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Abstract. The visualization of high-dimensional data is a challenging research
topic. Existing approaches can usually be assigned to either relation or value
visualizations. Merging approaches from both classes into a single integrated
strategy, Structural Decomposition Trees (SDTs) represent a completely novel
visualization approach for high-dimensional data. Although this method is new
and promising, statements on how to use and apply the technique in the context
of real-world applications are still missing. This paper discusses how SDTs can
be interpreted and interacted with to gain insights about the data more effectively.
First, it is discussed what properties about the data can be obtained by an inter-
pretation of the initial projection. These statements are also valid for other pro-
jections based on principal components analysis, addressing a frequent problem
when applying this technique. Further, a detailed and task-oriented interaction
guideline shows how provided interaction methods can be utilized effectively for
data exploration. The results obtained by an application of these guidelines in
air quality research indicate that much insight can be gained even for large and
complex data sets. This justifies and further motivates the usefulness and wide ap-
plicability of SDTs as a novel visualization approach for high-dimensional data.

Keywords: High-dimensional data visualization, Projections, Interaction.

1 Introduction

The visualization of high-dimensional data is a common but still unsolved problem.
Structural decomposition trees (SDTs) [1] represent a novel approach to this challenge.
SDTs combine value and relation visualizations into one approach and thus provide a
variety of benefits not available in related visualization technology. Research concern-
ing SDTs, however, is constrained to the introduction and description of fundamental
aspects of this novel displaying approach only. Although, research concerned with main
utilization strategies have recently been published [2], the eligibility of SDTs when ex-
tensively applied in complex real-world visual data analysis has not been discussed in
literature so far.

This paper provides guidance and an example for the successful application of SDTs
in data visualization. After reviewing related work in the area of high-dimensional data
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Fig. 1. The two classes of visualizations for high-dimensional data (value (left) and relation (cen-
ter) visualizations) are brought together by SDTs (right). All visualizations represent the well-
known “cars” data set. The SDT highlights the five distinct clusters by its branch structure also
conveying the respective differences in the data values.

visualization (Section 2), the first part of this paper (Section 3) is particularly concerned
with the interpretation of an SDT. Thereby, we focus on alignment and length of the dif-
ferent dimensional anchors and provide practical implications supporting the users in
their understanding of high-dimensional data projections. Classifying and discussing
means for interaction provided by SDTs from a functional point of view, the second
part (Section 4) is concerned with appropriate data exploration. For each listed inter-
action, distinct aims and guidelines for its appropriate application are stated. The third
part (Section 5), discusses results we obtained from an application of SDTs in the vi-
sual analysis of air quality data. It shows that by taking advantage of the introduced
methods much insight can be gained even for complex and large data sets. We conclude
(Section 6) that SDTs are a valid means for visualizing and gaining insight into high-
dimensional data, but must be understood and applied in the right way in order to avoid
misinterpretation and wrong conclusions. Here, we provide the necessary information
to accomplish this objective successfully.

2 Related Work

2.1 Visualization of High-Dimensional Data

As a result of most data acquisition tasks today, high-dimensional data are of strong in-
terest to the visualization community. Many different approaches and techniques have
been proposed. According to [1], they can be categorized into value or relation visual-
izations. By focusing on the conveyance of data coordinate values for every data point,
value visualizations allow for a detailed analysis of the data. The parallel coordinates
plot (see Figure 1, left) is a typical representative of this category. Due to their focus on
value representation for each data point, a common problem with all associated tech-
niques is that they are often not scalable with regard to the amount and dimensionality of
the data. As a result this usually leads to clutter and long processing times as the number
of dimensions and amount of data points increase. In order to overcome these issues,
cluster-based approaches [3–5], appropriate means for interaction [6, 7], and better uti-
lization of the available screen space [8] have been proposed. Clutter reduction is also
achieved by dimension ordering arranging the dimensions within the visual representa-
tion based on correlations within the data. After the initial formal problem statement [9],
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this technique has been expanded in [10] and [11]. Although these methods are great
improvements to reduce clutter, the displayed information is often too detailed and a
meaningful representation can generally not be obtained for large data sets.

Instead of aiming at communicating data values, relation visualizations are de-
signed to convey data relationships. They are mostly point mappings, projecting the
m-dimensional (m-D) data into the low-dimensional presentation space. As relations
within the data may be too complex to be completely conveyed in presentation space,
projections are usually ambiguous. A well-known point projection approach is princi-
pal components analysis (PCA) conveying distance relations in m-D space by projecting
into a plane that is aligned to capture the greatest variance data space without distorting
the data (see Figure 1, center). Multi-dimensional scaling (MDS) commonly uses gen-
eral similarity measures to represent the data, but leads to distortion and a visualization
that may be difficult to interpret. Interpretation of the representation is a general issue
with point projections as long as no means to comprehend the parameters used for the
projection are available. One such option are dimensional anchor (DA) visualizations
[12] projecting and displaying the basis vectors along the data points (see Figure 1,
center). These DAs are also an appropriate means to adjust the projection interactively
[13]. Relation visualizations usually lead to a meaningful overview of the data. Their
effectiveness, however, strongly depends on the quality of the initial projection and
the means provided to interpret and interact with it. Current research mainly focuses
on improved representation of specific data structures, e.g., scientific point cloud data
[14], a better incorporation of domain-appropriate analysis techniques, e.g., brushing
and filtering [15], or computational speed gains [16].

Due to the rather diverse properties of value and relation visualizations, they each
have distinct application domains. Thus, they are often used simultaneously in ex-
ploratory multi-view systems [17]. Few publications tackle the problem of combining
both classes into a single approach. Most of them have been proposed for value visual-
izations, such as the technology described in [10, 18, 19], [20], or [21]. SDTs represent
a completely different approach that promises to bridge the existing gap between both
classes.

2.2 Structural Decomposition Trees

SDTs are founded on a sophisticated data projection, but provide additional means to
represent the dimension contributions for each data point (see Figure 1, right). This
is achieved by introducing a tree structure showing the projection path for each dis-
played data point and thus its individual dimension values. The projection paths also
allow for an unambiguous identification and interpretation of data points that reside
at different locations in m-D space, but have been projected in close proximity in the
projection space. A main problem in showing the different projection paths is the in-
troduced clutter. SDTs overcome this issue by introducing a multi-stage processing
pipeline. Hierarchical clustering is used to identify, aggregate, and bundle common line
segments. The resulting tree has minimal overall branch length, reducing the redundan-
cies considerably. Appropriate representation of the individual dimension contributions
is accomplished by a well-designed drawing order. The tree itself is represented by col-
ored lines, whereby the number of elements within this subtree is encoded by branch
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Fig. 2. The main interactions provided by SDTs: Repositioning of DAs (green arrow) allows for
an intuitive adjustment of the projection. Dimension highlighting (yellow DA) conveys the indi-
vidual contributions of a dimension in the data (yellow tree segments). Path highlighting (purple
tree branch) is intended to emphasize interesting tree branches and substructures.

thickness (see Figure 1, right). The initial SDT projection maximizes the space between
tree paths and allows for a better interpretation of the visualization [1].

Different means for interaction, either on individual or groups of data points or the
whole representation, make possible for further exploration of the data (see Figure 2).
The projection can be significantly changed by a re-arrangement of the end points of
the DAs. These dimension vectors can be independently modified in their lengths and
angles relative to each other. Thereby, so-called variance points are placed along the
unit circle in order to indicate angles that lead to other promising projections. Different
means to emphasize and filter dimensions and line segments are provided to facilitate
investigation and interpretation of the structural decomposition of the data. Published
research concerned with SDTs mainly focuses on its technical foundations. Although,
semantic aspects of an SDT representation were discussed in [2], the authors were
mainly concerned with the application of SDTs in visual cluster analysis. General state-
ments to practical implications, guidelines, and a concrete use case were not provided.

3 Interpretation of the Initial Layout

Projections are a powerful means to convey relations in high-dimensional data. Due to
the characteristics of dimension reduction, however, they are often difficult to interpret.
In previous work it was shown that SDTs are specifically suited to depict data coordi-
nates in a way that aims at intuitive interpretation. Experimental studies of PCA-based
projections showed that the projection conveys properties of the data by the length and
relation of the DAs to each other. This, however, has never been explicitly quantified.
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In this section, we investigate in full detail how the initial arrangement of DAs in
SDTs relates to the corresponding variables in the data and how the user can interpret
this arrangement to infer knowledge about the data. Due to the use of a PCA-related
projection method for SDTs, the given statements apply to all PCA-based projections.
We shortly recall dimensional anchors and their arrangement, after which we are link-
ing the properties of DAs to those of the data. We first outline why DAs are used to
reflect a PCA projection and how their initial arrangement is defined. This is expressed
by latent features in the data, i.e., the eigenvectors and eigenvalues of the data’s covari-
ance matrix indicating the information content within the different data dimensions. In
order to understand which data properties are visually encoded in a projection, we in-
vestigate how the projection is defined by these features and what information is thereby
depicted. This is expressed by a derivation of the spectral decomposition of the covari-
ance matrix. After these steps, we show that the specific DA arrangement allows one
to derive conclusions and data properties that are of keen interest to the user but not
depicted by the common plotting of principal components. Finally, statements to im-
plications of these properties aim for a better understanding of an arbitrary PCA-based
projection avoiding its misinterpretation.

DAs and Their Arrangement. Since SDTs can be computed and visualized both in 2D
or 3D space, the following considerations are made for an arbitrary display dimension-
ality p. We assume that n m-dimensional data points are stored row-wise in X so that
X ∈ IR(n×m). The projection of X to ˜X ∈ IR(n×p) is defined by the linear mapping of m-D
data points Xi to p-D display points ˜Xi, for 1 ≤ i ≤ n, by the linear combination of DAs
a j ∈ IRp with the corresponding coordinate Xi, j, for 1 ≤ j ≤ m:

˜Xi = ∑
1≤ j≤m

a jXi, j. (1)

This technique, the mapping in star coordinates [13], can be understood as a general-
ization of drawing 3D objects on paper to arbitrary dimensions. In the original work,
however, the DAs are initially arranged in a uniform distribution along a unit circle. In
general, this leads to a non-orthogonal projection. This can be misleading because the
distance in display space does not reflect distance in IRm. To avoid this, a projection is
designed to minimize this mapping error. This error is commonly expressed as the sum
of squared pairwise distance differences arising from the mapping from m to p dimen-
sions, ∑1≤i, j≤n(D(Xi,Xj)− d2(˜Xi, ˜Xj))

2, where d2 is the Euclidean distance metric and
D is an appropriate distance metric of the application domain. This error can be mini-
mized, for example, by PCA in the case D = d2. Instead of expressing the data by the
original unit vectors, PCA computes new orthogonal directions (principal components)
in which the data has maximal variance and re-expresses all data points in coordinates
of these principal components. The projection is defined by the p principal components
that capture the highest variance in the data. Although distance relations between data
points are captured well in this projection, the interpretation of principal components
is not intuitive. In almost all applications, the link to the original data is essential for
analysis. Therefore, the depiction of the original data coordinates and relations between
the original data dimensions is an important aspect for a projection.
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Linking Properties of DAs to Those of the Data. In previous work [1], both approaches
have been combined and the initial arrangement of DAs has been defined to reflect a
(weighted) PCA projection into p-dimensional display coordinates. We utilize DAs to
make possible a better interpretation and more intuitive understanding of the underlying
projection without losing any of the underlying projection’s benefit. In this research,
we investigate the properties of this DA projection in more detail and deduct which
properties of the DAs link to which properties in the data. The following considerations
are based on the data’s covariance matrix. Without loss of generality, we assume X to be
centered and, since the used weighting scheme in previous work changes the covariance
matrix (to be weighted) a priori, we can neglect the weighting in the following. We also
neglect the global scaling by n−1 that does not influence relations in the data.

The PCA projection ˜X of X is defined as ˜X = X ̂Γ , with ̂Γ = (γ(1), ...,γ(p)) ∈ IR(m×p)

being the matrix storing column-wise the eigenvectors of the corresponding p largest
eigenvalues of the covariance matrix S of X . Equation (1) implies that the linear map-
ping of DAs A = (a1, ...,am)

T ∈ IR(m×p) is defined as ˜Xi = X A. In order to initially
arrange the DAs such that their mapping is equivalent to that of the PCA, we define
each DA as a row vector of ̂Γ :

ai =
(

γ(1)i , ...,γ(p)
i

)T
. (2)

This step is equivalent to the projection of the original unit vectors 1i ∈ IRm to IRp

subject to the same rotation, i.e., aT
i = 1T

i
̂Γ . It is important to note that PCA projects

X by reducing its dimensionality to p in an optimal variance-preserving way. Thus, the
information that is actually displayed by this projection is that of the inherently defined
best rank-p approximation ̂X of X .

Spectral Decomposition of the Covariance Matrix. The process of dimensionality re-
duction by maximizing variance becomes clear when considering the spectral decom-
position of S. That is the decomposition of the combined variances of all elements in X
into successive contributions of decreasing variance: S = λ1γ(1)γ(1)T

+ ...+λrγ(r)γ(r)
T
,

with λk being the k highest eigenvalue of S and γ(k) the corresponding eigenvector for
1 ≤ k ≤ r = rank(X).

Each contribution S(k) = λkγ(k)γ(k)T
thereby increases the rank of the matrix sum-

mation by one. λk holds the variance of the contribution, whereas γ(k)γ(k)T
defines the

mixing of this variance, i.e., how this contributes to S. Consequently, the covariance
matrix of the PCA’s p-dimensional best rank-p approximation ̂X of X equals the sum
over the first p contributions, where usually p � rank(X). The covariance between
dimensions i and j of the projected data ̂X is

̂Si, j = ∑
1≤k≤p

λkγ(k)i γ(k)j . (3)

Similarly, ̂X can be defined by ̂X = X ̂Γ ̂Γ T . For the dimensions (columns) in ̂X the
following equation holds: ̂X•,i = ∑1≤ j≤m X•, j(̂Γ ̂Γ T )i, j. ̂X•,i is constructed from X by

the linear combination of all X•, j with coefficients ( ̂Γ ̂Γ T )i, j = ∑1≤k≤p γ(k)i γ(k)j . Conse-
quently, these coefficients define the orthogonal projection of the data and account for
the similarities between columns in ̂X , i.e., for rank(̂X).



Structural Decomposition Trees: Semantic and Practical Implications 199

Conclusions. With the above considerations in mind, we show in the following that
the length of each DA and the angles between them reflect specific properties of the
projection and of the projected data ̂X . The mixing matrix ̂Γ ̂Γ T holds normalized
contributions to ̂S and relates to the DA’s arrangement in the sense that (̂Γ ̂Γ T )i, j =

∑1≤k≤p S(k)i, j /λk = ˜Si, j, whereas ˜Si, j = cos∠(ai,a j) ||ai||2 ||a j||2. We can draw the fol-
lowing conclusions:

1. The length of DAs equals the standard deviation of the respective dimension in ̂X ,
normalized for each contribution ̂S(k) by its variance λk.

||ai||2 (2)
=

√

∑
1≤k≤p

(γ(k)i )2

(3)
=

√

˜Si,i = s̃i

2. The cosine of the angle between two DAs equals the correlation of the respective
dimensions in ̂X , where both covariance and standard deviation are normalized for
each contribution ̂S(k) by its variance λk.

cos∠(ai,a j) =
aT

i a j

||ai||2||a j||2
(2)
=

∑1≤k≤p γ(k)j γ(k)i

s̃i s̃ j

(3)
=

˜S(k)i, j

s̃i s̃ j
= r̃i, j

Implications. It is important to emphasize that ̂X does not represent the whole data X
but only its best rank-p approximation. That is, ̂X is the approximation of X that can
be optimally depicted in p dimensions with regard to its variance. Therefore, ̂X is the
orthogonally projected data on the subspace IRp which is spanned in a way that the
projection reflects the dominant trends in X . However, IRp can only cover the most im-
portant information in the data. While other subspaces that are left out globally account
for less variance in the data, relations therein may still be of importance for the user.
Unfortunately, this information cannot be captured in a single projection and, conse-
quently, parts of the relations between the original data dimensions in IRm are lost. The
user has to be aware of this issue because it may lead to possible misinterpretations
stemming from the visual assessment of the DAs’ properties.

Because principal components are mutually orthogonal, it is possible that the de-
picted standard deviation of certain dimensions is lower in the initial projection than
in other projections. This depends on the overall information content of this dimension
in the subspaces collapsed by dimensionality reduction. Thus, the knowledge derived
from the DAs can only be a subset of the hidden information and usually represents a
high-level view only. To avoid misinterpretation, they must be further evaluated. The
quality of the projection, with regard to one dimension, is reflected by the amount of its
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lost variance due to dimension reduction. To indicate this information, an SDT display
provides variance points for each dimension. Each variance point consists of two cir-
cles. While the outer circle’s radius represents si, the dimension’s standard variation, the
inner circle represents ŝi, the part of the dimension’s standard variation that is reflected
by the projection. Assessing the ratio between both circles, (ŝi/si)

2, thereby allows one
to infer the quality of the projection with regard to a data dimension. Thereby, variance
points provide guidance for interactive exploration.

Commonly, the user is aware of the fact that projections have an inherent information
loss. Projections that map different points in IRm to the same location in IRp make this
fact clear. Ambiguity is often a severe problem and stems from the principal illustration
of “collapsed” subspaces. Points that only differ in the subspaces that are disregarded by
dimensionality reduction are consequently projected onto the same location. By visual-
izing the projection path of each data point, SDTs prevent possible misinterpretations
by assuring the user that data points are only equal when they share the same path. This
display, however, introduces further graphical primitives into the data representation,
leading to occlusion problems and visual clutter. How to solve these issues by proper
interactive exploration is discussed in the following sections.

4 Means for Interaction: Purpose and Guidelines

Interactions within SDTs can be mainly classified as interactions with the data or the
dimensional anchors as well as changes of the view. In this section, we describe the
available interaction methods from a general, functional standpoint, state their individ-
ual aims, and complete with novel guidelines on how to interact with SDTs. This will
provide users with quick insight and reference to the available methods. Using these
guidelines, SDTs convey an intuitive visual mapping that can be remembered and from
which the user can quickly learn

– how the data is assembled, spread, where clusters are, or which pattern they follow,
– how parts of the data are connected, differ, or how they relate to each other, and
– what properties they have, e.g., intra-cluster variances, shape, or alignment.

4.1 Interactions with the Data

This class of interactions allows the user to highlight or filter parts of the data. Associ-
ated techniques are usually strongly task and application depend.

Interaction: Dimension highlighting
Aim: Emphasizing dimension contributions of the data
Guidelines: This interaction (see Figure 2) allows the user to emphasize all line seg-
ments corresponding to the coordinates of a dimension and thus helps to investigate the
structural decomposition of the data. The selection of too many dimensions decreases
its usefulness. Only DAs of current importance to the user should be selected.
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Fig. 3. Interactive complexity and clutter reduction taking advantage of the capabilities of SDTs:
dimension filtering (left) reduces the number of branch segments in the tree, node collapsing
(right) the number of displayed subtrees. Additional means for zoom and pan interaction allow
the users to drill-down into the presentation and data to obtain momentary detail (bottom).

Interaction: Path highlighting
Aim: Emphasizing data points and subtrees
Guidelines: Path highlighting (see Figure 2) emphasizes interesting pathes and branches
within the SDT. During selection the user should focus on paths that lead through clut-
tered regions as they might no be easily followed and take unexpected ways.

Interaction: Node collapse
Aim: Data filtering
Guidelines: This interaction causes subtrees and data points to disappear from the SDT
representation. A single subtree is then represented by a characteristic point only (see
Figure 3, right). After collapsing, the main value contributions of all associated data
points are still visible and can be used and interpreted, e.g., for comparison with other
subtrees. Most appropriate regions to apply node collapse are cluttered areas or uninter-
esting subtrees. The user, however, should always bear in mind that data filtering was
applied.

4.2 Interactions with the Dimensional Anchors

The layout of an SDT visualization consists of the different DAs. As their alignment
strongly influences the projection of the data, allowing for their interactive modification
is a powerful means for a variety of purposes. As there is no restriction on their place-
ment, interactions can change the (1) angle or (2) length of an DA, or (3) both. Each
kind of modification can be used to achieve a distinct aim.

Interaction: Move of a DA to a corresponding variance point
Aim: Exploration of hidden subspaces
Guidelines: Subspaces hidden by dimension reduction can contain further information
important for the analyst. They are made available by a successive exploration of indi-
vidual dimensions via their respective variance points. This leads to different but still
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Fig. 4. Variance points help to find other promising projections of the data. Large variance points
(left) indicate projections most suited to convey the variance in the data. Opposite variance points
(right), even when not accounting for much variance, often lead to strongly different projections
helping to identify unexpected data properties.

orthogonal projections of the data. To explore most important information first, it is
meaningful to use large variance points indicating a strong inherent information con-
tent. We also propose to use variance points placed at opposite positions on the unit
circle. Although position has no meaning regarding the amount of information content,
this leads to strong changes in the projection and may reveal unexpected and important
insight (see Figure 4). Switching between close points does not significantly change the
projection and can usually be skipped even for large variance points.

Interaction: Move of the SDT stem to another position
Aim: Solving occlusion issues
Guidelines: Sometimes only the orientation of the tree or of large branches is to be
changed, e.g., to overcome visibility and occlusion issues. To support this, we propose
to find and relocate a dimension with strong contribution to the stem of the SDT, e.g., a
dimension with low variance. This leaves the initial crone structure of the SDT widely
unaltered for further analysis.

Interaction: Orthogonal placement of two DAs
Aim: Discovery or verification of correlation between two dimensions
Guidelines: The orthogonal placement of two DAs emphasizes potential correlation
between two dimensions and thus enables the viewer for its visual discovery or verifi-
cation. Correlations can be identified by following the development of the point con-
tributions from the origin along the direction of the respective dimension vectors. As
an example, increasing contributions for both dimensions indicate a linear correlation
for the associated dimensions (see Figure 5, left). Visual emphasis of the involved di-
mension contributions by dimension highlighting helps revealing such characteristic
patterns. Due to the fact that SDTs are projected into a two-dimensional presentation
space, correlations between more than two dimensions must be explored successively.
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Fig. 5. The orthogonal placement of two DAs (red and yellow color) in the presentation can
simplify the evaluation of correlations between the associated dimensions (left). In order to over-
come potential point cluttering within the initial projection (center), a DA (green color) can be
interactively stretched (right).

Interaction: Enlarging or shrinking a DA
Aim: Exploration of data distribution, discovery of data clusters, conveyance of value
contributions
Guidelines: As the length of a DA proportionally influences the position of the pro-
jected data, the associated points can be stretched or compressed easily (see Figure 5,
center/right). This allows for an investigation of the data distribution of the associated
dimension. Thereby, it is useful to enlarge and shrink the DA multiple times and in dif-
ferent directions to discover the representation where the distribution is conveyed best.
Dimensions causing a visual separation of data points usually contribute to clustering.
Enlarging the length of a DA enhances separation and thus can help identifying such
clusters. All points of a potential cluster show a similar behavior during length changes.
Path highlighting can be used for further verification. In case of a valid m-D cluster, all
associated points must share the same projection path.
Length modification is also particularly useful to visually emphasizing value contribu-
tions in the tree. Strong contributions can easily be identified by their strong response
to length changes.

Interaction: Move of a DA to the origin of the projection
Aim: Dimension filtering
Guidelines: To reduce clutter, it is meaningful to filter out less interesting dimensions
by placing their anchors at the origin of the projection (see Figure 3, left). Appropri-
ate candidates are dimensions that are correlated or show similar characteristics. They
can be substituted by a single super-DA, whereby its angle is determined by the average
and the length by the sum of all associated DAs. This changes the point projections only
slightly, but removes many SDT branches from the representation. We further propose
to remove dimensions having (1) very small variance points or (2) many, very small
branches of similar length at high tree levels indicating little structure in the data.
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Fig. 6. Moving a DA in circles activates the motion parallax effect of the human visual system let-
ting the tree and the data points appear more “plastic”. By providing many different coordinated
projections, characteristics of the data can be identified or verified. Best results are obtained by
using a DA corresponding to a dimension with high variance.

Interaction: Continuous circular movement of a DA
Aims: Discovery of m-D data clusters, exploration of data distribution
Guidelines: The movement of a DA enables the motion parallax effect of the human
visual system to create a pseudo three-dimensional impression of the two-dimensional
SDT representation (see Figure 6). This lets the points and the tree appear more “plas-
tic” and results in more insight about the structure and potential clusters in the data. Dur-
ing the interaction, point clusters can be identified by their constant grouping. Circular
movement leading to similar projections at each turn helps the human visual system to
memorize the gained insight. Continuously changing diameter stretches or compresses
potential clusters allowing for improved identification or verification. Not every dimen-
sion is equally suited to achieve this. We propose to select a dimension that strongly
contributes to higher tree branches, e.g., one that has a high variance in data values. As
such a dimension strongly affects the top of the SDT leaving its stem nearly unchanged,
it can increase motion parallax. Appropriate dimensions can easily be found by dimen-
sion highlighting emphasizing all line segments corresponding to the coordinates of a
dimension and thus conveying their distribution.

4.3 Interactions to Change the View

Interaction: Zoom&Pan of the current viewing region
Aim: Providing overview or detail
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Guidelines: Changing view point and direction is a common means in interactive data
exploration. Following the information visualization mantra [22] visual data analysis
should successively repeat the stages: (1) providing an overview to the data, (2) filtering
data that are of minor interest, and (3) drilling-down to uncover interesting details.
Overview and detail within this process can be obtained by panning and zooming into
the representation (see Figure 3).

5 Results and Use Case

In the following, the guidelines and implications described in this paper are applied in
the form of a case study on a real-world data set from the application of air quality
research. Data has been provided by the Air Quality Research Center of UC Davis
and obtained by single particle mass spectrometry [23]. We discuss the application
of SDTs to wood stove source sampling data from Pittsburgh, Pennsylvania. The fo-
cus for this investigation lies in quantifying the relationship between isotopes ambient
during biomass combustion. Biomass combustion emits copious amounts of gases and
particles into the atmosphere and plays a key role in almost all present day environ-
mental concerns including the health effects of air pollution, acid rain, visibility reduc-
tion, and stratospheric ozone depletion. The raw 256-dimensional data has undergone
application-specific data transformations as well as dimension reduction to the dimen-
sions most important for the investigation purposes of our collaborators: m/z 24 (C+

2 ),
27 (C2H+

3 ), 36 (C+
3 ), 39 (39K+ / C3H+

3 ), and 41 (41K+ / C3H+
5 ). The data are highly

unstructured. Due to this characteristic, the SDT consists of a small stem and many
small branches. The achieved representation of individual coordinate values, however,
still allows for an accurate data investigation as shown by the following findings.

Figure 7 a), shows the initial projection for 1000 particles randomly selected from
the sampling campaign. This first view clearly reveals two main clusters corresponding
to m/z 39 and to a mixture of m/z 24, 27, 36, and 41, respectively. The Dimensional
Anchor arrangement suggests a positive correlation between m/z 24 and 36 by their
DAs’ co-location, as well as low variance in m/z 41 by the DAs low length. Verification
of both indicators based on dimension highlighting and variance points reveals that
the variance in m/z 39 is only partially reflected in the projection. This can be seen in
Figure 7 b), where a secondary placement of the DA is suggested at the bottom of the
circle. Highlighting and circular movement of the DA, however, reveals that the overall
variance is considerably lower than in other dimensions.

Further investigation of the large cluster on the ride side of the view reveals that
two stems branching of in dimensions 27 (C2H+

3 ) and 39 (39K+ / C3H+
3 ) are the pri-

mary contributors to this cluster. Detailed investigation by zooming and panning reveals
that these points indeed show mixtures of all dimensions, mainly residing in mid-value
ranges and of similar intra-cluster variance. This is shown in Figure 7 c), where a paral-
lel coordinates plot of these dimensions is included for reference. By using dimension
and branch filtering, further insight is gained in the relationship between dimensions
24, 27 and 39. In Figure 7 d), DA 36 is moved at the center of the projection due to
its correlation with these dimensions. In the figure, the selection of dimensions 24 and
39 reveals that low value contributions of 39K+ / C3H+

3 are present in the majority of
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Fig. 7. SDT of 1000 mass spectra obtained from a source sampling campaign in Pittsburgh, Penn-
sylvania: (a) Initial projection of the dimensions relevant to analysis indicates correlation between
24 and 36, as well as low variance in 41. (b) Verification of 41’s variance points conveys the infor-
mation loss for this dimension due to dimension reduction. (c) Navigation and selection options
allows to quickly identify the cluster residing in mid-value ranges of the dimensions. (d) Options
for filtering allow to further adjust the view to current needs. (e) The display of the data’s structure
avoids misconceptions while (f) adjusting the projection for verification of assumptions.

the cluster located along the DA of 24 (C+
2 ), while in the clusters of 27 (C2H+

3 ) and
39 (39K+ / C3H+

3 ), these mixtures are filtered out. Successive investigation of the rela-
tionship between 24 (C+

2 ) and 27 (C2H+
3 ) is conducted by the orthogonal placement of

DAs, as shown in Figure 7 e).
Next to its highly interactive capabilities, the SDT’s strength lies in displaying the un-

derlying structure of the data, thus, enhancing the projection by conveying proximities
in high-dimensional space, as well as in projective space. While the point projection,
as shown in Figure 7 e), does not display any relationship between the two dimensions,
the SDT shows two main branches. After investigation, it is revealed that the upper
and lower branch structures originate from samples showing values in 39 (C3H+

3 ) and
36 (C+

3 ), respectively. The co-occurrence of C2H+
3 and C3H+

3 , as well as C+
2 and C+

3
is in perfect agreement of the wood stove source sampling study [23], where correla-
tions between C+

x and CxH+
y isotopes have been verified based on manual data analysis.

Figure 7 f) shows this correlation for C+
2 and C+

3 .

6 Conclusions

SDTs are a valid means to visualize and explore high-dimensional data. However, sev-
eral questions important for a broad adoption still remain to be answered. Our paper
addresses several of these questions. We were particularly interested in practical impli-
cations and insight that can be gained from an interpretation of the initial projection of
the data. We showed that the length and relation of DAs allow one to draw meaningful
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conclusions about the information content of a single and correlations between multi-
ple dimensions of the data. We also provided a functional view and novel guidelines for
effective interaction with SDTs. To illustrate their meaningful appliance, we performed
a case study on highly complex real-world data. The results demonstrate that SDTs can
be successfully used in a variety of real-world application domains to cope with the
challenging problem of high-dimensional data analysis, visualization, and interactive
exploration.
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