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Abstract Tensors are of great interest to many applications in erging and in
medical imaging, but a proper analysis and visualizatiomaies challenging. It al-
ready has been shown that, by employing the metaphor of & fstbucture, tensor
data can be visualized precisely on surfaces where the tgendirections in the
plane are illustrated as thread-like structures. Thisdéad continuous visualiza-
tion of most salient features of the tensor data set.

We introduce a novel approach to compute such a visualiz&toon tensor field
data that is motivated by image space line integral coniaiyt.IC). Although our
approach can be applied to arbitrary, non-self-intersgaurfaces, the main focus
lies on special surfaces following important featureshsagsurfaces aligned to the
neural pathways in the human brain. By adding a postpraugss$ep, we are able
to enhance the visual quality of the results, which impregeption of the major
patterns.

1 Motivation and Related Wor k

Since the introduction of tensor lines and hyperstreamlifig], there have been
many research efforts directed at the continuous reprasentof tensor fields, in-
cluding research on tensor field topology [11, 23, 22]. Zhand Pang introduced
HyperLIC [31], which makes it possible to display a singlgezidirection of a tensor
field in a continuous manner by smoothing a noise texturegglaegral lines, while

neglecting secondary directions. Recent approachesualidze Lagrangian struc-
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tures on tensor fields [12] provide information on one chdsesor direction and
are especially useful for diffusion tensor data, where tlénnensor direction can
be correlated to neural fibers or muscular structures, velseree secondary direc-
tion only plays a minor role. More recently, Dick et al. [7]kdished an interactive
approach to visualize a volumetric tensor field for implaanping.

Hotz et al. [13] introduced Physically Based Methods (PBdl) tensor field
visualization in 2004 as a means to visualize stress anith $éiasors arising in ge-
omechanics. A positive-definite metric that has the sameldgjical structure as
the tensor field is defined and visualized using a texturedapproach resembling
LIC [4]. Besides other information, eigenvalues of the ricatan be encoded by free
parameters of the texture definition, such as the remairgloy space. Whereas the
method’s implementation for parameterizable surfacetsateatopologically equiv-
alent to discs or spheres is straightforward, implememtatfor arbitrary surfaces
remains computationally challenging. In 2009, Hotz et &d][enhanced their ap-
proach to isosurfaces in three-dimensional tensor fieldbrée-dimensional noise
texture is computed in the data set and a convolution is pagd along integral
lines tangential to the eigenvector field. LIC has been usegdctor field visualiza-
tion methods to imitat&chlieren patterns on surfaces that are generated in experi-
ments where a thin film of oil is applied to surfaces, whichvglpatterns caused by
the air flow. In vector field visualization, image space LIGimethod to compute
Schlieren-like textures in image space [27, 28, 17, 9], intended faydaand non-
parameterized geometries. Besides the non-trivial agpdic of image space LIC to
tensor data, image space LIC has certain other drawbackslyM&cause the noise
pattern is defined in image space, it does not follow the meaveraf the surface
and, therefore, during user interaction, the three-diiogiasimpression is lost. A
simple method proposed to circumvent this problem is arimgahe texture pattern
by applying randomized trigonometric functions to the inpaise. Weiskopf and
Ertl [26] solved this problem for vector field visualizatitny generating a three-
dimensional texture that is scaled appropriately in plajsipace.

In contrast to other real-time tensor-field visualizatitike [30], we developed
and implemented an algorithm similar to the original PBM fartarbitrary non-
intersecting surfaces in image space. Our algorithm caoeat interactive frame
rates for large data sets on current desktop PCs. We ovetbendeawbacks present
in image space LIC implementations by defining a fixed pararnzettion on the
surface. Thus, we do not require a three-dimensional neigerre representation
defined at sub-voxel resolution for the data set. Our appréacapable of main-
taining local coherence of the texture pattern betweendsawhen (1) transform-
ing, rotating, or scaling the visualization, (2) changihg surface by, e.g., changing
isovalues or sweeping the surface through space, and (8ptitathe level of de-
tail. In addition, we implemented special application-eleglent modes to ensure our
method integrates well with existing techniques. Besités te also apply several
postprocessing steps to further increase the visual guaid clarity of the shown
structures.
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Fig. 1 Flowchartindicating the four major steps of the algorithpmoj ection, which transforms the
data set in an image space representation and producesttalenioise texture on the geometry;
silhouette detection, required for the advection step and the final renderautyection, which
produces the two eigenvector texturesmpositing, which combines intermediate textures; and
thepostprocessing, which adds additional shading and improves the percepuadity of the final
visualization. Between consecutive steps, the data isfeaed using textures.

2 Method

We employ a multi-pass rendering technique that consistiv@imajor rendering
passes as outlined in Figure 1. The complete pipeline isgss®d in one single
render-frame and offscreen. In the following sections wecdbe each single step
in our pipeline and imply that all operations are done on apbezl basis, if not
denoted differently. We additionally rely on Figure 1 in mpaections, as this figure
shows all needed inputs and generated outputs of each step.

After generating the basic input textures once, the firss padculates and
projects all required data into image space. This encomepatt®e eigenvector-
decomposition and projection, the noise projection to thréase, lighting and fur-
ther color-mapping. Using the calculated eigenvaluesfréuetional anisotropy is
calculated as well. It is used later for clipping and colapping. Pass two per-
forms a silhouette detection on the depth-buffer if the szad geometry. That is
used to guarantee integrity of the advection image, conaidaemultiple iterations
of pass three. Pass three uses the projected eigenvecsonséw the projected noise
on the surface ik iterations along the eigenvectors. Eventually, pass foooses
the intermediate textures in an image, which is then pastgssed by step five and
rendered on-screen.

2.1 Initial Noise Texture Generation

In contrast to standard LIC approaches, to achieve a propealrepresentation of
the data, high-frequency noise textures, such as whitenais not suitable for the
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compositing of multiple textures. Therefore, we compute ithitial noise texture
using the reaction diffusion scheme first introduced by AwfR4]. It simulates the
mixture of two reacting chemicals, which leads to larger $mboth “spots” that
are randomly and almost uniquely distributed (cf. Figurddht). This can be pre-
computed on the CPU once. The created texture can then béansgicconsecutive
frames. For the discrete case, the governing equations are:

Agij=F(i,])+Da- (a1, + a1 +aj+1+a-1—4-a),
Abi j =G(i, )+ Dp- (biy1j+bi_1j+bijr1+bij—1—4-bj),where (1)
F(i,j) =s(16—a-bij) andG(i, j) = s(a;j - bi,j — bij — Bij)-

Here, we assume continuous boundary conditions to obtagamless texture in
both directions. The scalarallows one to control the size of the spots where a
smaller value of leads to larger spots. The constabtsandDy, are the diffusion
constants of each chemical. We iBg= 0.125 andDy, = 0.031 to create the input
textures. We gained both constants empirically. They dirécfluence the shape
and density of the created spots.

2.2 Projection Step

The first step of our algorithm is the projection pass. Itsppse is to project the
geometry as well as the tensorial data to image space. Besige the initial noise
texture created earlier is mapped to the surface. After tbggtion step, the ten-
sors, the noise and the rendered geometry are availableaigeispace and can be
used by the consecutive passes. As the next steps are aliogdn image space,
we state that all consecutive steps are done on a per-pised. bEhe operations
of the projection step are done on a per-fragment basis. thelprojection of the
geometry is done vertex-wise.

2.2.1 Projection into Image Space

In the first step, we project the data into image space by rarglthe surface using

the default OpenGL rendering pipeline. Notably, the swefdoes not need to be
represented by a surface mesh. Any other representatibprthades proper depth
and surface normal information works just as well (e.g.;cagting methods for

implicit surfaces, cf. Knoll et al. [16]). In the same reniderstep, the tensor field is
transformed from world space to object space, i.e., eadwotdn that is interpolated

at the point on the surface from the surrounding two- or ttieeensional tensor

field is projected onto the surface by

T=P.T-PT, (2)
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with a matrixP defined using the surface nornmeds

1-nZ —nyny —n,ny
P=|-nay1-nZ —nny | . (3)
—nyn; —nyn; 1—n?

The camera viewing system configuration and the availabieescresolution
imply a super- or sub-sampling of the data. We obtain anpoleted surface tensor
in every pixel, which is decomposed into the eigenvectgeevalue representation
using a method derived from the one presented by Hasan et(3).dnly using
iteration-free math functions. This causes a tremendocal@@tion on the GPU.
With this method, we calculate the three real-valued, @tinal eigenvectorg,,
and the corresponding eigenvalugs> A, > As. In our method, we are only using
the first two eigenvectors, showing the two main directidrige eigenvectors, still
defined in object space, are projected into image space tisngame projection
matricedMy andMp used for projecting the geometry to image space. Theselysual
are the standandhodel view andprojection matrices OpenGL offers:

\/Ai =Mp x My x vy, with (i € 1,2). 4)

After the projection, the two eigenvectors are not necégsathogonal anymore.

2.2.2 Noise Texture Transformation

Mapping the initial texture to the geometry is a difficult aaoplication-dependent
task. Even though there exist methods to parameterizeacgthey employ restric-
tions to the surface (such as being isomorphic to discs @arsgh, require additional
storage for texture atlases (cf. [19, 15]) and, in geneeguire additional and often
time-consuming pre-processing.

Another solution, proposed by Turk et al. [25], calculates teaction diffusion
texture directly on the surface. A major disadvantage o théthod is the compu-
tational complexity. Even though these approaches proafid®st distortion-free
texture representations, isosurfaces, for example, magistoof a large amount of
unstructured primitives, which increases the pre-pranggsne tremendously.

Whereas previously published approaches for image spaceeither use pa-
rameterized surfaces to apply the initial noise patterhésstirface or use locally or
globally defined three-dimensional textures [26], we definémplicit parameter-
ization of the surface that provides an appropriate mapgpfrtbe noise texture to
the surface.

For our purpose, a simple, yet fast and flexible mappingegsats used. We
implicitly split the world space in voxels of equal size. Beevoxels fill the bounding
volume of the geometry but are never created explicitly. 3ggmless noise texture
is mapped onto each side of each voxel exactly once (no }ilihgis creates a
seamless mapping of the noise onto the surface of any cathblick of voxels.
During rendering, each poimptof the surface can then be classified to belong to one
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Fig. 2 lllustration of the reaction diffusion texture used (righhd the noise texture mapped to
geometry (left).

Fig. 3 Comparison of two different voxel sizes during noise magpirhis demonstrates the pos-
sibility for dynamic refinement of the input noise to achielfferent levels of detail.

certain voxel. This can be interpreted as discretizatiotnefsurface with the help
of the implicit voxels. The normal gt on the surface is then used to find the most
similar side of the voxel associated with Therefore, the scalar product between
the surface normal and the normals of each side are comganed.the side-plane
is found, the following table determines the poin'texture coordinates:

Side-normal | Texture coordinates
(1,0,0) or (—1,0,0) (py, P2)
(07 17 0) or (Oa 717 0) (pX7 pZ)
(07 07 1) or (Oa Oa 71) (pX7 p}’)

Please note, that we assume the texture coordinates to bedl@fia wrapped and
continuously defined coordinate system, which is commongar@L. This allows
the seamless tiling of the input noise texture on each vaxdéase, which then is
mapped to the surface. This can be interpreted as an orghfugnarojection of the
voxel side plane onto the surface along the plane’s nornwbre

Regardless of its simplicity, this method supports a fastféxible parameteri-
zation of the surface space that only introduces irrelegatortions (cf. Figure 2),
which vanish during the advection step.
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By changing the size of voxels during the calculation, défe frequencies of
patterns can easily be produced and projected onto the ggombis capability
allows one to change the resolution of the texture as redjfiineautomatic texture
refinement when zooming. A comparison of two different lewa detail is shown
in Figure 3.

2.3 Silhouette Detection

Following the projection pass, the silhouette detectiosspases the rendered sur-
face’s depth as input. To avoid advection over geometricidaties, a silhouette of
the object is required to stop advection in these areas Qtfiprwise, tensor advec-
tion would lead to a constant flow of “particles” across sceffooundaries which
makes the surface’s geometry and topology unrecognizable.

A standard three-by-three Laplacian filter, defined by thevotution mask

010
1-41 (5)
010

applied to the depth values followed by thresholding, hasgm to be suitable for
our purposes. The silhouette imagéor each pixel(x,y) is then provided to the
next pass.

2.4 Advection

We have discussed how to project the geometry and the comdsp tensor field

to image space. With the prepared image space eigenvecidrtha input noise

texture on the geometry, the advection can be done. Anati@oritant input is the

advected image of the previous advection pass, createmiphine last render-frame.
For the first frame, the geometry mapped noise is used aalindtiion.

In the advection step, an Euler integration is applied td vetctor fields sepa-
rately. In our case, we do not calculate streamlines at easttign of both vector
fields, as normally done in LIC. We directly advect the noigauit texture with the
given vector fields, which provides the same results asliofitiéring the data along
pre-computed streamlines. During the advection passrévequs advection results
are, again, advected along the both eigenvector-fieldsa@ha Each pass thereby
only does one step along the two vector-fields. This deciaias based on the fact
that massively parallel architectures like modern GPUshte to perform this task
in parallel for each pixel several hundred times per second.

An important abortion-criteria here is the silhouette imag If an edge is
crossed, integration is stopped. The advection iteratamaiso be stopped if the
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Fig. 4 Advection texture after ten iterations. Left: red chanr@itaining advected noise along the
eigenvectors/h; Right: green channel containing the advected noise almmgegcond eigenvectors

\/)\2'

advection reaches a saturation; i.e. the resulting addéuizges do not differ from
the previous ones. Due to this saturation effect, we do reothesiteration courk as
abortion criterion. Since the eigenvectors do not have antation, the advection
needs to be done in direction dj and \/ and forv’ and -V,  respectively.
At this point, we have two advected |mages for each elgenvet ese get com-
posited equally to for both eigenvectors at this pixel. Remnore, the advection
results for each eigenvector again get blended with thetinpise. The blending
ratio between noise and the advected images determinesrigmtlze results are.
Lower ratios produce crispier images. Higher ratios preduore smooth and more
smeared images. Throughout this paper, we use a ratfg of

The resulting images, one for each eigenvector, are theth asenput during
the next render-frame. They can be stored in one singlerextudifferent color
channels. We use the red color channel for the first eigeoraod the green color
channel for the second one. Figure 4 shows the resultingamafithe advection
step after ten iteration& & 10). For later reference, we denote these advected im-
ages aftek steps W|thAk andAk The number of iterationk hereby equals the
number of rendered frames as we do only one advection stefpapee.

2.5 Compositing

In a subsequent rendering pass, an initial fabric-likeuiexis composed. For the
sake of simplicity and the limitations of some graphics lbisamwe split the final
image creation step in an initial compositing followed byasiprocessing step de-
scribed in the next section. The compositing step combhreadvection resultﬂrx';1

andA'; into one image, whereas the postprocessor mainly imprasaahquality.

The input of the compositing step are the both advected |mA§eandAk2, the
depth-buffer, the silhouetteas well as the light and colormap information from the
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projection pass. On the GPU, these inputs get composed fm&ié&RGB triple for
each pixel:

R ligh
=——%2- te+light,
8- (A4)?
(1—r)-Ay (6)
G= 7+e+llght
8- (A )?
B =e+light.

Equation 6 is a weighting function between the two advectetjies for both eigen-

Fig. 5 The composited image produced by the compositing shadbrligiiting. Left: the whole
geometry. Right: a zoomed part of the geometry to show thiebsitirry fabric structure on the
surface.

vectors. The scalar factois used to blend between the two tensor directions. If both
directions are equally important, a value ob@&nsures an equal blending of both
directions. To explain the above compositing scheme, weisirgy the red compo-
nent as an example. The red color should represent the mesortdirection. We
therefore reduce the intensity of the second eigenvectagdmk using the over-

emphasized first eigenvector ma@‘j& To furthermore emphaS|ze the influence of
a high intensity in the advected image for the first eigeraethe denominator is
squared. This way, pixels with a high intensity in the firgtegivector direction get
a high red intensity. This is done vice versa for the greembl The compositing
implicitly utilizes the clamping td0, 1] which is done for colors on the GPU. This
approach creates a mesh resembling the tensor field’swateudbp reduce the effect
of light sources on the color coding, we use a separate tigtitinctionlight that,
while manipulating the intensity, does not affect the baslercof the mesh struc-
ture. The geometry’s shape is furthermore emphasized ttsingjlhouette image
Even though Blinn-Phong shading [2] provides the requireptil cues, additional
emphasis of the third dimension using depth-enhancingr amding has proven



10 Sebastian Eichelbaum, Mario Hlawitschka, Bernd Hamand,Gerik Scheuermann

to provide a better overall understanding of the data [5ksEhtechniques can be
incorporated in our compositing scheme easily.

2.6 Postprocessing

Additional filters can be applied to the composed image, sisctontrast enhance-
ment or sharpening filters, which are commonly used in vefadtd LIC [26, 9].
Figure 5 shows the result of Equation 6 combined with Blifmo#y shading. The
results still look blurry and justify the need for additidpastprocessing.

Bump mapping, first introduced by Blinn [3] to simulate thhdienensionality in
planar surfaces, can be used to improve spatial percepitiiwe dabric surface. As
bump mapping is normally computed in world space, wherehhsetdimensional
tangent space is known, the textured surface would be mdjirr world space,
whereas our texture is parameterized for use in image spearesforming the mod-
ified normal, which is required for bump mapping and, in fdefpends on the gradi-
entinformation on the surface, from image space back todagphce is not a trivial
task, especially when using a perspective projection. 8bes, we use a modified
approach that can be applied in image space only.

Bump mapping requires the surface normal at each gainy of the surface,
which can be obtained using the gradient information on géx#l of the surface
in image space:

g(x.y) = [[B(R+G)(x.y)]- ()

The resulting two-dimensional vectgfx,y) describes the gradient on the image
plane using each pixel’s intensity. The blue color chanseldt used as it does not
contain relevant information besides lighting and edgds.dlso worth noting that
we exclude the light%y and edge informatiosyy from gradient calculation, as
we do lighting using bump mapping. Using this gradient, tee surface normal is
a weighted sum of the surface normal and the gradient, anskid for calculating
Phong lighting%xy as seen in Figure 6.

Figure 6 (right) shows the additional scaling of the red areg color channels
by the original color intensities, to lead to a more fabik@impression of the lines.
Equation 8 shows this in more detail:

Rb(X7 y) = <%}X,y(R(X? y)G(X7 y) + Rz(xa y)) + e5<,y+ l Ight (gx-,)/)a

8
Go(X.Y) = Zxy(R(X,Y)G(X.y) + G*(X,Y)) + &xy + light (Zy). ®

With the help of bump mapping, we achieve a better spatiat@sgion of the
fabric-like pattern. Besides this, postprocessing filtars help to avoid blurry struc-
tures.

A further visual improvement can be achieved by interpgetime structure on
the surface as streamtubes [29] along the surface. Therafoapproach similar to
the ones in [18, 20] is appropriate to create the visual etiestreamtubes on the
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Fig.6 The final image produced by the postprocessing shader inicatidn with bump mapping,
the geometry’s Phong shading and combined edges. Lefdatdibump mapping. Right: the same
zoomed part of the original geometry to show the effect ofveng the resulting Phong intensities
by the originalR(x,y) andG(x,y) intensities. This approach creates a more fabric-like @gion
that can be misunderstood as rotating ribbons similar easirribbons.

geometry’s surface, without actually creating tubes.tFinee need to have some
kind of tangential coordinate system, similar to the onededegfor bump mapping.
Since our bump mapping is done in image space, the normakadfithge plane is
(0,0,1)T. The eigenvectorv,;\1 andv)_in Equation 4 from the tensor field in image
space can be used as the tangent for each field. These tadgente the direction
of the tube along the surface and, together with the norn&dine the binormal
vector, which is nearly equal to the gradient vector. In ficag it normally is not
exactly the same. The binormafor each eigenvector fieldis defined as:

bi = (0,0,1)T x v, with i € {0,1}. (9)

These binormals can be calculated for each point on thecgurfa finally determine
the point’s actual position on the tube, described by therm'gctors/)\i, one has to
find the border of the fabric structure that has been createldebcompositing step.
Mathematically, this can be expressed in this way:

B ={s|R(sh1) < eAse R} A (ap,an) € Z(B), with
ap =min{slse BAs> 0} (10)
an =max{sse BAs< 0}.

In other words, we find the smallest scaling factaysindap which scale the binor-
mal vectordh; andb, in both directions, so that they point on a area below a given
thresholde in the composited image from the prior step, therefore jrognto the
border of the tube. As the mapping functidRendG, from Equation 6, only need
two-dimensional positionsandy, the binormal’sc andy-components are used and
thez-component is ignored, as it is always zero. The same faajoasda, for the
second eigenvector field are calculated using the greenciaémnel of the compos-
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ited image, which are used in the same way as described belmntler the tubes
for the second eigenvector field. The width of the tube at argpoint is defined by
ap+ an. The width of the tube is set in relation with the facégrto find the actual
position of the current poirx,y) on the tube by using:

__ %
~ aptan

p €[0,1], (11)

which finally is squared to describe the round surface of a:tub

_[(@-2p? ifp>0 . o
r_{—(l—Zp)Z if p<0 with ratio € [—1,1]. (12)
The value of describes the ratio between the normal completely on threelaith

a zero z-component) and the normal completely pointing tde/the camera (with

a z-component of one):
n=(1-r)(0,0,1)" +rhy (13)

The normaln is used to calculate the Phong shading on the surface andigesd
the tube-like effect with proper spatial impression on théace, as can be seen in
Figure 7.

The artifacts seen in Figure 7 result from the local approaehare using to
calculate the tubes. As we do not integrate along the eiggor+&eld, there may be
discontinuities along a tube in the produced image. Theralap artifacts caused by
a blurry input field, where borders cannot be found clearlyt, Bince the frequency
of the fabric structure is normally much higher, these éfface not visible anymore,
as can be seen in Figure 7, left.

Fig. 7 Left: Interpreting the final image from Figure 5 as strearetiblong the geometry’s sur-
face, and lighting them accordingly, results in a less Blsurface. Right: zoomed part of the left
geometry to show the tube effect. Although there are plehgrtifacts in the zoomed image, they
do not influence the overall impression of images not zoonsethach. Especially, such strongly
zoomed images are not useful for gathering an overview dwetensor field’s structure.
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2.7 Implementation

The implementation of the pipeline shown in Figure 1 is ginaforward. The figure
clearly shows the input and output textures of each step fagid éxecution order.
The whole pipeline is implemented using OpenGL and franfebobjects (FBO),
which allow the efficient offscreen rendering and image splased processing
we need. The projection step is the beginning of the pipediné the only step
which is not in image space. For the consecutive steps, wierenquad, filling the
whole viewport of the FBO. The inputs and outputs are themidaas textures to
the FBO and the quad respectively. Since texture spaceitetian the hardware, it
is important to store as much information as possible in ¢éedre (four channels
per texture available). The steps itself are all implem@atefragment shaders using
GLSL. This way, we can work on a per-pixel basis easily. Trene only some
implementation specifics we want to mention here.

Projection Step

Our implementation is not limited to a special kind of geomdt is able to handle
almost every tensor field defined on a surface. Itis, for exayppssible to calculate
an isosurface on a derived scalar metric, like fraction&@atropy, or on a second
data set to generate a surface in a three-dimensional dataicloOther methods
include hyper-stream surfaces [6], wrapped streamlingof8domain-dependent
methods like dissection-like surfaces presented in [1¢ dihly requirement for the
surface is that it is non-self-intersecting and that smomttmals are provided as
they are required for the projection step and for propetilgh

As the tensors are symmetric, it is sufficient to transfefflsiating-point values
per vertex to the GPU. In our case, two three-dimensionalitexcoordinates are
used per vertex to upload the tensor information along vaiggeometry. Assuming
the tensofT is available on the GPU, it is possible to map the two mainatioas
to the surface described by the normalt the current vertex using Equation 2. This
projection is implemented in a per-vertex manner in theexeshader. In contrast, to
ensure proper interpolation, eigenvalue decompositiaheagenvector calculation
together with image space projection need to be done in dggrfent shader. Since
the eigenvectors are without orientation, it is possibleaee sign flips between ad-
jacent vertices. If the interpolation takes place afterdigenvector decomposition,
these sign changes can render the interpolation useles&igénvectors’}\l andv’)\2
need to be scaled since textures are used for transportetiere each value must
be in the interval0, 1]. To simplify further data handling and storage on the GPU,
we scale the eigenvectors as follows:

[IVl[eo = max{ [V, [y} (14)

Y
AV Nl

withie{1,2}, and |V} [lo+#0 (15)
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The maximum norml{,-norm) ensures that one component of the eigenvector is 1
or —1 and, therefore, one avoids numerical instabilities magisithen limited storage
precision is available, and can use memory-efficient efigihtextures. The special
case||v’)\i |l = 0 only appears when the surface normal and the eigenvedtaripo

the same direction. This case needs to be handled in thershade

Advection Step

During each advection iteration, the input and output texneed to be switched.
This way, the advection result of the previous advectioratten can be used as
input without the need to allocate and deallocate a sepinetae for each iteration.

3 Results

We have introduced a method to create a fabric-like surfassar LIC in image
space, similar to the one introduced in [13]. We used ideam fi17] to transform
the algorithm into image space. Our implementation, udhig method, is able to
reach frame rates high enough for real-time user intenaciibe only bottleneck is
the hardware’s ability to render large and triangle-ricbrgetry. All further steps
can be done in constant time, see Table 1.

3.1 Artificial Test Data Sets

We first applied our method to artificial test data sets thaeltmmplex topology: a
torus, the Bretzel5, and the Tangle data set (cf. [16]), @dfas implicit surfaces:

(1= VX +y2)(1— /X2 +y2)+7—-0.125=0, (16)
(%4 .25%y? — 1) * (.25 X2 +y* —1))2+Z—-0.1=0, and (17)
X — 55X+ Yy —5xy?+ 7 —5x 2 +11.8+w=0. (18)

We used the Laplacian on the surfaces as tensor fields. Thisrelésplayed in
Figure 8 show that neither the topology nor our artificialgmaeterization of the
input noise texture influences the quality of the final remder
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Fig. 8 Analytic test data sets. We applied our method to isosusfarel the scalar field’s Lapla-
cian to demonstrate the suitability for complicated swegaShown are the final images using our
method for a sphere, torus, Tangle, and Bretzel5 data sea{iegs 16—-18).

3.2 Maodification for Medical Data Processing

Even though many higher-order methods have been proposedodcanner, time,
and cost limitations, second-order tensor data is still idamt in clinical applica-
tion. Medical second-order diffusion tensor data setsdiffom engineering data
sets because they indicate one major direction whereastimmdary and ternary
directions only provide information in areas where the mdjecection is not well-
defined, i.e., the fractional anisotropy—a measure foréhedr shape—is low. Al-
most spherical tensors, which indicate isotropic diffasimccur in areas where mul-
tiple fiber bundles traverse a single voxel of the measuréoremhen no directional
structures are present. Therefore, we modulate the cotbngasing additional in-
formation: In areas where one fiber direction dominates, mhg display this major
direction using the standard color coding for medical data,swvhere X, y, and z
alignment are displayed in red, green, and blue, respégtiveareas where a sec-
ondary direction in the plane exists, we display this infation as well but omit the
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Fig. 9 An axial slice through a human brain: Corpus callosum (C&j)rpyramidal tract (blue),
and parts of the cinguli (green in front and behind the CCyagible. The main direction in three-
dimensional space is indicated by the RGB color map, whedeingicates lateral (left—right),
green anterior—posterior, and blue superior—inferioeation. The left—right structure of the CC
can clearly be seen in its center, whereas color and patidicaite uncertainty towards the outer
parts. The same is true for the cinguli’s anterior—postestiucture. As seen from the blue color, the
pyramidal tract is almost perpendicular to the chosen piamtk therefore, secondary and ternary
eigenvectors dominate the visualization. Alternativelg,could easily fade out those out-of-plane
structures in cases where they distract the user.

secondary color coding and display the secondary direatignay-scale rendering
mode and always below the primary direction (cf. Figure 1. use the method
of Anwander et al. [1] to extract surfaces that are, whereipées tangential to the
fiber directions. Hence, we can guarantee that the projeeti@r introduced by our
method in the surface’s domain remains small. Even in ardesenthe fractional
anisotropy is low and the color coding does no longer prodidectional informa-

tion, such as in some parts of the pyramidal tract in Figureti® texture pattern
still provides this information.
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Fig. 10 Diffusion tensor data set of a human brain. We employed thihodeby Anwander et
al. [1] to extract a surface following neural fibers and agghlour method with an alternative color
coding that is more suitable and can be incorporated moily @t® medical visualization tools.

3.3 Mechanical Datasets

Our approach is not only applicable to medical datasetst bah also be applied to
many other tensor data sets. Figures 11 and 12 show a slicesiarthquake dataset
and an analytical strain tensor field. The analytical datassine well-known sin-
gle point load data set, where a single infinitesimally srpaiht source pushes
on an infinite surface. The forces and distortions insideothiect are represented
by stress and strain tensors, which are symmetric, secatet-tensors. The earth-
quake data set is a simulation of a single concrete pile id gpbund excited by a
measured earthquake pattern from the Kyoto earthquakgi¢efre 12). As shown,
the material stress tensors, are defined on an irregular\¢edextracted a plane
perpendicular to the pile and show the tensor informaticth&t plane. Due to the
time-dependent nature of the simulation, static imagesjaire complex.
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Fig. 11 A slice in the well-known single point load data set, showiing symmetric strain tensor
at the surface of the slice.

Fig. 12 A concrete pile in solid ground. Left: the original grid show purple. Right: a slice of
the dataset showing the symmetric part of the tensor field.

3.4 Performance

As indicated before, the only “bottleneck” in the visuatina pipeline is the
strongly geometry-dependent projection step. Since tifaseineeds to be rendered
repeatedly in case of user interaction, the performancesunes of our method con-
sider repeated rendering of the geometry. The frame rate ggibmetry not being
moved and, therefore, making the projection step and the @egction step unnec-
essary, is considerably higher. The advection step can be dltiple times per
frame. This reduces the number of frames needed until thectidn is saturated.
To ensure high frame-rates and smooth user-interactiomonenly one advection
step per frame. To make the frame rates in the following s@btamparable, user
interaction is assumed and, therefore, rendering a singted always consists of
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e One projection step, including geometry rendering;
e one edge detection pass;

e three advection iterations; and

e ONe output processing pass.

As seen in the previous sections, fragments not belongitigetgeometry are dis-
carded as soon as possible without using deferred shadimgalBo leads to perfor-
mance gain in advection and output processing. In Table é&legtion of data sets
with their corresponding number of triangles and tensaedisied. The frame rates
shown were obtained on an AMD Athlon(tm) 64 X2 Dual Core Pssce 3800+
(512K L2 Cache) with a NVIDIA G80 GPU (GeForce 8800 GTS) an@MB of
graphics memory at a resolution of 102468 pixels.

Figure]Nb TrianglegNb Tensor$fps|fps (Phong only)o Geometry Share

10 41472 63075 |32 61 72%
5 58624 88803 (30 60 69%
9 571776 861981 |14 16 90%

Tablel Frames per second (fps) for different data sets with givenbrar of triangles and num-
bers of tensors. The frame rates are compared to simpleriegdsf the geometry using Phong
shading. The frame rates were obtained for an AMD Athlon@#X2 Dual Core Processor 3800+
(512K L2 Cache) with an NVIDIA G80 GPU (GeForce 8800 GTS) addMB of graphics mem-
ory at a resolution of 1024 768 pixels. The geometry share relates the time used by th¢ GP
to rasterize the geometry to the overall rendering time chvltiontains all steps of the pipeline.
The time used to render the geometry clearly dominates tigeriang times and reaches up to 90
percent of the overall rendering time even for medium-sgeometries.

The assumption that geometry rendering with projectiohésweakest compo-
nent in this pipeline and that edge detection, advectiod cautput processing per-
form at a data-independent frame rate is confirmed by thednates shown in Ta-
ble 1. It confirms that for large geometries, rendering trengetry alone is the dom-
inant component. Since the vertex-wise calculations dupirojection are limited
to tensor projection (Equation 2) and noise texture tramnsédion (Section 2.2.2),
the most expensive calculations during projection are @eecper fragment. This
means that the expensive eigenvalue decomposition anaveigter calculations are
only required for fragments (pixels). To further decoupie talculation effort from
the geometry’s size, the depth test should be performeddpérforming the eigen-
vector decomposition. This goal can be achieved by firstegnd the projected
tensors to a texture, and computing the decomposition &blei fragments only.
Nevertheless, this is not necessary for our current datarebscreen sizes where
the time required to render the geometry itself clearly dmtes the time required
to compute the texture pattern in image space. This can beisdhe increasing
values in Table 1 with increasing size of vertices rendered.
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4 Conclusions and Possible Directions for Future Research

We have presented a novel method for rendering fabric-tikectires to visualize
tensor fields on almost arbitrary surfaces without genagdtiree-dimensional tex-
tures that span the whole data set at sub-voxel resolutioerefore, our method
can be applied to complex data sets without introducingutextnemory problems
common to methods relying on three-dimensional noise tegtlAs major parts of
the calculation are performed in image space, the perfocmahour algorithm is

almost independent of data set size, provided that surfasebe drawn efficiently,
e.g., by using acceleration structures to draw only thosts pé the geometry that
intersect the view frustum or using ray tracing methods.

Whether the surface itself is the domain of the data, a serffined on the
tensor information (e.g., hyperstream surfaces), or asardlefined by other unre-
lated quantities (e.g., given by material boundaries inregying data or anatomical
structures in medical data) is independent from our apprddevertheless, the sur-
face has to be chosen appropriately because only in-plémveriation is visualized.
To overcome this limitation, information perpendiculathe plane could be incor-
porated in the color coding, but due to a proper selectioh@ptane that is aligned
with our features of interest, this has not been necessanuigpurposes.

Especially in medical visualization, higher-order tenséormation is becoming
increasingly important and different methods exist to alze these tensors, includ-
ing local color coding, glyphs, and integral lines. Nevet#ss, an extension of our
approach is one of our major aims. In brain imaging, expagte@athat the maxi-
mum number of possible fiber directions is limited. Typigadl maximum of three
or four directions in a single voxel are assumed (cf. Schatl&d. [21]). Whereas the
number of output textures can easily be adapted, the majmainéng problem is a
lack of suitable decomposition algorithms on the GPU. imsapece techniques, by
their very nature, resample the data and, therefore, requie to use such proper in-
terpolation schemes. In addition, maintaining orientagiand assigning same fibers
in higher-order data to the same texture globally is notibtestoday and, therefore,
is a potential topic for further investigation.
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