number of matches. The
number of correctly corresponded points increases with the number of randomly
chosen seeds, but converges near 10 seeds.
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Fig. 18. Insertion of incorrect seeds in the algorithm. The number of incorrect seeds
was arbitrarily fixed in 10 seeds. In the chart key, ðkc : kiÞ represents the choice of kc

correct matches and ki incorrect matches. The result fluctuates according to the
number of incorrect matches, however, it is bounded with similar results when
using only one seed and ten seeds, as in Fig. 17b. This suggests the methods
performs well even when incorrect seeds are in the input set for the algorithm.
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The validation images were matched by using a 1-NN algo-
rithm, which finds the closest correspondences in terms of their
distance in the feature space, and all pairs of matched points were
scored using orders 1–4 for the LMC. An adequate choice of the
score is achieved when the number of correct matches becomes
significantly larger than the number of incorrect matches and also
the number of correct matches is not too small.

Therefore, for each order we chose the score which returned a
considerable amount of matches with great probability of being a
correct one. The results are summarized in Table 1, which shows
the best score (column 3) for each order of LMC (column 2) for
the two datasets. Column 3 shows the number of matches from
the total expected to have a score equal to or greater than the cho-
sen score, and column 4 shows the probability of having a correct
match given that the score is equal to or greater than the chosen
score.

The scores become more discriminative as the order increases.
Orders 3 and 4 are highly discriminative, however, the results are
very similar both for the number of matches and the probability
of a good match. We use order 3 to compute scores, since it
achieves similar behavior when compared to order 4 with less
points in the LMC. The chosen score was 11 since the number of
correct matches is substantially superior than the incorrect
matches and it is a good score for both synthetic and underwater
cases (from the score of 9 of the synthetic images, there is only a
small reduction in the number of matches to 0.84).

5.3.3. Number of seeds
We use the previous results to compute seeds for Algorithm 1.

We intend to choose k seeds such that the resulting matches are
optimized. Particularly, the k seeds should be mostly correct seeds,
so they were randomly chosen from matches agreeing with our
previous choice of order 3 and score 11. The influence of number
k of seeds is shown in Fig. 17. The matching results become better
as the number of seeds increases, however, the gain practically sta-
bilizes after 10 seeds. Therefore, approximately 10 seeds suffice for
the images in our dataset.

It is still possible that incorrect seeds are chosen through the
fixed parameters. We conducted an experiment to evaluate the
influence of incorrect seeds among 10 selected seeds. In order to
do that, subsets of 10 seeds were divided between kc correct seeds
and ki incorrect seeds. The correct seeds were estimated as in the
last experiment and the incorrect seeds were obtained by ran-
domly choosing interest points in the two images and forming a
seed with them. At least one correct correspondence is needed,
therefore, we varied the number of correct seeds from
kc ¼ 1;2; . . . ;10 and, consequently, the number of incorrect seeds
in a set of 10 seeds is given as ki ¼ 10� kc . The experiment was
performed with the underwater dataset since this is the one with
the largest variation for the seeds. We show results in Fig. 18,
where the cardinality of the subsets of 10 images is discriminated
as ðkc : kiÞ. The result of one correct seed in ten, ð1 : 9Þ, achieves
similar result as when choosing only one seed, as in Fig. 17b. The
other results fluctuate between the previous result and when 10
seeds are correct. This suggests that the method performs well
even when incorrect seeds are present in the input set for the
matching algorithm.
5.4. Matching results

In this section, we show that our structural approach is more
robust to find matches than an approach without structural
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Fig. 19. Average results for all the test images using HGV, HOG and SIFT descriptors.
The recall of the LMC-based matching is higher, independent of the descriptor,
when compared to the results obtained using the 1-NN matching. The conflicts of
descriptors are broken with the LMC neighborhood restriction, allowing to obtain
more correct correspondences.

Fig. 20. Examples of interest points correctly corresponded due to the use of the
LMC (solid lines) but incorrectly corresponded by using the nearest neighbor
approach (dashed lines).
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information (1-NN). To select the seeds for our method, we ran-
domly choose an interest point in one image and match it in the
second image using the 1-NN approach. The score for the match
is computed by using LMC of order 3 and, if it is greater than or
equal to 11, the match will be kept as a seed. The process is
repeated until a set of 20 seeds (ideal number from the previous
section) is acquired. The seeds computed in such a manner are
the inputs for Algorithm 1.

The graphs in Fig. 19 show the average results for all the test
images. The nearest neighbor and LMC matching algorithms are
performed using three different descriptors: a simple histogram
of gray values (referred to as HGV), HOG descriptor and SIFT
descriptor. The first two descriptors are computed within a region
of 17� 17 pixels and the latter within a region of 16� 16 pixels.
The HOG is normalized with the L-norm, whereas SIFT uses a
two-step illumination normalization. We show that the
LMC-guided matching is able to improve the results for weak
descriptors (HGV) and strong descriptors (HOG, SIFT). When using
the LMC-based match, the respective curve for a given descriptor is
pushed towards the top-left corner to a greater degree when com-
pared to the nearest neighbor matching and the same descriptor.

The HGV is considered to obtain a baseline for the results. Since
the descriptor is weak, many incorrect correspondences are
expected, specially for the challenging images such as the ones
from the underwater dataset. The lines of the matching driven by
the LMC show the improvement in correct matches when com-
pared to the nearest neighbor approach.

The HOG and SIFT descriptors, as expected, improve the results
for both methods (ours and nearest neighbor) when compared to
the HGV. However, the LMC method is still able to obtain further
improvement for the matches. Such a behavior reflects the proper-
ties of the structure-based matching carried out by our method.
The number of correct matches increases since conflicts of descrip-
tors (interest points in different regions of an image but with close
descriptors) are avoided with the neighborhood restriction to grow
matches. Such behavior can be noticed in Fig. 20, where the solid
lines show examples of matches that were correctly computed
using the LMC-based algorithm while incorrectly corresponded
with 1-NN.

The results show that LMC is a neighborhood relation that can
be used to support image processing tasks. The tested correspon-
dence of the images shows a particular case in which exploring
the LMC helps traditional approaches. The proposed correspon-
dence algorithm is limited to the types of images and transforma-
tions present in the experimented synthetic and underwater
datasets. Rotations between images could also be evaluated with
the current method since the matching between LMCs is not
dependent on the image type and the score could be adapted to
consider the direction of the central points in LMCs to find the hor-
izontal base line. Scale transformations is still a challenge that
would require further investigation on computing multiscale
Morse complexes and neighborhood relations.

The complexity of the correspondence algorithm can be divided
into three steps: the construction of a heap for the 1-NN used to
find seeds, the process of actually finding seeds, and the matching
given by Algorithm 1. The heap construction can be done in linear
time on the number of interest points. The results on score and
seeds suggest that we have more than a 50% chance of finding a
seed at each random run of the 1-NN. This expectation has been
confirmed by our experiments and, therefore, for 10 seeds we
expect the process to run in Oðk log nÞ with k approximately 20
runs of the 1-NN search and n features in an LMC. Finally, the com-
putation of correspondences empirically suggests a linear time
algorithm for small orders of the LMC. As the order increases, how-
ever, the constant multiplying the linear function can produce
drastic augments on the computational time. The method is
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bounded by the SVD algorithm and, therefore, would take OðMN2Þ
time in worst case if we had LMCs with all the interest points in the
images, M points in the first image and N points in the second. The
computation of the Morse complex can be performed in linear time
on the number of cells in the 2-dimensional cell complex, as dis-
cussed in Robins et al. [41]. The algorithm has as input a filtration
of the complex which involves a sorting of the 0-cells. This could
bound the algorithm in Oðm log mÞ for a complex with m 0-cells,
however, alternatively, if the range of pixel values is properly lim-
ited, a linear sorting algorithm can be used, maintaining the linear
complexity.
6. Conclusions

We have presented a topological operator, the Local Morse
Context, to obtain neighborhoods of interest points. The LMC has
been applied to find correspondences between interest points of
stereo image pairs and also to compute a measure to quantify
the confidence of matched points. This measure, denominated
score, is effective for selecting matched pairs as seeds from which
the number of matches is grown.

The matching algorithm explores the LMC neighborhood to pro-
duce correspondences in images agreeing with local proximity
restrictions. As a consequence, the use of LMC avoids incorrect
matches when the limitations of local descriptors do not allow a
discrimination between various interest points. Finally, the LMC
makes it possible to explore the topological relations between
interest points in a general way that can be used for different types
of images and applications.

The presented discrete Morse complexes are computed at a
specific scale. We intend to study how to compute and model
the Morse complexes such that the neighborhood can be general-
ized to multiple scales and applied to the correspondence of
images under scale transformations. The persistent homology pro-
vides means of measuring the importance of topological features
and it can be used to exploit such hierarchies of complexes.

The presented score measure is dependent on the definition of a
geometrical property shared by the type of images under investiga-
tion. It would be interesting to define a more general score mea-
sure. There are some graph matching techniques based on
edition distances that could be experimented to measure similari-
ties between LMCs.
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