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Abstract
Analysis of chemical constituents from mass spectrometry of aerosols involves non-negative matrix factorization,
an approximation of high-dimensional data in lower-dimensional space. The associated optimization problem is
non-convex, resulting in crude approximation errors that are not accessible to scientists. To address this short-
coming, we introduce a new methodology for user-guided error-aware data factorization that entails an assessment
of the amount of information contributed by each dimension of the approximation, an effective combination of
visualization techniques to highlight, filter, and analyze error features, as well as a novel means to interactively
refine factorizations. A case study and the domain-expert feedback provided by the collaborating atmospheric
scientists illustrate that our method effectively communicates errors of such numerical optimization results and
facilitates the computation of high-quality data factorizations in a simple and intuitive manner.

Categories and Subject Descriptors (according to ACM CCS):

I.5.5 [Pattern Recognition]: Design Methodology—Feature evaluation and selection

1. Introduction

Atmospheric particles have been shown to increase morbid-

ity and mortality in urban areas and to alter the Earth’s radia-

tive energy balance. An important step in tackling this prob-

lem is to elucidate the chemical compounds of ambient air-

borne particles. A single particle mass spectrometer (SPMS)

now chemically analyzes individual aerosol particles in real

time, providing unprecedentedly rich data sets for air quality

and climate research. These data sets contain the mass spec-

tra of collected particles, thereby describing particles based

on their distribution of ions by mass. An exemplary mass

spectrum is shown in Figure 1. These histograms are stored

and interpreted as points in high-dimensional space for con-

secutive analysis of their comprised chemical compounds.

As mass is ambiguous, various ions may contribute to

each coordinate/dimension and SPMS mass spectra do not

lend themselves to a straightforward deduction of chemical

compounds. The corresponding optimization problem can be

described as follows: given data that is derived from a com-

bination of unknown compounds in unknown abundance and

combination, the goal is to factor out both unknowns, pro-

vided only with an estimate of the number of compounds

and an assumption of their mixing model. A basis transfor-

mation is to be found that models the observed spectra as

a linear combination of the spectra arising from each of the

chemical compounds, such that linear combinations of this

basis forms the observed mass spectra. Physical and chem-

ical constraints further dictate both basis and coefficients

to be non-negative, rendering spectral decompositions inap-

plicable and the optimization problem non-convex. Conse-

quently, approximations can only be computed iteratively

by gradient-based approaches such as non-negative matrix

factorization (NMF) [EGG∗12] and currently known algo-

rithms can only produce sub-optimal results. The approxi-

mation error, defined as the discrepancy between data and its

lower-dimensional approximation, of mere locally optimal

approximations deviates significantly from that of a globally

optimal solution. Therefore, the quality of approximations

needs to be assessed by the scientist. The visual communica-

tion of errors in non-negative matrix factorization, however,

has not yet been studied in visualization research and com-

mon visualization tools are not applicable to this problem.

We introduce a new methodology to visual analysis of ap-

proximation errors in non-negative matrix factorization that

includes (i) an approach to assess the quality of a factor-

ization basis, (ii) a visualization of factorization errors, and
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Figure 1: The mass spectrum of an aerosol represents a pat-
tern (coordinates) that quantifies the abundance of inher-
ent fragment ions (peak labels) per mass (dimensions). Data
factorization provides lower-dimensional representations of
aerosols in terms of latent components of these patterns.

(iii) means to interactively minimize specific errors. During

analysis, the scientist can compare the numerical benefit in

introducing a basis vector that minimizes error features se-

lected in the visualization against the benefit of each vector

currently in the basis. Following this methodology, the sci-

entist can improve the factorization quality and consequently

overcome “being stuck” in local minima of non-convex opti-

mization. Due to the high degree of interactivity in this anal-

ysis, our method also provides an awareness about the in-

formation loss associated with the dimension reduction pro-

cess and allows for an educated decision regarding the de-

gree of freedom needed to approximate high-dimensional

data. Thereby, we contribute to applications including, but

not limited to, air quality research, by providing novel means

to elucidate chemical species content of MS spectra from

any wide range of sources. The core of our methodology can

further be generalized and applied to other settings of non-

convex linear approximation of high-dimensional data.

The remainder of the paper is structured as follows. Sec-

tion 2 discusses related work in matrix factorization, visu-

alization, and air quality research, while Section 3 provides

the necessary background for our effort. Section 4 describes

our method, entailing a description of our methodology, the

projection of factorization errors, our approach to interac-

tive analysis and refinement of the factorization, as well as

implementation remarks. Section 5 demonstrates how this

method is effectively applied in the factorization of SPMS

data and evaluated with respect to its ability to produce new

insights to the application of air quality research. Finally,

concluding remarks are given in Section 6.

2. Related Work

Non-negative matrix factorization (NMF) [CJ10] computes

a non-negative linear basis transformation that approximates

high-dimensional data in lower-dimensional space. Thereby,

a matrix is factorized into two matrices, representing a basis

and corresponding coefficients. In air quality research, NMF

is used to identify chemical constituents and consequently

classify spectra in particle types [KBHH05]. As opposed to

classical data mining approaches [ZIN∗08], NMF is poten-

tially more suitable to support in the interpretation of data

from single particle mass spectrometers (SPMS), as it pro-

vides non-binary classification of spectra in terms of non-

negative combination of latent physical components. Mass is

inherently non-negative, as is the composition of spectra into

components, rendering non-negativity an integral property

for analyzing SPMS data. The NMF method analyzed in this

work is based on the original research discussed in [KP08]

and [WR10]. The former provides a framework for alternat-

ing non-negative least squares, while the latter shows how

the use of a decorrelation regularization term derives inde-

pendent components in non-negative data. Section 4.4 de-

scribes a computationally more efficient formulation of the

algorithm. A common problem with the approaches men-

tioned above is that they minimize a non-convex objective

function and consequently suffer from the presence of lo-

cal optima. In addition to finding an optimal solution, inter-

pretability is often the greatest problem when working with

dimension reduction. Making results more accessible to do-

main scientists is an ongoing visualization research problem.

In the field of visualization, visual steering of explo-

ration [SLY∗09] and simulations [LGD∗05, WFR∗10] has

become a well-established research areas. Enabling user

interaction in dimension reduction has demonstrated sim-

ilar success [PEP∗11] and proven that user-guided ap-

proaches in data analysis can excel unsupervised meth-

ods in terms of quality and interpretability. However, visu-

ally interfacing practical engineering optimization has not

been a focus of visualization research. Although, visual-

izing high-dimensional data factorizations can be regarded

as part of multivariate data visualization [WGK10]. Driven

by applications, research focuses on better representation

of specific data properties (e.g., scientific point cloud data

[OHJS10]), better incorporation of domain-appropriate anal-

ysis techniques (like brushing and filtering [JBS08]), un-

certainty visualization [CCM09], or computational speed

gains [IMO09]. Other research in this area has focused

on enhanced cluster visualization [JLJC05, RZH12], brush-

ing techniques [EDF08, HLD02], abstraction [WBP07], and

clutter reduction [YPWR03, FR11] to enable data compre-

hension. However, due to the high complexity and dimen-

sionality of SPMS data, as well as the fixed order of dimen-

sions in the mass spectrum, many approaches as, for exam-

ple, clustering, transfer functions, dimension reordering, or

edge-bundling, are not feasible for the visualization of fac-

torization errors.

Recent work [EGG∗12] demonstrates that SPMS data

analysis can greatly benefit from visualization. Factoriza-

tion errors were visualized by depicting residuals for every

data point in every dimension. Being based on parallel coor-

dinates [Ins09], the visualization can become highly dense
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Figure 2: Previous work visualizes the errors produced by
SPMS data factorization in high detail. Due to data com-
plexity and dimensionality, this representation is prone to vi-
sual clutter and fails to provide an overview to analysts who
are faced with the problem of identifying, classifying, and
analyzing error features.

and cluttered, rendering it unsuitable to analyze factoriza-

tion errors for large data sets without overview. An example

is given in Figure 2. In contrast, the present work focuses on

visualizing and analyzing these errors. We introduce a new

projection designed to convey an overview of approximation

errors by severeness, type, and abundance. We provide this

overview in addition to detailed representations and describe

a complete methodology to SPMS factorization analysis.

3. Requirements Analysis

In the following, a brief account of the application back-

ground is given, as well as a problem definition that involves

a description of errors in SPMS factorization and our termi-

nology used in this paper. Finally, we describe the tasks and

requirements arising from this problem for the application of

air quality research.

3.1. Application background

Single particle mass spectrometry (SPMS) is used to ana-

lyze individual aerosol particles at sampling sites of atmo-

spheric interest. Processing of these mass spectra enables at-

mospheric scientists to categorize the large number of spec-

tra obtained into useful clusters of identified particle types.

The mass spectrum of a particle represents a function that

maps the abundance of fragment ions per mass over elemen-
tal charge (m/z). Discretized in bins of 1 m/z, the SPMS ana-

lyzer employed in this work captures the first 256 m/z ratios.

The resulting histogram is stored as a 256-dimensional vec-

tor, where each coordinate corresponds to the abundance of

fragment ions having an m/z ratio within the dimension’s

section of the discretized spectrum.

Particle composition can be described by the linear com-

bination of latent sub-fragments - the particle’s chemical

constituents. Consequently, SPMS data X ∈�+
(n×m), hold-

ing n particle spectra discretized in m dimensions, can be

described by the m-dimensional mass spectra of fragment

ions as a basis B to X , such that X =CB+N. B ∈�+
(k×m)

is the matrix storing (row-wise) basis vectors, such that X
is derived with the coefficient matrix C ∈ �+

(n×k) and the

noise N induced by the instrument. Note that all coordinates

are non-negative. The problem is ill-posed because C, B, and

N, as well as k are unknown, rendering the factorization of

SPMS data by an independent basis inherently non-convex.

However, NMF can cope with these conditions and produce

viable solutions to the problem.

Non-negative matrix factorization (NMF) computes a ba-

sis B and coefficients C, by minimizing the mapping error,

J = ||X −CB||2F → min, (1)

subject to all values in C and B being non-negative. ||.||F de-

notes the Frobenius norm. The dominant approach for min-

imizing J is by updating C and B at each position by its

gradient. We apply an alternating two-block optimization

scheme according to [KP08] and use multiplicative update

rules described in [LS00]. We note that minimizing one ma-

trix, while the other is fix, represents a convex optimization

problem and we first update C while keeping B fix. Thus, if

the basis is initially globally optimal, the optimization con-

verges to equally optimal coefficients.

In addition to minimizing the overall mapping error J,

feature independence is imposed to the optimization. In the

context of mass spectrometry, this criterion is understood as

the goal of mutually decorrelating the coefficients of basis

vectors, which is described by the objective function JC and

defined by the squared Frobenius norm of the uncentered

correlation matrix,

JC = ∑
1≤i, j≤k

(
(CTC)i, j

||C•,i||F ||C•, j||F

)2

→ min. (2)

Thereby, the partial derivative of JC is evaluated at each po-

sition of C for each update. Although this approach to NMF

is both flexible and powerful, given the complexity of the

problem, drawbacks lie with a slow convergence speed, a

proneness to become “stuck” in local optima, and the re-

quired input on the number of basis vectors k. While com-

putational speed can be improved by a GPU implementation,

as described in Section 4.4, the latter two problems can most

likely not be solved algorithmically. We contribute to solving

these problems by describing an error-based methodology to

interactive factorization analysis that aids scientists both in

uncovering local optima and in making an educated deci-

sion concerning the trade-off between basis dimensionality

and approximation error.

3.2. Errors in SPMS data factorization

Several errors are involved in the various stages prior to

SPMS data analysis including, but not limited to, data ac-

quisition, sensor measurements, bit noise, integration of the
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mass spectra, dimension reduction, gradient descent, and vi-

sual mapping. While many of these errors are marginal or

cannot be determined, the errors introduced by dimension re-

duction can be both considerably large and determined based

on the original data as ground truth. Given the complex-

ity of high-dimensional SPMS data (that is almost of com-

plete rank), any approximation to lower-dimensional space

produces errors. However, given the non-convex nature of

our optimization, for which globally optimal results can-

not be expected, analyzing these errors becomes a neces-

sity. Consider a factorization for n data points of dimension

m, X ∈ �+
(n×m), in coefficients C ∈ �+

(n×k) and basis

B ∈ �+
(k×m) for k � m. For the purpose of this work, we

define the error of a factorization as the discrepancy between

the original data and its factorization: X −CB ∈ �(n×m).

Hence, errors are high-dimensional residuals, given by the

misfit for each point in the data. We impose no restrictions

on the errors, as they may be both positive or negative and

of arbitrary magnitude, as depicted in Figure 2.

In addition to the errors introduced by dimension reduc-

tion, a SPMS factorization largely exhibits noise that is as-

sumed to follow a Gaussian distribution (for example, due

to gradient descent optimization and sensory noise). For the

analysis of a suitable factorization basis, these error contri-

butions are of relatively low interest to analysts, as they are

both unavoidable and practically independent of the factor-

ization basis. In contrast, specific error features that are of

interest are those that significantly deviate from a Gaussian

distribution. If these specific error features occur in abun-

dance, it indicates that the factorization basis does not allow

the depiction of these features in the data. This may be either

due to the dimensionality of the basis being set too low, or

due to a sub-optimal factorization basis that does not cover

significant parts of the data.

In this paper, we make use of terms as significance and

optimality. We resort to this terminology with respect to the

quantity of information (variance), as the quality of infor-

mation cannot be assessed numerically. As such, we define

the overall error of a factorization by a norm of its errors

(||X −CB||) and define a factorization to be optimal that pro-

duces a minimal overall error. However, at no point during

analysis do we dismiss any solution due to numerical inef-

ficiency. To determine what may serve as adequate to the

current purpose of analysis is left to the analyst.

3.3. Tasks and Requirements

In order to determine an adequate factorization of SPMS

data, atmospheric scientists have the ultimate task to min-

imize both dimensionality and error of the approximation.

Thereby, the goal is to choose a trade-off between dimen-

sionality and error, admitting identified errors that have been

minimized and are unavoidable due to dimension reduction

for the sake of having a lower-dimensional representation.

However, for mere locally optimal solutions, it is unclear

whether errors are truly minimized and unavoidable. There-

fore, a methodology is needed to assess both (i) the error and

(ii) the quality of a factorization. While the overall approx-

imation error can be computed as described in the previous

section, the quality of a factorization relates to the efficiency

of a basis in approximating the data. Basis efficiency quan-

tifies how much information from the data is represented

in the factorization in relation to a globally optimal solu-

tion given the same degree of freedom. As knowledge of a

globally optimal solution is unknown in general, analyzing

factorization quality requires a human-in-the-loop approach

and the tools to aid in visual analysis.

It is only by the conveyance of both properties (error and

efficiency) that scientists can determine the “right” dimen-

sionality for the basis and an adequate approximation of the

data. Analysis to ascertain basis efficiency must be tightly

coupled with the visualization of error features (and their

significance) to aid the scientist in determining an admis-

sible trade-off, deciding which errors to admit as a conse-

quence of dimension reduction and weighting errors against

dimensionality of the approximation. Finally, this methodol-

ogy to error-based analysis should include the means to sys-

tematically refine factorizations towards minimizing errors.

In summary, the key tasks and requirements for the visual

analysis of errors in SPMS data factorizations are:

1. Visualizing error features:
Error visualization should convey a classification of er-

rors by importance and type, and serve as a basis to con-

duct detailed analysis. A major requirement is the visual

separation of noise from specific error features described

in the previous section. The visualization must convey

how much of the data is factorized with (less significant)

small errors following a normal distribution over all di-

mensions, as opposed to how much of the data is not well

represented, producing errors of (significant) specific fea-

tures, as described in Section 3.2.

2. Analyzing basis efficiency:
In assessing the quality of a factorization, it is important

to understand where errors originate from, as they may

stem from either (i) due to shortcomings of the optimiza-

tion process (local minima) or (ii) due to a necessity in

dimension reduction defined by basis dimensionality. Vi-

sualization should help to answer this question and, when

possible, uncover inefficiencies of the factorization basis

with respect to approximating the data.

3. Refining factorizations:
Once errors are identified during the analysis that are un-

acceptable, an analytical system should entail the refine-

ment of the factorization towards eliminating these er-

rors. A key requirement is interactivity of the data fac-

torization and providing visual feedback concerning the

benefit of adjustments.

Our method aims at satisfying these requirements.

c© 2013 The Author(s)
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4. Method

We describe how factorization quality can be analyzed, sub-

optimality assessed and the factorization be improved. Es-

sential to our approach is a highly visual and analytical

framework that involves the analyst in several key steps.

4.1. Assessing Optimality

Visualizing optimality of a factorization is a challenging

task, as there exists no method that can spot local minima

or quantify their (sub-)optimality effectively. However, con-

sidering the following concept leads to the conclusion that

local minima in non-negative matrix factorization can in fact

be revealed with the help of visualization and interaction.

An optimal data basis must consist of basis vectors that

are all optimal. Consequently, the exchange of one vector

in the basis set must not produce a (numerically) better ap-

proximation. Further, for a sub-optimal basis must hold that

there are better basis vectors that produce less overall error,

with respect to lowering error magnitudes in their abundance

(accumulation according to (1)). Conversely, the presence of

similar errors of high magnitude and abundance directly cor-

responds to a basis vector candidate that is not part of the

current basis, while being numerically beneficial to be in-

cluded. This leads one to conclude that optimality of the ba-

sis can be assessed by comparing the amount of information

currently conveyed by each basis vector against the amount

of information that could be conveyed by basis vector can-

didates. Further, these candidates are directly reflected by

and can be identified based on similar errors of high mag-

nitude and abundance. Consequently, local minima in the

factorization can be revealed by (i) identifying candidates

based on visually assessing error magnitudes, similarity, and

abundance, and (ii) comparing the amount of information

conveyed by the current basis vectors in relation to that of

the candidate. If the candidate allows for the conveyance

of more information than one of the current basis vectors,

then the basis is sub-optimal. In this case, the candidate can

be introduced into the basis, possibly by exchanging one of

the other basis vectors of lower benefit.This concept requires

three aspects: (i) a comparative measure of conveyed infor-

mation per basis vector, (ii) an error visualization focusing

on error magnitudes, similarity, and abundance, and (iii) in-

teractive probing of the error to visually compare the benefit

of each basis vector against that of selected candidates. We

introduce this measure in the following.

In NMF, coefficients are exclusively non-negative. Conse-

quently, each basis vector bi ∈�m only adds to the total ap-

proximation of X ∈�(n×m) according to its coefficients ci ∈
�n and does not delimit other basis vectors’ contributions.

Thus, the overall approximation is decomposed into each ba-

sis vector’s contribution, such that CB = ∑1≤i≤k ci ⊗bi. For

each basis vector’s contribution, we quantify its “gain” by a

norm of the residuals to X . It is possible that such contribu-

tions cover more variance than present in X . Therefore, the

gain of bi must be based on how its contribution matches the

data. Consequently, our gain measure is defined as follows:

gain(bi) = ||X ||1 −||X − ci ⊗bi||1 . (3)

Analysis of this measure facilitates insight into the amount

of information each basis vector introduces in the factoriza-

tion. Thus, spotting a local optimum reduces to identifying

the basis vectors of small gain and comparing them to the

gain of the basis vector candidate that corresponds to the

largest error cluster.

4.2. Projection of Factorization Errors

In the following, we describe the design of a visualization

that focuses on providing an overview of factorization er-

rors, while highlighting error classes for identifying possible

basis vector candidates. Thereby, we rely on two major clas-

sifiers for factorization errors: magnitude and irregularity.

Error magnitudes classify error severeness per data point

by a norm. While different norms may be suitable for this

task depending on the application, we apply the Euclidean

norm to quantify the error magnitudes of SPMS factoriza-

tion, since it emphasizes larger misfits over smaller ones.

Additionally, we classify errors by a measure of irregularity,

similar to Hoyer’s sparsity measure [HR09], that is orthog-

onal to error magnitudes and suggests a misfit in the factor-

ization basis, as opposed to inadequate numerical computa-

tions. With e ∈ �m referring to one of n errors, each con-

sisting of m residuals, this measure of error irregularity is

defined as follows:

α(e) = 1−
cos � (abs(e),1)− 1√

m

1− 1√
m

, where(4)

cos� (abs(e),1) = ||e||1/(||e||2
√

m) .

The dominance of a (sparse) feature in the error is de-

fined by the cosine of the angle between its absolute and

1 ∈�m, the vector of ones in all coordinates. Independent of

the error’s magnitude, it holds a measure of irregularity for

0 ≤ α(e) ≤ 1, where an error of equal absolute coordinates

leads to a value of 0 and a unit vector to 1. Figure 3 illus-

trates how this measure is interpreted to SPMS factorization

errors. Based on this measure, our projection φ , depicting

�

�

�

�

Figure 3: By utilizing a measure of error regularity (left:
regular 
→ 0, right: irregular 
→ 1), the presence of dominant
features in errors can be quantified, allowing for a visual
assessment of noise level.
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(a) Errors of Gaussian noise (scaled) (b) Gaussian noise + irregular errors (c) Overview of SPMS factorization errors

Figure 4: An overview of factorization errors is achieved by projecting errors based on magnitude (vertical axis) and irregu-
larity (horizontal axis). Further classification of error types is provided by color (similarity) and density contours (abundance).

error magnitude and irregularity, is defined as follows:

φ : �m →�2 (5)

e 
→ (α(e), ||e||2)
The y-axis of this projection maps the magnitudes of the fac-

torization errors, while the x-axis maps to α(e), which indi-

cates the dominance of a specific feature in the residuals of

an error, as opposed to showing uniform residuals.

By this mapping, errors of the same magnitude and regu-

larity are mapped to the same locations, regardless of their

coordinates being identical. This problem is inherent to di-

mension reduction and impossible to overcome. However,

it can be at least partially alleviated by a color scheme that

shows additional differences. We define a projection to three

dimensions that assigns color values to each error according

to its spatial configuration in �m. First, the errors X −CB
are normalized to unit scale in order to render the projection

independently of error magnitudes and centered in order to

utilize the full color range. Second, the covariance matrix

is built from this normalized centered matrix. Finally, the

eigenvectors associated with the three largest eigenvalues of

this covariance matrix define the projection into color space.

A suitable color space is, for example, CIElab, as it is uni-

form and of orthogonal basis.

For effective error investigation, the abundance of errors

within ranges of specific magnitude and irregularity must be

accounted for in the visualization. In order to convey infor-

mation about the quantity of errors belonging to the same

classifiers, the visualization must make aware of the concen-

tration of points within regions of the projection. However,

given limited resolution, the specific concentration of points

in a projection is visually impossible to assess for large data

sets. Although interactively zooming into a projection can

unclutter the point configuration, this does not provide quan-

titative insight into the point concentrations within a region.

While assigning opacity values to points, either by the use

of alpha blending or by application of a non-linear transfer

function, can help convey point density, this approach does

not scale well with increasing number of data points.

In order to convey point concentrations within the pro-

jection, we use density field contouring. Thereby, a high-

resolution 2D scalar field is computed that holds, for each

pixel, the number of points projected to this location. Subse-

quently, the field is processed via a convolution step using a

Gaussian filter kernel, which is scaled to have a peak height

of 1 that decreases to 0 over its bandwidth. The Gaussian fil-

ter smoothes the field and accumulates density values in the

locality of its bandwidth, producing a density field. A texture

of contours can be computed, for example, by thresholding

for isovalues in the density field. Contours of equal width in

image space can be realized by setting the threshold depen-

dent on the local gradient of the density field. For further in-

formation on kernel density estimation, we refer to [WJ95].

To summarize the properties of the error visualization de-

fined above, we list the main features in the following:

• Horizontal axis: irregularity of errors (feature domi-

nance)

• Vertical axis: magnitude of errors (Euclidean norm)

• Color: similarity of errors (in �m)

• Contours: local quantity of errors (point density)

Figure 4 shows examples for different data factorizations.

Interaction
The selection of errors in a specific magnitude-distribution

range (regional selection) and/or (sub-)selection of errors

based on their spatial relationship (color selection) in this

visualization can be linked and act as a filtering mechanism

for different high-detail views. Further sub-selection in

high-detail views can effectively identify error features of

a factorization. These features correspond to a potential

c© 2013 The Author(s)
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basis vector candidate that eliminates these errors. In the

following, we describe how the factorization quality can be

assessed based on these candidates and how the basis can be

interactively refined.

4.3. Interactive Refinement

After the selection of errors that are of interest in the in-

teractive analysis process, our methodology entails the vi-

sualization of the potential gain produced by the addition

of the corresponding basis vector candidate. This candidate,

the optimal basis vector that eliminates the selected errors, is

given by the mean of the data points producing it, weighted

by the absolute mean of the errors per coordinate. As such,

the basis vector is introduced that has the exact features of

the data points that are not covered by the factorization. The

coefficient matrix is adjusted projecting all data points onto

the candidate vector and adjusting coefficients of the other

basis vectors in relation to how the candidate allows for a

better representation, while the coefficients for the candidate

vector are generated conversely based on the best fit.

Using this adjusted starting configuration, our NMF

model, as described in Section 3.1, is performed for several

iterations to produce an adequate estimate of the factoriza-

tion quality that is achievable by including the candidate.

Due to the linear nature of the approximation, the gain that

can be expected by the addition of a vector to the basis de-

pends on the magnitude and abundance of spectra covered

by the vector minus the variance between the spectra. Con-

sequently, the gain is highest for introduction of a basis vec-

tor corresponding to an abundance of large errors showing

similar features. However, by defining a basis candidate, the

analyst does not restrict the basis. While the two-block op-

timization scheme will first optimize the coefficients to the

initial basis, consecutive iterations will also update the basis

vectors if they are not optimal. Without delimiting the opti-

mization, this methodology can be used to overcome local

minima, as well as to analyze and refine the basis.

Subsequently to the NMF optimization with adjusted ba-

sis, the gain of the basis prior to adjustment is visualized in

relation to the gain post adjustment in the chart, while the

differences are highlighted in distinct colors. Figure 6 shows

an example of this separate view in our framework. If the

gain of the analysts candidate is larger than that of a basis

vector from the previous basis configuration, then this candi-

date contributes more information to the approximation and,

consequently, a local minimum in the computation has been

uncovered. On the other hand, equally high gain values for

all basis vectors, in spite of high errors, suggest that the de-

gree of freedom is set too low for the basis. By selection

in the bar chart, the analyst can flag any basis vector to be

added or removed from the basis and subsequently trigger

the optimization to be performed again for the desired con-

figuration. Thus, the basis vector that minimizes the selected

errors can be added to the basis, other basis vectors of low

gain can be deleted, or the candidate can be forfeited in order

to continue probing of the errors. As interactivity is an inte-

gral part of this analysis, performing optimization methods

on the GPU is inevitable for large data sets. We describe our

implementation in the following.

4.4. Independence Regulation on the GPU

In [WR10], Wilson et al. described a term for regulating mu-

tual independence between the coefficients of basis vectors

in non-negative mixtures. Although being very robust, their

formulation requires no matrix inversion, making it more

flexible than previous approaches and fast to compute on the

CPU. The update of the coefficient matrix C, applicable to

multiplicative NMF update schemes, that regulates indepen-

dence is based on the derivative of a cost function JC mea-

suring correlation coefficients, as described by (2).

We note that the formulation given in [WR10] of the par-

tial derivative ∂J(C)/∂Ca,b, is not easily realized on a GPU

and can be reformulated more efficiently. By exploiting the

fact that the partial derivatives of the correlation matrix terms

are symmetric and non-zero only in a single row and column,

we can greatly simplify the formulation as follows:

∂J(C)

∂Ca,b
= 4

∣∣∣
∣∣∣Corrb,• ⊗ (6)

(ncnT
c )b,• ⊗Ca,• − Ca,b

ncb
nc ⊗ (CTC)b,•

ncnT 2

c + ε

∣∣∣
∣∣∣
1

Here, ⊗ denotes the element-wise multiplication between

two matrices of the same dimensions, analogously to the di-

vision of ncnT 2

c which is understood as element-wise divi-

sion of the element-wise squared outer product matrix of nc.

The correlation matrix Corr and norm vector nc are given by

Corr = NCCTCNC , (7)

NC = diag(n−1
c ) , and

nc = (||C•,1||F , ..., ||C•,k||F ) .

The formulation (6) requires no index evaluations and only

k accumulations for updating each entry in C, as opposed

to k2. Consequently, computations are significantly faster,

while being solely based on general operations, lending it-

self towards a straightforward implementation on the GPU.

5. Results

The following case study and domain-expert feedback pro-

vided by atmospheric scientists demonstrates the utility of

our method. We have been able to (i) produce factorizations

of considerably higher quality than it was possible before,

(ii) process and analyze ten times more spectra than in pre-

vious studies, and (iii) gain surprising insights enabled by

the visualization.

c© 2013 The Author(s)

c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



Engel et. al. / Towards High-dimensional Data Analysis in Air Quality Research

5.1. Case Study

The data we use as an example was collected from wood

stove exhaust using a single particle mass spectrometer

[LR05]. Factorizations of this data are used to quantify emis-

sion sources of biomass combustion. This aspect is of inter-

est to atmospheric scientists, as biomass combustion is ubiq-

uitous, while being suspected to play a key role in present

day environmental concerns including health effects and cli-

mate change. The Pittsburgh June-July data (X) contains

roughly 70k particle spectra in 256 dimensions and was fac-

torized (in C and B) using an eight-dimensional basis. The

error in this factorization can be quantified in relation to the

data, ||X −CB||F / ||X ||F , producing a value of 31.1%. This

magnitude of information loss is typical for SPMS factoriza-

tion, making the need for analysis apparent. In our investi-

gation, we first gain an overview of these errors in the pro-

jection shown in the center of Figure 5 based on error mag-

nitude (y-axis) and irregularity (x-axis). Snapshots from a

detailed view of selected errors are shown on the sides in the

figure. The depth contouring in the projection shows that the

majority of the data is factorized with good quality (low error

magnitude/irregularity). However, large amounts of spectra

are not well approximated. The contours of the projection

depict two local maxima in error abundance, reflecting the

spectra that are factorized by low and high error magnitude,

respectively, while irregularity increases with magnitude.

These results support the initial assumption that there are

important features in the data that are not covered by the fac-

torization. Coarse classification of these error classes is pro-

vided by the coloring of points in the projection. There are

Figure 5: Errors of the factorization of Pittsburgh source
sampling data, June-July, 2002. Selecting errors by color
and/or region in the projection (center, also shown in Figure
4(c)) effectively filters high-level views and, thereby, makes
possible a detailed data analysis by uncovering errors of
high (right) or low (left) irregularity, magnitude, maxima of
abundance (bottom right), and provides further classifica-
tions by color. Red (bottom left), green (top left), and blue
(top right) error clusters are selected.

(a) Gain in minimiz-

ing green errors

(b) Gain in minimiz-

ing blue errors

(c) Gain in minimiz-

ing red errors

Figure 6: The numerical gain in introducing basis candi-
dates minimizing specific errors is depicted in relation to the
previous basis configuration (red = decrease). Sub-optimal
parts of the factorization exhibit a smaller gain than the ana-
lysts candidate ((a) and (c)). The analyst can add the candi-
date to the basis, delete existing parts, or continue analysis.

three major error clusters visible in the projection, shown by

the local abundance of green, blue, and red points. Selection

of these points allows for detailed investigation of the cor-

responding residuals to be conducted in a high-level view.

This reveals that the error types are characterized by major

misfit of the factorization in the following features: (i) Pb+-

predominant error in green cluster (372 spectra), (ii) NO+,

SiO+ and Fe+ in blue cluster (151 spectra), and (iii) CxH+
y -

predominant in red cluster (7,851 spectra).

Having identified dominant error clusters, we investigate

the gain in minimizing these errors. Figure 6 shows the es-

timated improvement that can be gained by introducing a

basis vector that minimizes each of the error features. While

the (numerical) gain in reducing the error feature outlined

by the blue cluster is relatively low, it is considerably higher

for the green and red clusters. Noticeably, the gain in in-

troducing a basis vector for these clusters is higher than for

other basis vectors (noted by index 0 and 5 in the figure), as

computed by the initial factorization. Consequently, we have

shown that this basis is sub-optimal and have found alterna-

tives that improve the factorization.

As the initial factorization basis is shown to be sub-

optimal in this analysis, the overall error of the factorization

can be decreased, while keeping the same dimensionality of

the basis. With respect to refining the factorization, the sub-

optimal parts of the basis can be deleted and/or the more

suitable vectors (for the red and green error classes) added

to the basis. Subsequently, the factorization is recomputed

with the adjusted basis. In this experiment, we have deleted

the sub-optimal parts and introduced the two candidates of

higher gain instead. After convergence, the refined factoriza-

tion features an overall error of 24.7% in relation to the orig-

inal data. While being restricted to the same dimensionality

of the basis as the initial factorization, these results represent

an improvement of the overall error by 21.5%. An overview

of the remaining error is depicted in Figure 7(a). Noticeably,

both error features that were minimized in our refinement are
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(a) Errors of factorization using

an 8-dimensional basis

(b) Errors of factorization using

a 24-dimensional basis

Figure 7: (a) Controlled refinement of the factorization pro-
duced a decrease of the overall error by 21.5% in relation
to the initial solution. (b) Further decrease was achieved by
increasing the basis dimensionality, here accounting for an
overall error of 14.8% in relation to the original data.

not apparent in the projection. However, there are two new

error clusters distinguishable at the top right corner of the

projection, in addition to the blue cluster. These new clusters

correspond to the two basis vectors that have been deleted in

our refinement. Although of high magnitude and irregularity,

the clusters contain only a small number of spectra.

Our experiments have shown that significant additional

improvement of the factorization for this data set can only be

gained by increasing the dimensionality of the basis. How-

ever, the amount of information that is consequently added

decreases rapidly. Figure 7(b) shows the error projection for

a factorization of this data using a 24-dimensional basis. By

increasing basis dimensionality, an overall error of 14.8%

with respect to the original data was achieved. These results

make apparent the need for visual analysis in data factor-

ization. Looking beyond the scope of this work, results also

indicate that more research needs to be conducted to support

application domains. As such, actively searching for specific

error features may provide analysts with the ability to query

factorization errors and to quantify the quality of the approx-

imation with respect to these features.

5.2. Expert Feedback

The recent advent of single particle and related real time

techniques in atmospheric science has increased the qual-

ity and quantity of available data, so that improvements

in data visualization and comprehension techniques are in-

creasingly desired. Single particle mass spectrometers and

other similar instruments that collect spectra in real time

generate a tremendous amount of data of high dimension-

ality. These huge, complex data sets pose challenges for at-

mospheric scientists that need to analyze the data for vari-

ous endpoints such as emissions source, atmospheric trans-

formations and toxicity. The high dimensionality of the data

also confounds comprehension by the atmospheric scientist

because so few dimensions can be readily observed.

The methods presented here reduce the dimension of the

data set by discovering the bases that underlie the data and

visually present the resulting information to the scientist in a

way that elucidates the factors that establish the basis as rep-

resenting significant pollutant sources or atmospheric trans-

formations. In typical studies, the common bases are hun-

dreds or thousands of times more prevalent than the uncom-

mon ones so techniques for identifying the bases must also

take into account that bases with infrequent spectra may have

lower variability so appear more significant. Data analysis

must not arbitrarily exclude this important information but

instead communicate important basis properties, such as ef-

ficiency, local minima, and information loss, to the scientist.

The system described here supports this objective and en-

ables more accurate and verifiable data analysis. The visu-

alization makes it possible to analyze and classify different

basis sets with respect to information loss and different ob-

jectives. Alternative basis configurations can be readily iden-

tified, by a cluster in the projection, and then selected for

analysis. Visually comparing the efficiency of basis vectors

enables one to explore alternatives and identify new bases,

ultimately producing factorizations of higher quality. The in-

teractive nature of this new tool enables ready exploration of

hypotheses and discovery of aspects of such large data sets

that one might not be able to discover otherwise.

6. Conclusions

It is important and difficult to address the issue of “error” in

any data factorization method and application setting. In our

case, error can be associated with the result of approximating

original data in a lower-dimensional space. The error is di-

rectly influenced by the number of chosen basis vectors and

the efficiency of the basis transformation. This multi-criteria

and non-convex optimization problem cannot be solved in an

optimal way by known algorithms. It is therefore crucially

important to have the data analyst play an integral role in

the entire process of factorization: by specifying the number

of dimensions needed for lower-dimensional approximation,

specifying individual basis vectors, and determining what is

and what is not a “good approximation.” Error quantifica-

tion and visualization, combined with the ability to inter-

actively influence the data factorization/approximation pro-

cess, is thus a highly desirable and crucially important com-

ponent of any system aimed at dramatically reducing the di-

mensionality of a complex and high-dimensional data set to

assist effectively with understanding. Our approach is ex-

actly supporting this objective.
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