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Abstract
Dimension reduction is commonly defined as the process of mapping high-dimensional data to a
lower-dimensional embedding. Applications of dimension reduction include, but are not limited
to, filtering, compression, regression, classification, feature analysis, and visualization. We review
methods that compute a point-based visual representation of high-dimensional data sets to aid
in exploratory data analysis. The aim is not to be exhaustive but to provide an overview of
basic approaches, as well as to review select state-of-the-art methods. Our survey paper is
an introduction to dimension reduction from a visualization point of view. Subsequently, a
comparison of state-of-the-art methods outlines relations and shared research foci.
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1 Introduction

Contemporary simulation and experimental data acquisition technologies enable scientists
and engineers to generate massive amounts of data. Thereby, more and more application
domains are producing progressively larger and inherently more complex (multivariate)
data sets. These data sets are collections of samples that consist of multiple measured (or
simulated) observations of a variable set. Expressed in a space that requires many degrees
of freedom, multivariate data present severe problems for data analysis and especially for
visualization. Visualization is the integral part of exploratory data analysis, the first stage
of data analysis where the goal is to make sense of the data before proceeding with more
goal-directed modeling and analyses. Since human perception (and output devices) is limited
to three-dimensional space, the challenge of visualizing multivariate data is converting the
data to a space of lower dimensionality that is depictable and comprehensible to the user
while preserving as much information as possible. This process is called dimension reduction
and visualization of multivariate data is one of its traditional applications.

This survey reviews methods of dimension reduction that focus on visualizing multivariate
data. That is, they are suitable for a depictable target space. Our aim is not to be exhaustive
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but to provide an overview of basic approaches, as well as to review select state-of-the-
art methods. Thereby, we describe the mathematical concepts and ideas underlying the
algorithms. Implementation details, although important, are not discussed. The reader should
be aware that there are numerous dimension reduction methods that focus on the various
aspects of data analysis. For example, methods for feature reconstruction or classification
are closely related to those considered here, but are not discussed because their focus is not
visualization. The reader will find that, due to its long history, there are numerous surveys
on dimension reduction. For example, authors focus on a specific subset of techniques [23] or
investigations [25], provide a broad overview [4], or historical background [16]. This survey
provides an introduction to the concepts of visualizing high-dimensional data using dimension
reduction and reviews select state-of-the-art methods that share this focus.

The remainder of the paper is structured as follows. Section 2 represents the core of
the survey - a detailed introduction to the concepts of dimension reduction. After a formal
problem statement is given, we divide the basic approaches in two classes: projection (Section
2.1) and manifold learning (Section 2.2). We also provide a taxonomy for these methods
that can act as a classifier for which data the methods are most suited. Section 3 reviews
two recently developed but fundamentally different approaches to non-linear multivariate
data visualization and offers a qualitative comparison between them. The object of this
investigation is to infer common trends between different concepts of dimension reduction.
Finally, concluding remarks are provided in Section 4.

2 Dimension reduction

Methods for dimension reduction compute a mapping from high- to low-dimensional space.
The formal problem setting can be described as follows. Let X ∈ �(n×m), a set of n
points in m-dimensional data space, and two metric distance (or dissimilarity) functions,
δm : �m × �m → � and δt : �t × �t → �, over data space �m and target space �t
respectively, with m, t ∈ �∗, t � m, be given. A mapping function φ that maps the
m-dimensional data points (xi ∈ X) to t-dimensional target points (yi ∈ Y ), i.e.,

φ : �m → �t (1)
xi 7→ yi, for 1 ≤ i ≤ n,

is defined s.t. φ “faithfully” approximates pairwise distance relationships of X by those of
Y ∈ �(n×t), thereby mapping close (similar) points in data space to equally close points in
target space, i.e., δm(xi, xj) ≈ δt(yi, yj), for 1 ≤ i, j ≤ n. In particular, an adequate mapping
is designed to ensure that remote data points are mapped to remote target points.

Since the target space usually has lower degrees of freedom than those required to model
distance relationships in multi-dimensional space, the mapping φ adheres to an inherent
error that is to be minimized by its definition. Thereby, φ is commonly defined to minimize
the least squares error εφ:

εφ =
∑

1≤i,j≤n
Wi,j (δm(xi, xj)− δt(yi, yj))2, for W ∈ �(n×n), (2)

where W is a weight matrix that can be used to define the importance of certain data
relationships or dimensions. For example, this may be used to disregard outliers by defining
Wi,j = 1/δm(xi, xj) (for δm(xi, xj) 6= 0).

Formally, the above definitions require both data and target distance functions to be
metric. That is, both functions must adhere to the properties of positive definiteness,
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Figure 1 Concepts of dimension reduction.

symmetry, and the triangular inequality. Based on human perception, the most intuitive
distance metric is the Euclidean distance, L2(p, p′) =

∑
1≤i≤q

√
(pi − p′i)2 for p, p′ ∈ �q.

Due to its intuitiveness, the Euclidean distance is often chosen as the metric for the target
space, δt = L2. However, the distance (or dissimilarity) measure of the application domain,
δm, is in most cases not Euclidean and may in some cases not even be metric. For example,
psychometric dissimilarities can be non-metric. In practice, this formal prerequisite can be
relaxed since even an optimal mapping is, at any rate, an approximation of multivariate
relationships.

In the following, we review and discuss several algorithms that realize a suitable mapping
φ as defined above. We divide them into two basic approaches of the following underlying
principal geometric ideas. If the data lie within a linear subspace of lower dimensionality,
then they can be re-expressed by a linear basis transformation without loss of information.
These bases can be ordered according to their contribution to the mapping error εφ and the
t bases are used that minimize this error. However, if the data are non-linear and lie on an
unknown manifold of lower dimensionality, then distance relationships along this manifold
can be learned in an unsupervised manner and used for data mapping.

A careful taxonomy of the methods considered here is formulated in the following and
illustrated in Figure 1. Methods that are solely based on linear inner product transforma-
tions are defined as projection techniques, while those that are able to ascertain distance
relationships in a non-linear data structure are defined as manifold learning techniques.
These techniques can be further grouped in two basic approaches. Focusing on metric data
spaces, the first approach is graph-based. These methods model the data as a graph and
utilize optimizations of graph theory to learn manifold distances in data space. The second
approach is stress-based and focuses on the embedding directly, i.e., learning the mapping
that minimizes the mapping error in target space. These methods are based on iterative
optimizations of the mapping error (stress) and can learn the embedding of non-metric
distances.

2.1 Projection-based Methods

Projective techniques display multi-dimensional data by projecting points onto a lower-
dimensional space such that distance relationships between points in the projection space
reflect specific relationships between the data points in multi-dimensional space. Since
these relationships may be too complex to be completely conveyed in lower-dimensional
space, projections (and all mappings considered here) are in general ambiguous. We define
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a projection by the use of a projection in the geometric sense - projecting the data based
on a (linear) inner product transformation. The geometric idea behind this approach is to
express the data by a set of “condensed” variables that approximately model the (unknown)
underlying factors and reduce redundancies. The two main approaches are to project based
on variance or inner product relations and both are, in an Euclidean setting, interchangeable.

2.1.1 Principal Components Analysis (PCA)
As one of the first dimension reduction techniques discussed in the literature, Principal
Components Analysis (PCA) [20] conveys distance relationships of the data by orthogonally
projecting the data on a linear subspace of target dimensionality. In this specific subspace,
the orthogonally projected data have maximal variance. Thereby, PCA defines a “faithful”
approximation as one that captures the data’s variance in an optimal way. It has been shown
[13] that by the maximization of variance, PCA also minimizes the least squares error (2)
for Euclidean distances in data and target space, δm = δt = L2, under the constraint of
orthogonally projecting the data:

εPCA =
∑

1≤i,j≤n
(L2(xi, xj)− L2(yi, yj))2. (3)

Remarkably, PCA achieves this through a computationally efficient linear transformation.
The resulting projection is a genuine view that does not distort the data. The only major
drawback of PCA is that, due to its linear nature, it does not capture non-linear data well.

For the following considerations, we assume without loss of generality that X ∈ �(n×m)

is centered, i.e., the mean of all given data points has been subtracted from all data points.
The PCA projection is defined as

PCA : �m → �t (4)
xi 7→ xi Γ̂, for 1 ≤ i ≤ n,

with Γ̂ = (γ(1), ..., γ(t)) ∈ �(m×t) being the matrix storing columnwise the eigenvectors of
the corresponding t largest eigenvalues of the data’s covariance matrix S = n−1XTX. The
largest eigenvalue of S, λ1, holds the variance of the data orthogonally projected in the
direction of γ1. Γ̂, storing the t mutually orthogonal vectors in which directions the data have
the largest variance, define a partial orthonormal basis in data space �m. The orthogonal
projection onto the corresponding rank-t subspace in �m is defined by X̂ = X Γ̂Γ̂T . Thereby,
X̂ ∈ �(n×m) is the best rank-t-approximation of X (under L2). Using the basis Γ̂, data points
xi are projected onto this subspace such that x̂i =

∑
1≤k≤t γ

(k)PCA(xi)k, for 1 ≤ i ≤ n.
Besides its broad applicability to visualization, PCA may be used for many more tasks.

For example, a prominent gap in the eigenvalue spectra gives an upper bound for the intrinsic
dimensionality of the data. Therefore, it is often used for filtering Gaussian noise or for
reducing data size and computation time. PCA is a well-established technique with an
extensive history. As such, many variants exist and more information can be found, for
example, in [11] or [17].

2.1.2 Metric Multidimensional Scaling (MDS)
Metric Multidimensional Scaling (MDS) [28], also known as classical MDS, is a well-established
approach that uses projection to map high-dimensional points to a linear subspace of lower
dimensionality. The technique is often motivated by its goal to preserve pairwise distances
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in this mapping. As such, metric MDS defines a faithful approximation as one that captures
pairwise distance relationships in an optimal way; more precisely, inner product relations.

Metric MDS finds an optimal (least squares) linear fit to the given pairwise distances,
assuming the distance used is metric. If Euclidean distances are given, δ = L2, metric MDS
is equivalent to PCA up to scaling and rotation. However, metric MDS finds the best linear
fit to any metric dissimilarities. This makes the technique more flexible to use compared
to PCA. Its performance is also independent of data dimensionality, however, the method
scales poorly with the number of data points.

By the method’s design, the mapping error preserves inner product relations:

εmMDS =
∑

1≤i,j≤n
(xixTj − yiyTj )2. (5)

Let a matrix of pairwise metric distances (or dissimilarities), (∆)i,j = δi,j , be given. From
these metric distances, the data’s Gram matrix of inner products is given by G = HAHT ,
where A = −1/2δ2

i,j and H is a centering matrix. The complete eigendecomposition of G
requires O(n3) time which is, in most cases, too expensive for practical problems. However,
variants of the method achieve an approximation in O(nlogn) time based on a divide and
conquer approach of the eigendecomposition [30]. In addition, increasingly faster solvers are
being developed [14].

Metric MDS is defined as

mMDS : �m → �t (6)
xi 7→ Γ̂i Λ̂, for 1 ≤ i ≤ n

with Γ̂ = (γ(1), ..., γ(t)) ∈ �(n×t) being the matrix storing columnwise the eigenvectors
of the corresponding t largest eigenvalues of the Gram matrix of inner products, G =
XXT , Gi,j = xix

T
j . Λ̂ is the diagonal matrix storing the roots of the t largest eigenvalues of

G, Λ̂ = diag(
√
λ1, ...,

√
λt).

Although metric MDS works in the inner product space, the geometric intuition behind
the method is very similar to that of PCA. As such, points are projected into the linear
subspace of largest variance. However, this subspace is defined by metric MDS based on the
eigenvalue decomposition of an n× n matrix of inner products. The duality between PCA
and MDS becomes clear when considering that G has the same rank and eigenvalues (up to
a constant factor) as the covariance matrix S = n−1XTX = Cov(X) and G = n−1Cov(XT ).
Therefore, the Gram matrix is a covariance matrix in �n that reflects the same principal
relationships of the data as the covariance matrix in �m, although, expressed in a basis
system that reflects linear combinations of data points (instead of dimensions). For more
information on metric MDS, the reader is referred to [9] or [5].

Although being both powerful and flexible, Metric MDS leaves two questions unanswered:
(1) What if the data are samples from a non-linear manifold and its proximity relationships
are unknown? (2) What if these dissimilarities are not metric? In the following, we discuss
the essential concepts that solve these two major issues. In particular, metric MDS has
brought forth the variants Kernel PCA, Isomap, and non-metric MDS.

2.1.3 Kernel PCA
Kernel PCA [24] is considered a variant of PCA and metric MDS (due to their duality) that
is capable of depicting non-linear data. Although distance relationships along a non-linear
pattern are unknown, Kernel PCA is based on two assumptions that make the application
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of (linear) PCA to non-linear data possible. The first assumption is that in the space of
the data’s underlying features, the data are linear. The second assumption is that there is
a function that approximates the inner product of data points in this feature space. This
function is called a kernel and the utilization of a non-linear kernel in a linear setting to
capture non-linear data structure is known as the “kernel trick”. Formally, this setting is
described as follows. Let a kernel k be given that approximates inner product relations of
non-linear data in their feature space, such that

k : �m ×�m → � (7)
(xi, xj) 7→ Φ(xi)Φ(xj)T , for 1 ≤ i ≤ n,

where Φ is the mapping to feature space. Kernel PCA is defined as

K− PCA : �m → �t (8)
xi 7→ Γ̂i Λ̂, for 1 ≤ i ≤ n

with Γ̂ = (γ(1), ..., γ(t)) ∈ �(n×t) being the matrix storing columnwise the eigenvectors of the
corresponding t largest eigenvalues of the Gram matrix of inner products in feature space,
G

(k)
i,j = k(xi, xj). Λ̂ is the diagonal matrix storing the roots of the t largest eigenvalues of

G(k), Λ̂ = diag(
√
λ1, ...,

√
λt).

Thereby, Kernel PCA computes the eigenvectors of the covariance matrix of the data
in feature space. Although this space, as well as the data coordinates therein, is unknown,
the kernel maps to the data’s Gram matrix of inner products in feature space. Based on
the assumption of the correctness of a kernel k, the eigendecomposition of G(k) captures the
non-linear relationships in the data by maximizing variance in feature space. As such, Kernel
PCA can be viewed as a generalization of the method metric (classical) MDS by substituting
the utilization of Euclidean dot products to generalized dot products.

It is not surprising that the bottleneck of Kernel PCA is finding the “right” kernel. Since
distance relationships along the possibly non-linear sub-structures of the data are, in general,
a-priori unknown, the definition of a suitable kernel requires explicit knowledge about the
data. If this knowledge is not given, methods are better suited that determine distance
relationships along non-linear data structures in an unsupervised data-driven manner. This
is the concept of manifold learning.

2.2 Manifold Learning
Projection-based methods work well for data that fit approximately to a linear subspace.
When this is not the case, the hope for dimension reduction is that the data follow at
least a non-linear pattern, i.e., they lie on a manifold. The methods considered in this
section are able to learn (and depict) proximity relationships of data points on (non-linear)
manifolds in an unsupervised manner. While mappings from projection-based methods can
be described by linear transformations that capture known proximity relationships, this is
not the case for manifold learning techniques. In particular, these techniques abstract from
Euclidean distance relationships and capture distances along a manifold. Figure 2 illustrates
the difference between projection and manifold learning based mappings.

There are two distinct approaches to learn unknown proximity relationships. These
approaches are based on the data being of metric or non-metric dissimilarity. To model
metric distances on a manifold, graph-based techniques are often used that retrieve local
distance relationships in a data-driven way and project the data based on these metric
distances. However, there are various applications that require the display of non-metric
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Figure 2 In this example, data sampled from a non-linear three-dimensional manifold (A) are
mapped by a projection-based method (B) and by a manifold learning technique (C). In (B), the
projection of the data is a linear transformation that optimally captures Euclidean distances. In
(C), distance relationships along the manifold are captured by a non-linear mapping of the data.
This figure derives from [21].

dissimilarity relationships. This problem cannot be solved by graph-based methods but only
through a direct minimization of the mapping error in the embedding. This leads to the
optimization of a non-convex stress function. Consequently, stress-based methods are prone
to local minima and often slow convergence.

Graph-based methods can be divided into two classes: global and local modeling. Global
approaches first learn proximity relationships on a locally low-dimensional sub-manifold and,
second, depict these relationships using, for example, projection-based methods like metric
MDS. Local graph-based modeling follows a divide and conquer approach. The idea is to
divide the data into small groups and to solve this embedding locally. Local systems are then
“pieced together” based on overlapping or fixation points. Although the projection step finds
the global optimum for the embedding, the initial retrieval of distance relationships is based
on optimization problems such as shortest path problems, least squares fits, or semidefinite
programming. In this regard, graph-based methods are also prone to local minima or higher
computational cost.

2.2.1 Non-metric MDS
The ability of metric MDS to map data relationships from a dissimilarity matrix is based
on the key assumption that dissimilarities are approximate squared metric distances. As
for all spectral methods, this allows for the computation of a global optimal projection.
However, this also limits its application and prohibits non-metric scenarios, for example,
stemming from psychometric research where metric postulates do not hold. Instead of this
eigendecomposition approach, the idea of non-metric Multidimensional Scaling is to directly
minimize the mapping error (2) with respect to a given non-metric dissimilarity matrix and
possibly some weighting thereof. Unfortunately, due to the non-metric nature, the resulting
stress function is non-convex and optimization thereof is prone to local minima.

For a perfect projection, it holds that εMDS(∆, Y,W ) = 0, where ∆ is the input,
Y the output, and W an optional (arbitrary) weighting. One way to approximate the
solution is through a steepest descent approach, for example, with the Euler method [1].
Thereby, a step-wise iteration towards zero, where the (k + 1)th iteration has the form
Y (k+1) = Y (k) + α(k)∇εMDS(∆, Y (k),W ), converges to a local minimum. The step size
α(k) can be constant or can be computed by means of line search. A disadvantage of this
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method is its slow convergence near a minimum. An approach to avoid this is to use higher-
level, gradient-descent-type methods, for example, Newton’s methods [12]. These methods
converge more quickly at a higher computational cost.

The exact embedding of non-metric dissimilarities in a metric target space is impossible.
However, in non-metric MDS, the rank-order of dissimilarities is assumed to contain the most
significant information, and the main goal of the approach is to depict the rank-order in its
output configuration. A well-known approach to non-metric MDS is the Shepard-Kruskal
algorithm [15]. At its core is a twofold optimization process that optimizes the goodness of
fit with regard to the non-metric input. First, an optimal monotonic transformation of the
non-metric dissimilarities to metric distances is found that preserves the rank-order of non-
metric inputs. After the optimization of the rank-order distances, the output configuration
is further improved iteratively, balancing both stress and monotonicity.

MDS is in all respects a hard non-convex optimization problem. Using a good initialization
is therefore important. Numerous variants of MDS exist and many other methods are closely
related, like Sammon’s mapping [22]. Especially multi-level approaches have substantially
increased performance [10]. For an overview, reference [2] is helpful.

2.2.2 Isomap
Instead of learning the embedding directly in target space, Isomap [27] attempts to explicitly
model non-linear proximity relationships in terms of geodesic distances. As such, it can
be viewed as a variant of metric MDS to model non-linear data using its (metric) geodesic
distances. In order to retrieve these distances, a global graph-based optimization approach is
utilized.

Geodesic distances are learned by linearly approximating the non-linear manifold. Thereby,
a network of undirected neighborhood graphs is constructed in which each data point is
a node and has edges to its neighbors that are weighted by the points’ dissimilarity. The
weights represent the local approximation of geodesic distances on the manifold. From these
graphs, a square geodesic distance matrix is computed which is used for the metric MDS
projection. The essential steps can be summarized as follows:
1. For each data point xi compute an undirected k-neighborhood graph based on the k

points of smallest dissimilarity to xi and assign this dissimilarity as the edge’s weight.1

2. The (n × n) matrix of geodesic distances ∆̃ is found by computing the shortest paths
through the network of neighborhood graphs.2

3. Project the data using ∆̃ and metric MDS, as described in Section 2.1.2.

One problem of Isomap is that after double-centering of the geodesic distances, the Gram
matrix of inner products is not guaranteed to be positive semidefinite. One variant that
solves this issue is Maximum Variance Unfolding (MVU) [29]. The underlying idea behind
MVU is to unfold the manifold under the constraint that local distances between neighboring
points are preserved. This is optimized with respect to maximum variance.

Note that the lower-dimensional embedding of geodesic distances by Isomap involves
the eigendecomposition of a dense (n × n) matrix. Like with metric MDS, this leads to
significant computational effort. Further variants exist that tackle this problem, for example,
by integrating a local approach [25].

1 Often a threshold is used to model disconnected sub-manifolds.
2 This can be computed, for example, using Dijkstra’s algorithm[7].
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2.2.3 Locally Linear Embedding (LLE)

In contrast to modeling a manifold by global geodesic distance relationships, LLE [21]
models the manifold by extracting its local intrinsic geometry. Thereby, LLE follows a local
graph-based approach. The basic idea of LLE is based on the linear approximation of all data
points (in complex non-linear structures) by a convex linear combination of its neighborhood.
Formally, this assumption can be described by the following equation which has to hold for
all data points xi ∈ X and their surrounding neighbors Ni,

xi =
∑
xj∈Ni

Wi,jxj (9)

with 0 ≤ Wi,j ≤ 1,
∑
xj∈Ni

Wi,j = 1, and Wi,i = 0, for 1 ≤ i, j ≤ n. The local intrinsic
geometry has the appealing property that it stays unchanged under transformations like
translation, rotation or scaling. Hence, the local linear relationships of points in data space
directly define the intrinsic geometry for the output points to target space. The weights
Wi,j are approximated by solving a least squares problem based on a k-neighborhood graph.
In contrast to Isomap, LLE models nearest neighbors by directed graphs which leads to a
more suitable approximation. With these local relationships, LLE constructs a set of global
equations for the projection to target space. The method is summarized as follows:
1. For each data point xi, compute the k neighbors Ni that are nearest to xi with respect

to the distance function δm.
2. Compute the weights Wi,j that minimize the equation

∑n
i=1 |xi −

∑n
j=1 Wi,jxj |2 and

satisfy the constraints, Wi,j = 0 if xj is not a neighbor of xi, Wi,i = 0 and
∑n
j=1 Wi,j = 1

for all 1 ≤ i ≤ n.
3. Compute the output points yi that minimize the equation

∑n
i=1 |yi −

∑n
j=1 Wi,jyj |2.

As with Isomap, the data projection step is done by solving an n× n eigenproblem that
is based on the global weight matrix W . Due to the locality of LLE, this weight matrix is
sparse which leads to a significant advantage in terms of computation speed. The projection
is defined by the bottom t+ 1 3 eigenvectors of the matrix (I −W )T (I −W ) that can be
computed without a full matrix diagonalization [6].

3 Current State of Research

Having introduced the main concepts of dimension reduction that can be utilized for visual-
ization, this section reviews more recent work. We compare the two dominant and distinct
approaches to non-linear dimensionality reduction, namely graph- and stress-based methods.
We review one representative paper of each approach, each one being both state-of-the-art and
comparable in terms of similar goals and assumptions. Because both methods stem from a
different background, it is likely that they have been developed independently from each other.
Our goal is to infer common trends, relations, and solutions of these independent research
streams that both solve the problem of finding optimal lower-dimensional embeddings for
non-linear multivariate data.

3 The bottom eigenvector is a unit vector and is discarded to enforce the constraint that the embeddings
have zero mean. Here, bottom refers to the ordering imposed by largest to lowest corresponding
eigenvalues.
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3.1 Piecewise Laplacian-based Projection (PLP)
Similar to LLE, PLP [19] makes the assumption that every data point xi can be approximated
by a convex combination of its neighbors xj ∈ Ni based on weights Wi,j . While LLE finds
those weights through optimization, PLP uses pre-defined weights according to:

Wi,j = 1
δm(xi, xj)

/ ∑
xk∈Ni

1
δm(xi, xk) (10)

with δm being the metric distance function of the data space. Due to those pre-defined
weights, the projection has no unique solution. Therefore, a set of global control points is
added on a divide-and-conquer basis to solve this problem. PLP divides the data in smaller
subsets, each contributing a number of control points that are globally projected to preserve
global relationships among subsets. This procedure allows for corrections based on user
input, which makes this method interactive. PLP is defined by the following steps:
1. Separate X into s =

√
n different samples Sj for 1 ≤ j ≤ s. 4

2. For each sample Sj define the neighborhoods Ni ⊆ Sj for each xi ∈ Sj and a set of
control points Cj ⊆ Sj .

3. Globally project all control points C = C1 ∪ . . . ∪ Cs from �m to �t.
4. For each sample Sj , construct and solve a separate local linear system but based only on

the local variables Cj and the neighborhoods Ni ⊆ Sj .
5. Present the resulting projected data points Y to the user who can redefine the neighbor-

hoods. Based on the new neighborhoods, repeat the method from step three.
Paulovich et. al. [19] set the number of neighbors k to ten and the number of control points
in each sample Si to

√
|Si| 5, which ensures that the number of control points of a sample

corresponds to its sample size. The set of global control points C can be embedded by any
appropriate mapping, for example, Paulovich et. al. use the stress-based Force Scheme [26].

After the local linear systems have been solved for each sample, the user can interact
with the projected data set through its representation as a k-nearest neighbor graph and
adjust neighborhoods or samples by simply moving data points within the embedding. Due
to the used multi-level approach, only the linear systems of samples have to be recomputed
in which the neighborhoods have been changed. Consequently, PLP can learn the embedding
of large high-dimensional data sets in a semi-supervised manner.

If data do not come in a tagged format, partitioning them into samples is done by
clustering methods. On the one hand, the multi-level approach leads to significantly smaller
total computational cost since the linear systems, which are solved at step four, are now
smaller. On the other hand, important global features may be missed due to this approach.
Since the control points (randomly chosen) set the frame for global relation of local patches,
there is no guaranty that global features can be preserved in all cases. However, the novel
option of user interaction likely compensates for this scenario.

3.2 Multigrid Multidimensional Scaling (MG-MDS)
As a variant of multidimensional scaling, MG-MDS [3] is based on the direct optimization
of the weighted mapping error as a stress function εφ given by (2), although, the method

4 Note that
√

n is an upper bound for the number of groups in a data set of size n [18]. More sophisticated
estimation schemes may also be used.

5 Note that the total number of control points amounts to n3/4
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requires distances to be metric. In contrast to PLP, weights in MG-MDS can be arbitrary and
do not represent a convex combination. The basic idea is to re-state the problem of finding
φ = arg minφ ε(φ(X); ∆,W ) with respect to the gradient-descent-type method as a problem
of finding φ with ∇ε( φ(X); ∆,W ) = 0 and to embed this problem into a multigrid approach,
through which substantial performance improvements can be achieved. A simplified view
of MG-MDS is that the re-stated problem is first solved for a core, a small subset of all
data points. But instead of a one-step projection of the remaining data points, each of the
remaining data points is projected separately, in a step-by-step projection. Hence, to project
one of the remaining data points, not only the projected core but all the so far projected
points are used. Obviously, this increases the computational cost, but approximation errors,
which occur during a big, one-step projection, can be counteracted.

MG-MDS constructs a hierarchy of grids from the data set X such that for X =
{xi1 , . . . , xin}, the hierarchy is defined by choosing xin randomly chosen from X and picking
xik from k = n− 1 to k = 1 so that the following equation holds:

xik = arg max
x∈X

min
l=k+1,...,n

δ(x, xil) for 1 ≤ k ≤ n− 1.

In other words, xik is a data point with maximal distance to all data points with higher
hierarchy level. Each grid level k holds the set of all data points of the hierarchy level
equal or higher than k, i.e., Xk = {xik , . . . , xin}. To transfer between grid levels, multi-grid
approaches offer restriction P k+1

k and interpolation matrices P k−1
k , such thatNk−1 = P k+1

k Nk
and Nk−1 = P k−1

k Nk. Additionally, a corresponding stress function εk, based on Xk,∆k,
and Wk, determines the error.

Choosing a maximal grid level R, MG-MDS is summarized by the following steps:
1. If r = R, solve minXR

sR(XR, TR) by using Euler’s or Newton’s methods which are based
on the gradient of sR.

2. Otherwise, go from grid r to r + 1, using P r+1
r and ∇sr, changing also W and ∆.

3. Apply recursively the MG-MDS method to Xr+1 and use P rr+1 to get from grid r + 1
back to grid r.

4. During each movement from one grid to the next, a relaxation using an SMACOF-type
method [2] is needed to smooth the errors which occur during the movement.

Note that the existence of P r+1
r and P r−1

r for all R ≤ r ≤ n is a weaker form of the
convex neighborhood assumption of LLE or PLP. P r+1

r and P r−1
r can be found if the data

points in grid level r belong to the convex combination of the points in r + 1, and r − 1
respectively.

3.3 Comparison
Both approaches of stress optimization and spectral decomposition solve the problem of
visualizing non-linear multivariate data. However, they achieve this in completely different
ways. A comparison between them is difficult because stress optimization solves the much
harder problem of embedding non-metric distance relationships, while spectral methods are
restricted to metric ones. Nevertheless, such a comparison has the potential of inferring
valuable insights on what generic ideas and solutions help with the problem at hand. For this,
MG-MDS was chosen as a representative over numerous other state-of-the-art methods that
follow the stress optimization approach, because its unique advantages are also restricted to the
input being metric dissimilarities. Here, the relations between both methods are qualitatively
discussed and their suitability for different scenarios is assessed. This comparison is based on
the crucial factors that may delimit their application: online behavior, parametrization, and
computational cost.
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Assumptions

PLP (like LLE) makes the assumption that each data point can be represented by a convex
combination of its nearest neighbors. Thereby, the data are approximated by a set of linear
patches. MG-MDS, on the other hand, is based on the minimization of the stress function
through gradient methods and uses only a weak form of this assumption.6 Hence, for data
sets where the convex combination property does not hold, no suitable neighborhood can
be found, or when the computation of the neighborhoods is too costly, MG-MDS is better
suited to solve the problem.

Relations

PLP and MG-MDS are similar in the sense that they do not use the whole data set at once.
Instead, they use a small subset for the costly core projection7 and then project the rest of
the data with a faster method which uses the core projection. This is a definite trend and
saves a significant amount of time. However, this approach requires the data set to be of
sufficient size in order for a good initial core projection to be possible. Hence, for smaller
data sets, methods like LLE are preferable.

Online behavior

Considering online scenarios where an existing solution is to be adjusted with regard to new
data, PLP is better suited for such purpose than MG-MDS. 8 With PLP, new data points
do not chance the global projection but only the local linear system within the sample which
can be computed with comparably low computational cost. In this regard, MG-MDS has
to be redone for grid levels in which the new data points occur. Although, most likely, the
maximal grid level r = R stays unchanged, the overall computational cost is higher. Both
methods, however, are based on the dimension of the data points. For online scenarios where,
instead of new points, new dimensions are added to the already existing data, methods solely
based on local intrinsic geometry (like LLE) are advantageous. In any case, local methods
are preferable for online scenarios.

Parameterization

When little is known of a data set, an extensive list of parameters often represents a burden
for the analyst. However, in a visual analytics environment, the ability to tweak the mapping
based on knowledge and interaction is a definite advantage. Additionally, expert knowledge
is utilized that simplifies the problem of embedding. PLP requires knowledge of the "right"
clustering technique, the number of clusters in the data set, the number of control points, as
well as knowledge for defining the "right" neighborhood. This requires the user to have a good
initial assessment on the data’s structure and their global features. Therefore, when no expert
is available, MG-MDS is the safer choice because it requires less user parameters (maximal
grid level and core gradient method). On the other hand, PLP’s ability to iteratively refine
the mapping based on user interaction makes the method more suitable for visual exploration
and allows one to infer this knowledge over time.

6 In MG-MDS, the convex combination is only a sufficient condition but does not have to hold for all
data points and also does not include neighborhood relations.

7 Either the projection of the control points or the calculation at the maximal grid level r = R.
8 It is assumed that the new data points are not taken as control points.
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Computational cost

Another limiting factor for the suitability of dimension reduction methods with regard to
many applications are their computational costs. The cost for computing a neighborhood
graph depends on the form the data are given in. In case of a distance matrix, the cost
to construct a k-neighborhood graph amounts to O(k · n) for each of the n data points.
If the data are given as an m-dimensional point set, the computational cost to define the
neighborhood for each data point is O(m · n2). Although, in some cases, space partitioning
data structures like K-D trees [8] can reduce this cost to O(n · logn), their suitability for
higher-dimensional spaces is an open research question. We therefore denote the cost to
compute the distance matrix by O(Distance), while the cost to compute a k-neighborhood
graph is denoted by O(Neighbors). With these considerations in mind, the computational
costs of these two methods are:

PLP O(Distances) +O(n3/2) +O(n9/4) +O(s·Samplen/s) with s =
√
n being the number

of samples and O(Samplen/s) the computational cost for each sample with size n/s. For
this, a uniform size over all samples is assumed. O(Samplek) is defined as O(Samplek) =
O(k3/2) +O(k3/2)+ the computational costs to solve a linear system of size k× (k+

√
k),

with
√
k being the number of control points in the sample. The two other terms are the

cost to find the samples using a clustering method and the global projection of all n3/4

control points using any O(n3) projection method.
MG-MDS O((n−R)n2) +O(2Rn2) +O(Distances), with R being the maximal grid level.

The first term is for the core projection of grid level r = R using Euler’s Method. The
second term is for movement between these r many grid levels. By using more complex
methods than Euler’s method, the computational cost increases while the value of the
stress function decreases. Based on the same considerations as those made by PLP, it
seems that R = n−

√
n is a fair initial guess for the maximal grid level.

Note that these terms are all upper bounds. The actual computational cost can be far
smaller. For example, in PLP, much effort is saved since the computation of the samples and
control points uses the clustering results for the computation of the neighborhoods. Also,
data may already come in a gridded or tagged form that these algorithms can use and take
advantage of.

4 Conclusion

Research on dimension reduction continues at a rapid pace. This survey provides an
introduction to the main concepts of dimension reduction for visualization: from linear data
projection to graph- and stress-based manifold learning. Although being non-exhaustive, the
comparison of state-of-the-art methods that follow the graph- or stress-based approach shows
that no single method can be preferred over another. On the contrary, the effectiveness
of state-of-the-art methods mainly depends on the data and application. However, the
comparison also shows that there are similar research directions. At present, especially
multi-level approaches show great potential and form one of the dominant research directions
in both graph- and stress-based manifold learning.

Motivation for ongoing work includes manifolds of complex non-linear geometry, more
flexible and interactive embeddings, better encoding of information, and scalability to data
sets of peta-scale sizes. We believe that only through the incorporation of multiple concepts
from different research fields, can methods for dimension reduction keep pace with future
problems. Due to the increasing complexity of high-dimensional data sets, a two-dimensional
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target space is not sufficient for the embedding. There is a major gap to close to the
concepts of information visualization that may be used to gain additional degrees of freedom
in an embedding. Furthermore, these concepts can help with better interpretability and
interactivity in adjusting both view and model of the lower-dimensional mapping. Data
analysis also requires the incorporation of level-of-detail approaches for data abstraction
and new concepts for visual verification that evaluate the error and ambiguity of a mapping.
As we have discussed, the focus of state-of-the-art methods has already changed towards
semi-supervised learning that incorporates user knowledge into mapping and visualization,
thereby allowing an effective visual exploration. It is likely that these knowledge-based
algorithms will continue to evolve and gain in importance.
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