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Abstract
Researchers and analysts in modern industrial and academic environments are faced with a daunting amount of
multi-dimensional data. While there has been significant development in the areas of data mining and knowledge
discovery, there is still the need for improved visualizations and generic solutions. The state-of-the-art in visual
analytics and exploratory data visualization is to incorporate more profound analysis methods while focusing on
fast interactive abilities. The common trend in these scenarios is to either visualize an abstraction of the data set
or to better utilize screen-space.
This paper presents a novel technique that combines clustering, dimension reduction and multi-dimensional data
representation to form a multivariate data visualization that incorporates both detail and overview. This amalga-
mation counters the individual drawbacks of common projection and multi-dimensional data visualization tech-
niques, namely ambiguity and clutter. A specific clustering criterion is used to decompose a multi-dimensional data
set into a hierarchical tree structure. This decomposition is embedded in a novel Dimensional Anchor visualiza-
tion through the use of a weighted linear dimension reduction technique. The resulting Structural Decomposition
Tree (SDT) provides not only an insight of the data set’s inherent structure, but also conveys detailed coordinate
value information. Further, fast and intuitive interaction techniques are explored in order to guide the user in
highlighting, brushing, and filtering of the data.

Categories and Subject Descriptors (according to ACM CCS): I.4.4 [IMAGE PROCESSING AND COMPUTER
VISION]: Image Representation—Multidimensional I.5.4 [PATTERN RECOGNITION]: Clustering—Similarity
measures

1. Introduction

Due to enhanced data acquisition and analysis method-
ologies in almost all application domains, more and more
truly massive and high-dimensional data sets are being pro-
duced that require the development of fundamentally new
approaches for analysis. Mathematically based approaches
have recently been demonstrated as being especially valu-
able and promising in this problem domain. However, gain-
ing insight into high-dimensional data by a meaningful vi-
sual representation is a still unsolved research problem.

From the various methods proposed in literature, two fun-
damentally different approaches can be identified: (1) value
and (2) relation visualizations. The first approach focuses
on the visualization of the individual dimension contribu-
tions of each multi-dimensional data point. This is usually
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achieved by specific visual mappings. Parallel coordinates
and color maps are amongst this class of approaches. Al-
though these techniques allow for a quick visual access to
the details of each data point, they lack of an overview and
are usually subject to strong visual clutter. The second group
of visualizations abstracts from those details and aims to vi-
sualize the relations of the points in the high-dimensional
data space. Common means to achieve this are projection
into a low dimensional presentation space. While projections
are an excellent approach for showing relations in the data,
they immensely suffer from ambiguity that are imposed by
dimension reduction. They can easily lead to wrong conclu-
sions about the data set.

This work combines the two distinct approaches of value
and relation visualizations into a single holistic technique
that benefits from both methods. To achieve this a novel
value visualization is embedded into a point projection. Cen-
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tral to our technique is the calculation and display of a struc-
tural decomposition tree (SDT), which

1. removes ambiguities within the low-dimensional point
representation,

2. visualizes the data points’ coordinates together with their
composition, and

3. serves as an efficient tool for visual exploration.

The SDT is designed to convey the composition of a given
data set and is calculated with regard to optimal length and
extend in order to minimize redundancies and clutter. To
achieve this, the data is hierarchically decomposed under the
criterion of commonalities and projected in a way that max-
imizes the distances between branches of different composi-
tion. The SDT provides an overview to general properties of
the data as well as a detailed comparative view to individual
coordinate values. Ambiguities imposed by the projection
are solved by the branch structure. As shown by different
examples, the branch structure is also a great means to iden-
tify clusters of data points.

After the presentation of related work (section 2), we in-
troduce SDTs, discuss related problems, and describe the
main ideas of our approach (section 3). This is followed
by details of the construction of SDTs (section 4), as well
as their interaction mechanisms (section 5). Results are dis-
cussed (section 6) and underlined by a case study (section 7.
Lastly, concluding remarks are summarized (section 8).

2. Related work

Several surveys containing different categorizations of
multi-dimensional (m-D) data visualizations have been pro-
posed, such as [dOL03], [HGM∗97], [GTC01]. For example,
the taxonomy of basic techniques by Ward et al. [WGK10]
is derived by the emphasis on the visual primitives used to
represent the data. We choose to further abstract these tax-
onomies and focus on the information that the visualizations
are to convey, being either coordinate values of data points
or relations between data points. Therefore, we categorize
the field of m-D data visualization into the two basic ap-
proaches of value- and relation visualization.

Value visualizations allow detailed analysis by visualizing
the coordinate values of every data point. Heatmaps, Glyphs,
Scatter Plot Matrices, and Parallel Coordinates can be con-
sidered as members of this category. A common problem
with these techniques is that they are often not scalable with
regard to the amount and dimensionality of the data. The vi-
sualizations become less comprehensible as the number of
dimensions increases and often get cluttered as the number
of data elements increases. Instead of proposing new repre-
sentations for m-D data, researchers have been mainly fo-
cused on overcoming the previously mentioned drawbacks.
The emphasis has been on enhanced cluster visualization
( [JLJC05], [ZYQ∗08], or [AdO04]), brushing techniques
( [EDF08] or [HLD02]), and better utilization of screen

space [MM08]. However, clutter reduction through dimen-
sion ordering ( [PWR04] or [YPWR03]) is often regarded
as the main research focus in the realm of value visualiza-
tions. Based on data point correlations, dimension ordering
techniques focus on the arrangement of dimensions in the
visual representations they are applied to. The research con-
ducted by Ankerst et al. was the first to formally state this
arrangement problem [ABK98]. While these approaches are
great improvements to coordinate visualization techniques,
they still face scalability issues. Even if the dimensions are
ordered and the data filtered perfectly, the information dis-
played may still be overwhelming for the user and no clear
overview can be established.

The second category relation visualization is also referred
to as dimension reduction techniques or point projections in
literature. These techniques display m-D data by projecting
points onto a lower dimensional space, so that distance rela-
tions between points in the projection space reflect specific
relationships between the data points in m-D space. Since
these relationships may be too complex to be completely
conveyed in lower dimensional space, projections are in gen-
eral ambiguous. As one of the first dimension reduction
techniques to be proposed, Principal Components Analysis
(PCA) conveys distance relations in m-D by orthogonally
projecting into a plane that is aligned to capture the greatest
variance of the data. Remarkably, PCA achieves this through
a computationally fast linear transformation. The resulting
projection is a genuine view that does not distort the data.
In contrast, Multidimensional Scaling (MDS) is based on
general similarity measures between data elements and com-
putes a lower dimensional representation accordingly. This
is achieved by formulating an optimization problem that is
computationally more complex than linear transformations
and distorts the data. Similarly to MDS but computation-
ally less expensive for high-dimensional data, linear dimen-
sion reduction may also be weighted by similarities, as intro-
duced by Koren et al. [KC04]. This method is incorporated
into our approach due to its fast, robust, and highly flexi-
ble projection approach. Relation visualizations establish a
good overview and are often incorporated in multi-view sys-
tems as exploratory devices, e.g., as in [POM07]. Depend-
ing on the application, research focuses on better represen-
tation of specific data structures, e.g., scientific point cloud
data [OHJS10], a better incorporation of domain-appropriate
analysis techniques, e.g., brushing and filtering [JBS08], or
computational speed gains ( [IMO09] or [PSN10]).

Successful representations of complex data often utilize
metaphors of commonly understandable concepts, such as
topological landscapes [WBP07]. Projections are especially
hard to interpret since they convey no visual connection to
the original dimensions. However, Dimensional Anchor Vi-
sualizations (DAVs) [HGP99] incorporate similar concepts
by using dimensions as (often interactive) display objects
that determine the mapping of m-D points for their projec-
tion. With the assistance of these understandable visual ref-
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erences, the user may influence and better interpret the pro-
jection process. RadViz [HGM∗97] is an example for DAVs.
It is a technique that illustrates a non-linear projection pro-
cess in the form of spring forces that are connected to each
data point and the Dimensional Anchors. Similarly, the Star
Coordinates approach by Kandogan [Kan01] utilizes an even
more intuitive projection process. This well-known projec-
tion treats DAs as unit vectors that are uniformly distributed
along a circle and maps m-D points by linear combinations,
as shown in Figure 1. We choose this approach as the basis
for our technique due to its intuitive interaction ability and
mapping process. The user may interact with the DAs by
changing their end position, thus creating a new projective
view on the data set. This provides an intuitive interface for
viewing transformations by which the contributions of cer-
tain dimensions can be emphasized or neglected. However,
the effectiveness of the presentation is strongly dependent on
the quality of the initial projection. The approach discussed
in [STTX08] is based on dimension ordering to find initial
arrangements for the DAs in order to attain clusters within
the data set. However, coordinates cannot be conveyed by
these methods and the representation remains ambiguous.

Figure 1: A point P = (d j,1, ...,d j,8) ∈ R8 is projected by
the star coordinate system by the linear combination of its
dimension anchors C1, ...,C8 with the point’s coordinates as
coefficients [Kan01]. However, many points can be projected
to the same location, making this representation highly am-
biguous if linear combinations are not shown.

Few publications exist that combine the two approaches of
value and relation visualizations. To the best of our knowl-
edge, there is no related work that directly resembles our
approach. However, some recent publications have tackled
this combination from other perspectives. The following ap-

proaches integrate a projection method into Parallel Co-
ordinates: Yang et al. [YPWR03] presents an importance-
oriented dimension ordering approach that utilizes PCA,
Johansson et al. [JJ09] propose a dimensionality reduc-
tion method that enables user-defined metrics and use this
method to reduce clutter, enhance clusters and filter outliers,
and Yuan et al. [YGX∗09] allow the abstraction of a sub-
set of dimensions by integrating scattered points arranged
by MDS. Yang et al. have also utilized dimension hierar-
chies [YWRH03] or MDS [YPH∗04] to display relations
between dimensions and used pixel-oriented methods to dis-
play data values in form of glyphs for each dimension. In
comparison, we present a novel approach that integrates a
visualization of coordinates into a linear projection.

3. Main idea

The main idea of SDTs is to show how data points are pro-
jected. For this display, we use the Star Coordinates [Kan01]
as basis. This projection is defined by a linear combination of
unit vectors and coordinates for each dimension. The "pro-
jection path" is intuitively visualized by line segments as
shown in Figure 1. Data point coordinates can be depicted
and a unique path for each data point eliminates the ambigu-
ities of the projection. However, this simple display of lin-
ear combinations increasingly clutters the display when the
number of data points is large, rendering the benefits of the
projection (the overview) useless. SDTs overcome this prob-
lem by having the following characteristics:

(1) In structured data, many points’ coordinates are simi-
lar to some degree. Consequently, large parts of their linear
combinations are similar. Such shared line segments can be
aggregated, resulting in a more compact representation. One
way to achieve this is by edge bundling. However, in this
particular visualization, the information that is encoded in
the orientation of edges (contributions of coordinates in one
dimension) is easily lost when the edge is bent. Instead of
using edge bundling (in geometry space), we compute a hi-
erarchy of linear combinations (in data space) for all data
points. At each level of this hierarchy, additional contribu-
tions explain the data’s composition. The result is a tree in
which each inner node is a compositional limiting point for
the commonalities of succeeding nodes. Data points are the
leafs of this tree and their coordinates are given by the sum
of individual contributions along the path from leaf to ori-
gin (see Figure 2). We use hierarchical clustering to com-
pute this hierarchy and achieve a tree with minimal overall
branch length, thereby greatly reducing redundancies.

(2) Another aspect that highly influences visual clutter is
the Dimensional Anchors’ (DAs) initial arrangement. While
this arrangement problem can be formulated as a 1-D op-
timization problem, this is computationally expensive. In-
stead, we apply a linear projection and use a sophisticated
weighting scheme that greatly enhances the display of this
structure. In particular, this optimizes the starting configu-
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Figure 2: By the representation through dimensional anchors alone (left), a simple but ambiguous view is achieved. Ambiguity
may be solved by the display of the point’s dimension contributions (center). However, this presentation highly clutters the
view due to many and redundant line segments. A tree embedding, based on the structural composition of the data, achieves a
trade-off in form of an unambiguous and less cluttered view (right).

ration of DAs towards maximizing the space between tree
paths.

(3) Special consideration is also placed on the visual rep-
resentation of the SDT. For the different ways to depict
the coordinate contributions, an ordering problem arises. To
guarantee interactive capabilities, we employ a simple but
fast ordering heuristic. In order to further enhance the recog-
nition of data structure, the branches within the SDT encode
the number of elements within this subtree in branch thick-
ness and gray-scale.

(4) Appropriate means for interaction have also been de-
veloped to handle occlusion and guide in exploratory cluster
analysis. Since visual analysis and exploration is indispens-
able, we enhance the intuitive interaction methods of DAs
by novel techniques to aid in brushing, filtering, and selec-
tion. For example, one interaction technique hints at possibly
interesting configurations of the projection.

The following section explains the details of these aspects.
To generate an unambiguous view, we restrict SDTs to repre-
sent positive values only. Otherwise, the user would have to
identify opposite-directed line segments as negative values
of the respective dimension, which proved to be extremely
counter-intuitive in our experiments. The high likelihood of
line crossings was another essential factor for this restriction.
However, in most cases this can be reasonably overcome by
a translation of the data.

4. Construction of structural decomposition trees

In this section our algorithm will be introduced, as well as
a detailed description of the achieved properties. Two pre-
processing steps are necessary before the SDT can be visu-
alized. First, a hierarchical clustering method computes the
decomposition of the data for the visualization. Secondly, an
initial projection is computed that emphasizes this structure.
Finally, point coordinates and precomputed structure are vi-
sualized in a new visual representation that allows fast in-
teraction. It should be noted that this step is computationally
efficient in relation to the precomputations.

4.1. Hierarchical clustering

In order to create a structural decomposition, the data set is
clustered hierarchically. There are many methods that per-
form hierarchical clustering, mostly varying in their use of
inter-individual and inter-group metrics. Often, approaches
are tailor-made to fit the specific requirements. In our case,
the clustering step should generate an ideal tree structure,
achieving a nesting with minimal redundancies, i.e., mini-
mal overall line length. This structure should be ready for
display, designed to minimize calculations at running time
in order to support rendering at high frame rates.

The unfortunate restriction of drawing only positive co-
ordinate values has proven to be a challenge for the com-
putation of a non-redundant structure. In many clustering
schemes, the average of cluster elements is compared as the
representative elements for aggregation. This technique is
referred to as group average linkage in literature [ELL01].
However, drawing the mean of a group (as part of the de-
composition of the group’s elements) would require to draw
negative coordinate values, in order for the decomposition to
hold. Since we have chosen to draw only positive coordinate
values, we can only draw the minimum of the coordinates for
each dimension as each stepwise decomposition of a group.
These minimum commonalities therefore have to be the rep-
resentatives for comparing clusters in our method.

Consider a matrix X ∈ Rn×m
+ of n m-dimensional data

points where xk,q refers to the q’th coordinate of the k’th
data point, as well as a complete and disjoint partition in
clusters C1, ...,Cnc containing indices of data points, i.e.,
Ci ⊂ {1, ...,n},1 ≤ i ≤ nc. We define the inter-group prox-
imity measure δ to quantify the measure of compositional
commonalities between two clusters i and j as

δi, j = |min(Ci∪Cj)|, for min(Ci∪Cj) ∈ Rm

= ∑
1≤q≤m

min(Ci∪Cj)q, (1)

where δi, j ≥ 0. In analogy to the L1 norm, we interpret δ

as the length of a path in non-Euclidean space. We further

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

924



D. Engel, R. Rosenbaum, B. Hamann, and H. Hagen / Structural Decomposition Trees

define min of a collection of indices C as

min(C) = (min
k∈C

(xk,1), ...,min
k∈C

(xk,m)), for C ⊂ {1, ...,n} (2)

and interpret it as the geometric minimum element, minE.
It represents the point of the convex hull of m-dimensional
points in a collection C that is closest to the origin, i.e., has
the lowest norm as defined above.

A clustering method computing the desired decomposi-
tion can be summarized as the following binary hierarchical
agglomerative process:

1. Generate a starting set G of n single-element-clusters Ci,
each containing a different data point.

2. Iterate the following steps until G contains only a single
(root) cluster.

a. Search for the most appropriate pair within G, i.e.,
clusters Ci and Cj, for which
δi, j = max

Ca,Cb∈G
(δa,b).

b. Aggregate this pair to a cluster Cnew, append this clus-
ter to the set G and remove the original clusters Ci and
Cj from G.

3. The single remaining cluster in G represents the root ele-
ment of the structural decomposition.

Note that many bottom-up approaches have spatial dis-
torting properties, like it is often the case when shortest pair
distance or single linkage is used [ELL01]. Early approaches
with common distance measures have lead to highly redun-
dant structures and cluttered displays due to the rapid de-
terioration of the minimum representative through the ag-
gregation within the hierarchy. Keeping big minimum com-
monalities has proven to be a key property for our structure.
Therefore, we have developed a cluster criterion that forms
maximal fitting cluster representatives, so that the aggrega-
tion steps along the hierarchy (from long to short minima)
ensures the right spanning of the tree. The result is illustrated
in Figure 3 and shows highly favorable properties.

Figure 3: 2D data points without (left) hierarchically clus-
tered by a shortest distance criterion (center). Spatial dis-
tortion with this metric leads to the tendency to low decom-
position points and thus, to high redundancies. Clustering
based on the criterion of the highest minimum commonality
(right) achieves an embedding that minimizes redundancies,
and shows no such spatial distortion effects.

This clustering scheme is specially tailored for our visu-
alization. In this context, it provides an optimal solution to

reduce the overall redundant lines in terms of length, as we
will show in the following. At each step, the two clusters
are aggregated that have the maximum length of their joined
minE. We find that this maximization of |minE| is essentially
equivalent to the minimization of the length of discrepancy
to the (joined) father-node for each of the clusters. In other
words, for Ci and Cj being aggregated, we denote θi, j as the
discrepancy |min(Ci)|− δi, j and find that at each step, both
θi, j and θ j,i are minimized if δi, j is maximized. Therefore,
we achieve the minimization

θi, j +θ j,i ≤ θk,l +θl,k, f or1≤ k, l ≤ nc, (3)

for the aggregation of two clusters Ci and Cj, at any step of
the clustering process. This observation is of key interest for
our technique, since these discrepancies θi, j represent the
length of the lines drawn for each (child-)node (Ci) of the
SDT. Thus, the overall length of the SDT’s line segments is
stepwise minimized, which optimizes the representation in
terms of compactness and minimal redundancies.

4.2. Initial projection

As discussed in section 2, there are many ways to project
data. While one usually wants a projection to preserve rela-
tive m−D distances between data elements, our observation
is that this does not necessarily lead to an ideal embedding
for any data representation. For SDTs, the space between
tree paths has a crucial influence on line intersections and vi-
sual clutter. Therefore, the Dimensional Anchors (DAs) need
to be arranged in a way that maximizes this space.

While any linear projection method can be used to adjust
the DAs, we use a weighted linear projection scheme accord-
ing to [KC04] because it is fast, robust, and very flexible.
By following this approach, pairwise weights are used to in-
fluence the covariance matrix so that its eigenvectors (and
the two-dimensional projection given by the two ’highest’
eigenvectors) reflect the pairwise dissimilarities given by or
imposed to the data. By the means of these weights, objects
are projected further away if they are highly dissimilar and
vice versa. Consequently, we use a weighting that empha-
sizes the computed hierarchical data structure.

The initial projection is defined by the two eigenvec-
tors, γ1 and γ2 of largest eigenvalues, computed from the
weighted covariance matrix XT L X , where X ∈ Rn×m

+ is
centered beforehand. The pairwise weights Li, j are chosen
to relate to the distances between nodes within our hierar-
chical decomposition. Let distt

Ci,Cj
, for two clusters (nodes)

Ci and Cj within our hierarchy, be the structural distance
measure. This measure is formally defined as the number
of edges along the path from Ci to Cj. The Laplacian matrix
L is defined as in [KC04] and pairwise dissimilarities are
distt

Ci,Cj

2. As shown in [KC04], we find that our projection
maximizes

∑
i< j

(distt
Ci,Cj

dist p
i, j)

2, (4)
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where dist p
i, j represents the Euclidean distance between the

two projected points within the p-dimensional projection.
Clearly, this equation is maximized by projecting those data
points far from each other that hold a greater structural dis-
tance. Through this scheme, the projection is optimized to
display the structural decomposition, which leads to an op-
timal separation of different tree paths (according to (4)).
Note that this process is achieved through a linear transfor-
mation, preserving the genuine data properties as a true pro-
jective view. Since this structural distance disregards the ac-
tual proximity of points within the m-dimensional space, this
weighting is also robust to outliers.

In order to derive the DA arrangement, the original m unit
vectors are projected. The ith DA’s end position, ai ∈ R2, is
given by

ai = (

(
0
1

)
γ1i +

(
1
0

)
γ2i)

T , (5)

and may be normed or scaled (e.g., by eigenvalues) depend-
ing on the application. Note that not all dimensions are nec-
essarily present (via DA) within this projection and that DAs
may be collocated and of different scale. Since our approach
is general, there may be applications where this mapping has
to be adjusted due to specific data properties. However, we
claim that collocation of anchors according to their dimen-
sion’s correlation and a scale according to their contribution
within the data is a faithful abstraction method. This way,
correlating variables can be easily assessed within our vi-
sualization, which is a useful feature for an intuitive visual
assessment of the data’s properties.

4.3. Visual representation

Once the data is decomposed into a hierarchical structure
and the Dimensional Anchors (DAs) are arranged to bring
out this structure accordingly, the SDT can be visualized.
The coordinates of a node (cluster) Ci are given by the pre-
computed min(Ci). The node’s position within the projec-
tion, posp(min(Ci)), is given by the linear combination with
the DAs and min(Ci) as corresponding coefficients. This po-
sition, however, does not convey the coordinates in an un-
ambiguous way. As discussed in section 3, the linear combi-
nations reflecting the point coordinates have to be visualized
in order to assure an unambiguous visualization. Therefore,
we visualize the path leading to each point’s location - the
actual linear combination.

For a node Ci, we have at least m′! possible combina-
tions to draw the path leading to the node, where m′ =
|{ j | min(Ci) j 6= 0,1≤ j≤m}|. Therefore, the arising prob-
lem is to find a meaningful order of these m′ line segments
without spending large computational expenses on this ar-
rangement. Since the DAs’ orientation and scale are meant
to be interactively changed, the resulting layout of these line
segments changes accordingly. We want to keep rendering

speed at interactive levels, while achieving a visually unclut-
tered representation. Consequently, an optimization process
according to exact quality measures (e.g., line crossings) is
not an option. However, we have discovered a good heuris-
tic for this ordering being dependent on length and orienta-
tion of the line segments. For any line segment ~s j = ~a jc j,
the dot product to the normed direction from father Ck to
child node Ci determines the drawing order of these con-
nected segments. Thus, we draw decreasing with ~vc •~si for
~vc = posp(min(Ci))

T � posp(min(Ck))
T .

The actual rendering of the tree is a straight-forward re-
cursion. Starting at the root Cr of the tree, minE(Cr) is drawn
and for each successive child node, the discrepancy to the fa-
ther node is drawn. Thus, for every node Ci, being the child
of a father node Ck, the discrepancy minE(Ci)�minE(Ck)
is drawn. As discussed with (3), this discrepancy is min-
imized in a stepwise fashion by our clustering algorithm
which consequently reduces visual clutter. Another way of
dealing with visual clutter and line crossings is to use color
and shape for a better visual recognition of different paths.
For the line segments of a node, an appealing color and
width configuration is found to relate to the number of nodes
within the current subtree, ranging from dark to light and
broad to thin with decreasing element count.

It should be noted that the rendering of a SDT is poten-
tially faster than in other value visualizations. By exploiting
commonalities in our precomputation steps, the decompo-
sition can reduce the overall objects that have to be drawn
significantly. For example, while scatter plot matrices draw
nm2 points and parallel coordinates draw n(m�1) line seg-
ments for every data set, a SDT may have any number of line
segments in [0,(2n�1)m], depending on the commonalities
in the data. This may be of benefit for large data sets.

Figure 4: A 5-D data set with 5 point-clouds is shown.
SDTs best display differences and commonalities within the
structural assembly of the data. Further analysis can be con-
ducted by adjusting the projection, highlighting, or filtering.
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5. Interaction with structural decomposition trees

Effective visual analysis of high-dimensional data requires
interaction. In this section we introduce the means for in-
teraction provided by SDTs and illuminate on their eligibil-
ity for interactive visual cluster identification. Figure 4 illus-
trates these techniques.

Although the SDT’s starting projection has desirable
mathematical properties, interactive adjustment of the pro-
jection is usually needed to gain further insight. As Dimen-
sional Anchors (DAs) are the visual representatives of the
basis vectors of the m-dimensional coordinate system, rear-
ranging their end points provides an intuitive interface for
modifying the data projection. Scaling of the DAs is particu-
larly useful to investigate the contribution of a dimension to
the data set, where large contributions are stronger empha-
sized than small ones. Also, these interactions do not require
additional computational expenses as the scene must only be
redrawn.

However, a problem that is caused by the unconstrained
placement of the DAs is that orthogonality of the projection
is easily lost. As this might lead to misinterpretations of the
data, novel visual clues have been implemented and made
accessible through interaction. Variance points are placed
along the unit circle in order to indicate angles that lead to
an orthogonal projection for a selected dimension. They are
computed as a combination of the first principal component
with all other components and thus represent the different
positions of this DA on the unit circle determined by PCA.
The corresponding eigenvalues are also the foundation for
another beneficial property of variance points. As their val-
ues represent the respective (weighted) variance in the data,
we encode their values in the point’s size by a ratio to the
largest eigenvalue. Thus, further insight to the amount of in-
formation hidden by the current projection can be conveyed.

SDTs also support a variety of methods to highlight data
elements and properties. Dimension highlighting empha-
sizes all line segments corresponding to the coordinates of
a dimension by a distinct color. With this interaction, distri-
bution of data in a dimension can be assessed more easily.
Also, in high-dimensional data sets, the orientation of line
segments might be hard to map to the corresponding dimen-
sion, which can be overcome by this means. Through the
selection of a line segment, the respective DA is highlighted.
A means to highlight structural parts of the data is path high-
lighting. It enables the user to select a node of the tree, after
which the path from root to this node is highlighted, as well
as all subsequent paths of the subtree. Path highlighting can
select individual or a set of data points and is especially use-
ful to investigate the structural decomposition of the data or
when used as a selection tool in combination with other de-
tailed data views. Should there exist dense regions, it also
shows the unique path of items overcoming clutter. The in-
troduction of SDTs also offers an intuitive option to simplify
the presentation by filtering data points or dimensions cur-

rently of no interest. A simple filtering metaphor from graph
visualization comes natural to the tree layout - node collaps-
ing. The crotches of the SDT are ideal points to collapse and
hide subtrees.

Presently, no stand-alone technique is capable to ideally
support all analysis tasks for high-dimensional data. There
is a clear trend towards multi-view-systems that link several
techniques to combine their individual benefits. Providing
a convenient overview of the data, as well as an intuitive
interface for selection and filtering is a critical property of
such systems. The unique support of intuitive interactions
(zoom, pan, data selection, dimension highlighting, viewing
manipulation) makes SDTs a suitable candidate to act as an
overview and interface for such systems.

6. Results

To evaluate the visual representation of data structures by
SDTs, we investigated both artificial and benchmark data
sets. We observed that our approach is profoundly robust for
connected data, e.g., ellipsoids or curves, that can be repre-
sented linearly and has an inherent structure. Quite notably,
non-linear, non-convex, and even higher genus shapes of dif-
ferent sizes are presented well by the structurally weighted
projection approach, as Figure 5a-c shows. We observed that
closely connected compositional parts of curves or higher
genus shapes share the same subtree within our computed
hierarchy structure. Since the projection is optimized to em-
phasize these structural distances and since this structural
distance is a topological feature of the data, we can in fact
note that our approach is topology-preserving in terms of an
optimization regarding the alignment of the projection plane.

Further, two popular and real-world multi-dimensional
data sets (Iris and Cars) have been chosen to act as bench-
mark data sets and to provide a comparison to other tech-
niques using the same data sets, e.g., [PWR04], [SYHX08],
[YGX∗09], or [WGK10]. In Figure 5d, the SDT of the
Iris data reveals three compositionally distinct groups. The
strong stem indicates a clear structure and shows that the
sepal width accounts for the most commonalities among the
collected species. Two of the three species are similar but
can be distinguished in their different variance, as well as
different magnitudes, in petal length and width. In Figure 5e,
five groups can be distinguished resigning at three different
levels of the tree. These (vertical) levels represent car prop-
erties ranging from "efficiency" (specs of high acceleration,
low weight, MPG, and displacement) to "high power" (the
opposite) . The initial projection correctly hints at correla-
tions between these properties. European and Japanese cars
are dominant within the lower "efficiency" tree level (bot-
tom right), while American cars reside in all levels of the
tree (left, vertical side).

These results show that structural relations between clus-
ters within data are well represented and differences in coor-
dinates between clusters can be perceived easily. SDTs are
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Figure 5: Artificial data sets: (a) 3 tori in R10, (b) 4 ellipsoids in R10, (c) 5 point clouds in R15; Benchmark data sets: (d) Iris
and (e) Cars data set.

most suited to depict a general impression of a data set and
to convey an intuitive visual mapping of m-D data that can
be remembered. The user can learn easily

• how the data is assembled, spread, where clusters are, or
which pattern they follow,

• how parts of the data are connected, differ, or how they
relate to each other, and

• what properties they have with regard to intra-cluster vari-
ances, shape, or alignment.

SDTs not only show how different (relations) data points
are but also where these differences lie (values) by giving
an assessable connection to multi-dimensional space. This
is conveyed in a compact and intuitive representation which
leads to a better interpretation of the data and is the main
contribution of our work. Since SDTs focus on providing
an overview of the data, traditional value visualizations are
better suited for detailed analysis tasks. Embedded in an in-
teractive framework, SDTs are appropriate as a device for
exploration, selection, and filtering. The benefit of the un-
derlying projection becomes even more obvious for higher-
dimensional data. One can observe that clusters are well rep-
resented, even in very high-dimensional data sets, where one
can argue that purely value visualizations fail. The amal-
gamation of value- and relation visualization makes SDTs
more powerful than linear projections and more scalable
than value visualizations.

Inherent in our method, drawbacks of SDTs are shared
with those of linear projections and concern the suitabil-
ity for unstructured, noisy, or manifold data. For such data,
SDTs resemble more "cluttered bushes" than structured
trees. However, our approach is generic and offers many pos-
sibilities for adjustments, e.g., in data transformation, pro-
jection, and clustering, to better fit specific applications.

7. Case study: air quality data

We have evaluated our method to real-world data provided
by the UC Davis air quality research center and obtained
by single particle mass spectrometry [BW09]. The raw 256-
dimensional data has undergone application-specific data
transformations (normalization) as well as dimension reduc-
tion to the 13 dimensions most important for the investiga-
tion purposes of our collaborators. The data are highly un-
structured. Due to this characteristic, the SDT consists of a
small stem and many small branches. The achieved represen-
tation of individual coordinate values, however, still allows
for an accurate data investigation as shown by the following
findings we got during analysis.

Figure 6 a), shows the obtained initial projection for 1000
particles randomly selected from a sampling campaign at
three different sites. This first view clearly reveals two main
clusters corresponding to the different sampling sites. Due
to a similar particle compositions, however, both campaigns
ran for Fresno can only hardly be distinguished (green and
blue dots) even with the support of the SDT. Three dimen-
sions are highly significant for all campaigns: C-Carbon,
NOx-Nitrogen oxides, and Po-Potassium. By using dimen-
sion highlighting it can be revealed that there are signifi-
cantly higher C concentrations in Fresno than in Pittsburgh
(see Figure 6 b)). The opposite applies to Po. NOx is more
variant and can be found in similar contributions in both sites
(see Figure 6 c)).

While exploring the data by projection adjustments, it is
possible to show that dimension C24 representing a carbon
isotope can not be found in Pittsburgh and also has only
small concentrations in Fresno (see Figure 6 d)). Contribu-
tions of C36, another carbon isotope, can be found in similar
concentrations at both sampling sites with either high or low

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.

928



D. Engel, R. Rosenbaum, B. Hamann, and H. Hagen / Structural Decomposition Trees

a) b) c) d)

g) h)e) f)

C

Po

NOx

C

Po

NOx

C

Po

NOx

C

Po

NOx

C24

C

Po

NOx

C

Po

NOx

C

C36

Po

Figure 6: Structural decomposition tree of 1000 data points obtained from three different air particle sampling campaigns: (a)
Initial projection. The coloring of nodes is used for illustration purposes only (red: Pittsburgh, 2002; blue: Fresno, 2007; green:
Fresno, 2009). Dimension highlighting applied to dimensions C, Po (b), and NOx (c). Adjusting the projection by moving the
anchors corresponding to dimension C24 (d) and C36 (e). An inverse correlation to C could be revealed by moving the anchor
of dimension C36 to one of its variance points (f). Options for filtering ((g); analog to (b)) as well as zoom and pan (h) allow
to further adjust the view to current needs.

values (see Figure 6 e)). Moving the corresponding dimen-
sion anchor to one of its variance points also indicates an
inverse correlation of C36 to C (see Figure 6 f)).

Figure 6 g) illustrates the effect of dimension and node
filtering leading to a reduced number of displayed tree items
and thus less occlusion. Compared to Figure 6 b) only details
relevant to the domain scientists are shown. Options to drill
into interesting parts of the projection provide more details.
As shown in Figure 6 h) one can see that all points belong-
ing to the Pittsburgh sub-cluster show almost identical Po
concentrations, but vary strongly in their NOx contents.

8. Conclusions and possible research directions

We have introduced a new method for the visualization of
high-dimensional data based on the idea of representing and
visualizing the data’s structure by a tree. This approach leads
to visualizations that allow one to comprehend relations be-
tween clusters in high-dimensional data and helps to rein-
force a mental mapping of these relations.

The computation and display of this structural decompo-
sition tree (SDT) is optimized with regard to depicting min-
imal redundancies in order to prevent cluttering. The result
is a meaningful embedding of coordinate values in a point
projection. This approach tackles the issue of ambiguities
introduced by projection effectively and further supports the
capability of producing an overview of the data. For effec-

tive data investigation, we have developed unique interaction
techniques that enhance exploratory capabilities such as pro-
jection adjusting, feature highlighting, and data filtering.

It is planned to perform additional research to tackle prob-
lems of occlusion that arise with unstructured data sets by
embedding more sophisticated brushing, feature enhancing,
filtering, and abstraction techniques that are successfully ap-
plied to line drawing visualizations. Future research plans
also involve a better evaluation of our technique by a user
study and a detailed description of the geometric properties
of SDTs.
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