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Anisotropic Noise Samples
Louis Feng, Ingrid Hotz, Bernd Hamann, and Kenneth I. Joy

Abstract— We present a practical approach to generate
stochastic anisotropic samples with Poisson-disk characteristic
over a two-dimensional domain. In contrast to isotropic sam-
ples, we understand anisotropic samples as non-overlapping
ellipses whose size and density match a given anisotropic metric.
Anisotropic noise samples are useful for many visualization and
graphics applications. The spot samples can be used as input for
texture generation, e.g., line integral convolution (LIC), but can
also be used directly for visualization. The definition of the spot
samples using a metric tensor makes them especially suitable
for the visualization of tensor fields that can be translated into a
metric. Our work combines ideas from sampling theory and mesh
generation to approximate generalized blue noise properties.

To generate these samples with the desired properties we first
construct a set of non-overlapping ellipses whose distribution
closely matches the underlying metric. This set of samples is
used as input for a generalized anisotropicLloyd relaxation to
distribute noise samples more evenly. Instead of computing the
Voronoi tessellation explicitly, we introduce a discrete approach
which combines the Voronoi cell and centroid computation in one
step. Our method supports automatic packing of the elliptical
samples, resulting in textures similar to those generated by
anisotropic reaction-diffusion methods. We use Fourier analysis
tools for quality measurement of uniformly distributed samples.
The resulting samples have nice sampling properties, e.g., they
satisfy a blue noise propertywhere low frequencies in the power
spectrum are reduced to a minimum.

Index Terms— tensor field visualization, glyph packing,
anisotropic Voronoi diagram, blue noise

I. I NTRODUCTION

NOISE samples with certain characteristics, such as spa-
tially varying density and size, have many applica-

tions in computer graphics and visualization. The applications
range from digital halftoning [1]–[4], mesh generation [5]–
[8], Monte Carlo ray tracing [9], [10], to texture generation
for visualization purposes [11]–[16]. While some of the
desirable properties of the noise are similar across applications,
the goals and appropriate sampling strategies are problem-
dependent. For digital halftoning, the goal is to produce
aperiodic isotropic patterns to avoid visually disturbing regular
structures. For applications such as ray tracing, it might be
important to have exact control over the number of samples.
For mesh generation purposes, a primary goal may not be
avoiding structural patterns but rather to produce an “optimal”
triangulation to reflect a given anisotropic metric. Our interest
in anisotropic spots with good sampling properties arose from
a tensor field visualization method, where spot samples with
spatially varying shape and density are used as input for line
integral convolution (LIC) [17]. The shape and density of the
spots determine the thickness and density of the resulting fiber
structure. Any low-frequency patterns or holes in the spot
samples will be visible as artifacts in the resulting texture, see
Figure 13(a). Therefore, our method is designed to generate

(a) (b)

Fig. 1. (a) LIC texture generated with a poorly sampled input texture. Holes
in the spot texture result in holes in the LIC texture. (b) The same data set
using our spot sampling method to generate the input.

anisotropic samples over a two-dimensional domain with the
following properties:

• The samples vary in size and shape over a domain,
represented by a Riemannian metric.

• The samples are mostly non-overlapping to approximate
a generalized Poisson-disk characteristic.

• The samples cover the domain densely, without generat-
ing regular patterns.

The metric can be user-defined or derived from a scalar
field, vector field, or tensor field. In general, it is spatially
varying and anisotropic.

To achieve the objectives listed above we have designed a
method which generates an anisotropic sample distribution in
two main steps. First, we construct a set of non-overlapping
ellipses whose distribution closely matches the underlying
metric. This first sample set already exhibits most of the
desired properties. Next, we use a generalized anisotropic
Lloyd relaxation to distribute the noise samples more evenly.
Our anisotropic Lloyd relaxation is a straight-forward general-
ization of the isotropic version, and coupled with the prepro-
cessing steps, can produce both isotropic and anisotropic blue-
noise. We use a localized anisotropic Voronoi cell and centroid
definition based on the work of Labelle and Shewchuk [7]
and Du et al. [6]. To speed up the relaxation we introduce
a discrete approach which combines the Voronoi cell and
centroid computation in one step, instead of computing the
Voronoi tessellation explicitly. The total computation time is
dominated by the relaxation step; the initial sampling time
grows linearly with the required number of samples.

Anisotropic noise samples are appropriate for visualizing
data sets with anisotropic non-uniform properties, and the most
obvious application is the visualization of tensor fields. We
have applied our method to stress tensor fields and diffusion
tensor magnet resonance imaging (DT-MRI) data. Thereby
we have used it as a visualization method in its own right
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as well as as input for a continuous texture such as LIC.
But anisotropic samples are also interesting for other areas
in visualization where glyphs with spatially varying size
and orientation are used. Our method automatically fills the
entire domain with glyphs without clustering problems and
reduces structural patterns to a minimum. A very different
application is the use of anisotropic noise samples for artistic
non-photorealistic rendering, where it opens a wide range of
possibilities of which we discuss only some examples.

II. RELATED WORK

The generation of point or spot distributions with certain
properties is the subject of research in different fields. De-
pending on the specific needs, many algorithms have been
developed.

Generating uniformly distributed points with constant or
varying density without large scale patterns has a long tra-
dition in the area of noise generation, sampling or halftoning.
These fields are closely related, many sampling algorithms are
directly used to generate noise textures. Some techniques such
asdart-throwingand others use a form of stochastic sampling,
where random points are added or rejected according to
certain criteria [18], [19]. Such methods often suffer from low
convergence rates. Other approaches use relaxation techniques,
in particular Lloyd’s relaxation [20], [21] and their variants,
and they result in high quality blue-noise samples. To reduce
the number of relaxation steps, a general strategy is to use
a more efficient step to produce a set of samples which
approximates blue-noise properties, followed by a few iter-
ations of relaxation on this set to improve overall quality. To
improve efficiency of the sampling algorithm further, several
approaches have been suggested using tile sets which then are
repeatedly tiled across the plane. Using this strategy, for exam-
ple, Ostromoukhov et al. introduced a very efficient isotropic
blue-noise sampling method based onPenrose tiling[9]. Most
of these methods assume that the samples are isotropic. For
a survey on sampling techniques, we refer the reader to [3],
[18].

Anisotropic settings can be found in the area of stippling
or automatic mosaic generation, where objects of different
size and shape are distributed on a plane [22]–[24]. Different
from our definition, the orientation of the distributed objects is
not precisely predefined by the metric but can change during
relaxation. Most of the proposed methods use a Lloyd relax-
ation based on a generalized Voronoi cell definition, where
the Euclidean distance of the objects is approximated, using a
hardware approach for computation of the Voronoi diagram
[25]. The centroids used for relaxation are the geometric
centers without considering the changed metric.

The goal of generating an anisotropic distribution following
a given metric also appears in the area of mesh generation.
Shimada et al. [8] based the mesh generation on a close
packing of ellipsoidal bubbles. The packing is performed
using a particle system, where particles move according to
repulsive and attractive forces. The defined forces are not
linear. The equations of motion are solved numerically to yield
a force balancing configuration. A geometric approach for
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Fig. 2. Generalized Poisson disk property. The minimum distance of two
sample points is defined by the local ellipses which are not allowed to overlap.

anisotropic mesh generation was chosen by Du et al. [6] and
Labelle et al. [7]. Labelle introduced an anisotropic Voronoi
refinement of a set of sites which are required to appear in
the mesh. In contrast to our goals, these sites are not allowed
to move. The method by Du et al. uses a centroidal Voronoi
relaxation to compute a triangulation. Both methods define
a generalized Voronoi tessellation based on a non-Euclidean
metric using different distance approximations as basis for the
final triangulation. Our work builds on the ideas introduced
in these methods. We have adapted the distance measures
introduced by Labelle et al. since they match our demands
better than the idea of centroidal relaxation of Du et al.

The use of glyphs for visualization of local field properties
is common in visualization. The question of placing these
glyphs has been subject of discussion in several contexts.
The most common strategies are regular sampling, random
sampling with or without Poisson property [14], [26] or
procedural texture generation, e.g. using reaction diffusion. In
vector field visualization, Turk and Banks proposed a method
to place arrows along streamlines generated by streamline
optimization [27]. Kindlmann introduced reaction-diffusion
into the visualization community by applying it to diffusion
tensor MRI data [15]. Sanderson et al. used a reaction-
diffusion model to generate spot noise based on the under-
lying vector field placing glyphs at the spot center [28].
Reaction diffusion simulates a chemical process between two
morphogenes, which react and diffuse. This changes their
concentration and under certain conditions converge toward
stable pattern representing the dynamic equilibrium of the
system. The method provides automatic control of density, size
and placement of patterns but the specification of appropriate
parameters is not trivial. Stable patterns only form for a very
narrow band of values for the parameters. In addition, it is
computationally expensive. Recently Kindlmann and Westin
proposed a glyph packing algorithm in the context of diffusion
tensor visualization [16]. Their work is built on a particle
approach simulating attractive and repulsive forces.

III. A SSUMPTIONS ANDGOALS

The starting point for the generation of the elliptic noise
samples is a metricg given over a domainD ⊂ R2 which
defines the sample properties. The metric can be user-defined
or derived from scalar fields, vector fields, or tensor fields,
see Section VI. The metric is given as a two-by-two sym-
metric, positive definite matrix depending on the location
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P = (x, y) ∈ R2,

g(x, y) =
(

g11(x, y) g12(x, y)
g12(x, y) g22(x, y)

)
. (1)

We assume that the metric is non-degenerate everywhere. In
general, it is spatially varying and anisotropic. The goal is
to generate an unstructured distribution of sampled ellipses,
whose size and density matches the given metric. The ellipses
are specified by their centerP0 = (x0, y0) and their shape,
which is defined as the unit circle with respect to the metric
g0 in P0, i.e.,

g011(x−x0)2+2g012(x−x0)(y−y0)+g022(y−y0)2 = 1. (2)

Their half-axes are aligned to the eigenvectors and their
squared principal radiia2(x0, y0) and b2(x0, y0) are scaled
according to the reciprocal eigenvalues

a2(x0, y0) =
1

λ1(x0, y0)
andb2(x0, y0) =

1
λ2(x0, y0)

, (3)

where λ1(x0, y0) and λ2(x0, y0) are the eigenvalues of
g(x0, y0). The sample density is implicitly defined by the
size of the ellipses. In order to make a glyph based visu-
alization reasonable we further assume that the frequency
of the generated spots is higher than the frequency of the
change of the underlying metric. This means that density and
eigendirections do not vary much from one sample to its
neighbors. In summary, we have designed our algorithm to
generate noise samples with the following properties:

1) The size and shape of the spots are determined by the
local metric. By choosing the right scaling we can define
the spots as unit circles, see Equation 2.

2) The spots are closely packed and non-intersecting having
a minimum distance, defined by a generalized Poisson
disk property, see Figure 1.

3) The spots are unstructured, i.e., inherent patterns are
reduced to a minimum. In terms of the power spectrum
of the samples this means absence of small frequencies.
In contrast to the general blue-noise property we allow
an angular dependency of the principal frequencies.

IV. A LGORITHM

Texture generation can be divided into two independent
steps:

A. Computation of a reasonable starting distribution of el-
lipses, where we generate a set of spot candidates based
on a dense set of uniformly sampled jittered points, and
then traverse the candidate set to select ellipses such that
the resulting distribution fulfills a generalized Poisson
disk property. This start distribution provides the basis
for most of the properties of the resulting sample set.

B. Optimization of the starting distribution using an
anisotropic Lloyd relaxation.

Both steps are important. The first step determines the basic
properties of the sample set, including the number of samples,
the density and the Poisson disk property. The second step
makes the samples more uniform and approaching stable
configurations. It is important to use a sufficiently complex

Fig. 3. First step of noise generation. Generation of a reasonable starting
distribution of ellipses. A random point set defines candidate points, shown
as black dots. Ellipses around these points still overlap each other. A point is
accepted as sample if its ellipse does not intersect with any other previously
accepted ellipse. In this example, the red ellipse is the first ellipse drawn
in the considered region and is accepted. All points lying inside the ellipse,
shown as red points, can immediately be removed from the candidate list. For
simplicity, all points in the blue square containing the red ellipse are checked
for intersection and are possibly removed. In this example, one of the two
ellipses drawn would be removed.

first sample set as input for the relaxation and only a few
iterations, since the relaxation tends to converge to stable
pattern configurations, especially for uniform settings. We
explain these steps in more detail in the following sections.

A. Generating the Initial Sample Set

The generation of the initial sample set is done in two steps.
In the first step, a set of jittered grid points is generated as
locations for the candidate spots, see Figure 2. The initial set
must have higher density than the target density. Four times
the target density leads to good results. When using grid points
without jittering the required initial density will be higher and
may still introduce structures. The candidate spots in each
location are defined by the local metric as “unit-circle.” For
a general metricg, these are ellipses defined by Equation 2.
At this stage, the generated candidate spots generally overlap.
Once the initial set of points is generated, the algorithm tra-
verses the set of points and determines whether each candidate
spot should be accepted or not. A candidate is selected, when
it satisfies the following conditions:

• The point has not been checked previously, and
• it fulfills the generalized Poisson disk property, meaning

its ellipse does not overlap with the ellipses at any other
already selected spots inS.

While traversing we check whether a point overlaps with other
spots. The underlying regular grid structure of random points
has the nice property that it supports efficient spatial search
of neighboring points, therefore, simplifying the checking
process. After selecting an ellipse, all candidate points in
the immediate neighborhood of the ellipse are checked for
intersection and are possibly removed from the point list. For
simplicity we use a squared neighborhood with edge length
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of twice the size of the larger ellipse half axis, see Figure 2,
instead of a the ellipses themselves.

A simple way to traverse the sample set is visiting the points
sequentially in a scan-line fashion. Unfortunately, traversing
the points sequentially introduces artifacts in the resulting spot
texture. Using a Hilbert curve, i.e., a special space filing curve,
to traverse the points as proposed by Gilbert [29] leads to
better results but still generates undesired patterns. We have
achieved best results with a random traversal of the spots.
Differences when using a random traversal or Hilbert curve
traversal are rarely visible after the relaxation step.

B. Anisotropic Voronoi relaxation

After generating spot samples and selecting ellipses the
sample set of ellipses has the following properties:

• The ellipses in the current sites represent the local metric.
• The ellipses do not overlap.
• The coverage of the domain with ellipses is dense.
• The sites do not follow a regular pattern.

By eliminating overlapping samples, holes can result in certain
areas. To remove these artifacts we use a method similar to
Lloyd relaxation.

Lloyd relaxation, also known as Voronoi iteration, is a
method to generate evenly distributed samples. It is an iteration
of constructing Voronoi tessellation and its centroids. In each
iteration the sample points are moved into the cell centroid
which corresponds to the center of mass of the cell. The
process converges to a centroidal Voronoi diagram, where each
sample point lies in its cell centroid. This diagram minimizes
the energy given as

E =
∑
i∈I

∫
V ori

ρ(x)||r − ri||2dr (4)

whereI is the index set for the samples,V ori the Voronoi cell
of the ith sample,ri its position andρ a local scalar density.

Due to the anisotropy of the metric, we use an anisotropic
Voronoi diagram and an anisotropic centroid computation for
the relaxation step. Since the orientation of the ellipses is
determined by its location it changes when moving its position.
In contrast to Fritzsche et al.’s mosaic generation technique
using Voronoi structures [24], our method does not perform
explicit rotation to achieve a denser packing because the
ellipses must reflect the local metric. The relaxation step does
not change the density resulting from the first step much; it
merely is a smoothing of the sample distribution. Therefore,
the quality of the result after the relaxation process depends
strongly on the result of the first sample set generation.

For the definition of the anisotropic Voronoi diagram and
the centroid computation we built on the works of Labelle and
Shewchuk [7] and Du et al. [6]. Our method is a combination
of these two methods, satisfying our demands.

a) Definition of the Voronoi regions:Let {Pi ∈ D, i ∈ I}
be the set of sample points resulting from our previous step,
whereI is an index set for the points. The most natural way
of generalizing the Voronoi tessellation to other more general
metrics would be to define a Voronoi cellV org(Pi) of a point
Pi as the set of all pointsP ∈ D that are at least as close to

(a) (b)

Fig. 4. (a) The anisotropic bisector of two points is a quadratic curve. (b) In
the uniform case the bisector is a straight line passing through the midpoint of
the two points. In general, it is not orthogonal to the connecting line segment
of the two points.

Pi as to any other pointPj , j 6= i, using the geodesic distance
as distance measure, i.e.,

V org(Pi) = {P ∈ D|dg(Pi, P ) ≤ dg(Pj , P )
for all j ∈ I with i 6= j },

(5)

where dg(P,Q) is the geodesic distance of the two points
P and Q defined by the metricg. This is the length of the
shortest path connecting the two pointsP and Q. However,
since the computation of this shortest path is difficult and
computationally expensive we use an approximate distance
function for two points.

Different distance approximations in the context of the
definition of anisotropic Voronoi cells have been introduced.
We follow the definitions proposed by Labelle and Shewchuk,
because it matches our conditions well, i.e.,

d2(P,Q) = (P −Q)T g(P )(P −Q) (6)

In this case, the distance is not symmetricd(P,Q) 6= d(Q,P ).
Also, the triangle inequality is not necessarily satisfied. The
bisector of two pointsP1 andP2 is defined as

B(P1, P2) = {P |d(P1, P ) = d(P2, P )}, (7)

(a) (b)

Fig. 5. (a) Voronoi cells resulting from the approximate distance function
defined by the metric in the sample points. The green Voronoi cell is en
example for a non-connected cell, having one orphan. Such orphans are
undesirable for the relaxation process. (b) Comparison of the various Voronoi
cells. The red lines show the boundaries of the standard Euclidean Voronoi
cells. The gray lines show the boundaries of the anisotropic Voronoi cells
with orphans as defined by Equation 8. Most of the lines are covered by the
blue lines, which represent the localized anisotropic Voronoi cells as defined
in Equation 9. The green line indicates the area to which the green Voronoi
cell is restricted.
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(Pi - Pj)(P - Pj) > 0

(P i- Pj)(P - Pj) < 0

Fig. 6. The set{P |(Pi − Pj) · (P − Pj) ≥ 0} defines an extended
neighborhood ofPi (green) which contains the Euclidean Voronoi cell (red).
We use this neighborhood to define a localization of our Voronoi cells.

and is a quadratic curve. If the metrics inP1 and P2 are
the same, the bisector is a straight line passing through the
midpoint of the connection ofP1 andP2, see Figure 3. Based
on this approximate distance, a Voronoi cell of pointPi is
defined as

V or(Pi) = {P ∈ D|d(Pi, P ) ≤ d(Pj , P )
for all j ∈ I with i 6= j }.

(8)

In contrast to Du et al. [6], this definition uses the metric in
the point samples to determine distance. We have chosen this
distance function because it guarantees that ellipses drawn in
the sample points lie entirely inside the Voronoi cells for our
start configuration with non-intersecting ellipses. This results
from the fact that the ellipses are unit circles according to
the local metric, meaning all points inside the ellipses have
a distance smaller than one, and all points outside have a
distance larger than one.

The resulting Voronoi cells are in general not convex and
may not even be connected, see Figure 4(a). The part of
the cell not containing the sample point is called anorphan.
Orphans are undesirable for the relaxation process for two
reasons. First, the relaxation should be determined by the
local neighborhood of the sample point and not influenced by
regions far away. Second, the distance approximation for those
regions is very inaccurate. Therefore, we define a localized
version of the Voronoi cells by reducing the possible region
of influence using the Euclidean Voronoi tessellation, see
Figure 5. It is possible that some of the orphans survive the
localization but this happens very rarely, see Figure 4(b). We
define

V orr(Pi) = {P ∈ D|i ∈ IP andd(Pi, P ) ≤ d(Pj , P )
for all j ∈ IP with i 6= j },

(9)
with IP = {i ∈ I|(Pi − Pj) · (P − Pj) ≤ 0,∀j 6= i}.

b) Centroid definition:For the definition of the centroid
we follow the idea of Du et al. [6], which is a straight-forward
generalization of centroid definition as the center of mass to
an anisotropic setting. The center of massci of a Voronoi cell
V or(Pi) is defined as

ci =

∫
V or(Pi)

d(r)r dr∫
V or(Pi)

d(r) dr
, (10)

where d is an isotropic scalar density andr = (x, y). By
replacing the densityd by the metric tensorg the centroidci

is defined as

ci =

(∫
V or(Pi)

g(r) dr

)−1

·

(∫
V or(Pi)

g(r) · r dr

)
. (11)

As an integral over positive definite matrices, the left matrix
is always invertible. By using an isotropic metric with

g(r) =
(

d(r) 0
0 d(r)

)
, (12)

this definition reduces to the standard weighted centroid defi-
nition, see Equation 10. If the metric is uniform, i.e., it does
not depend onr, the anisotropic centroid definition coincides
with isotropic uniform case.

After moving the sample point to the centroid of its cell
we cannot guarantee that the ellipse is still entirely contained
in the Voronoi cell and thus does not intersect other ellipses.
This can be avoided by performing an intersection test with
the neighboring ellipses and shortening the translation vector
in case of intersection. This happens mostly for uniform data
sets and close to the boundary. In our experience this check is
not necessary for real data sets. For a more detailed discussion,
see Section V.

C. Implementation:

a) Intersection test:The initial sampling requires inter-
section tests between neighboring samples. In the isotropic
case, this intersection test is simply the circle to circle inter-
section test and can be done efficiently. In the more general
case, the samples are represented by ellipses. The algebraic
method of ellipse to ellipse intersection test involve solving a
quartic polynomial which is computationally expensive and
numerically unstable. We use polylines to approximate the
ellipses during intersection test to reduce complexity. In our
implementation, we approximate each ellipse by a closed
polyline consisting of eight line segments. This approximation
produces good results without the issues involved in the
algebraic method.

Fig. 7. Anisotropic Voronoi cells resulting from the simplified distance
measure. The grid used for relaxation has a resolution of512× 512.
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b) Relaxation:For the computation of the Voronoi cells
and the centroid we use a discrete approach. Considering the
domain as a set of uniform cells represented by their center
R, the discretized version of Equation 11 results in

ci − Pi︸ ︷︷ ︸
≡Ti

=

 ∑
R∈V or(Pi)

g(R)


︸ ︷︷ ︸

≡Mi

−1 ·
∑

R∈V or(Pi)

g(R) · (R− Pi)︸ ︷︷ ︸
≡ti

(13)
Ti, ti, andMi are used in the implementation.

Instead of computing the Voronoi cell explicitly and using
these cells for the centroid computation, we perform both
computations in one step. We initialize all sample positions
Pi, i ∈ I, with a zero vectorti and zero matrixMi. Next,
we march through the discretized domain performing the
following steps for each cell represented by the pointR:

• Find the Voronoi CellV orR(Pi) containing pointR, then
compare its distances to sample points lying inside a local
bin to specifyi.

• Update the matrixMi and the vectorti in the following
way.

Mi ← Mi + g(R)
ti ← ti + g(R) · (R− Pi)

(14)

After traversing the entire domain, the new position of the
sample pointsPi, given by Equation 13, is determined by the
translation vectorTi, i.e.,

Ti = M−1 · ti andPi ← Pi + Ti. (15)

An example of the computed Voronoi cells of a synthetic
dataset is shown in Figure 6. As the resolution of the dis-
cretization increases, the centroid can be computed more
accurately. In our implementation, we have used grids of
resolutions between256 × 256 and 1024 × 1024 depending
on the desired output resolution of the samples.

V. QUALITY MEASUREMENT

The evaluation of our algorithm is guided by the goals
described in Section III. We use spatial (density, uniformness)
as well as frequency (power spectrum) properties for quality
measurements. In the following, we discuss the points defined
as goals and the methods used to verify their quality. We
discuss examples for a simple isotropic and anisotropic metric
definition. The tensor used for the uniform example is aligned
to the coordinate axes with eigenvalues 2.0 and 8.0. For the
non-uniform example the eigenvector field is rotated aboutπ/2
from left to right. The tensor field changes from an almost
isotropic field with eigenvalues 2, to an anisotropic field with
eigenvalues 2.0 and 8.0, respectively.

a) Representation of the metric by sampling shape and
density: The size and shape of the spots are determined by
the local metric. Thus, each spot reflects the metric values
in the sample point exactly. The density of the spots is
roughly determined by spot size. For an evaluation of density
we consider two different density measures. The first is the
standard scalar densityd which is defined as covered pixels per
unit area. This density can be measured by using a Gaussian

(a) (b) (c)

Fig. 8. Relaxation for uniform anisotropic samples. (a) first sample set, (b)
after one iteration, (c) after six iterations.

(a) (b) (c)

Fig. 9. Sampling sets for an anisotropic spatially varying metric. The upper
row shows how the sample set evolves over the computation. The row below
shows the image after applying a Gaussian filter. (a) First sample set after the
first step of our algorithm; (b) result after one relaxation step; and (c) result
after six relaxation steps.

filter, where the local density is given as gray value. Due
to the discrete structure of the samples we cannot expect a
constant density but it should be almost uniform over the
entire domain even for non-uniform samples. An example
for a uniform anisotropic data set is shown in Figure 7, an
example for a nonuniform data-set in Figure 8. The coverage
is computed by averaging the pixel grey value of the output
image. For a visual analysis, we used blurring to measure
the uniformity of the samples. The size of the Gaussian filter
used for these examples is the same for both examples. In both
cases it can be observed that the density is fast approaching
a uniform distributions. After six relaxation steps there are no
holes visible anymore. In particular there is no dependency of
the coverage on the size and shape of the samples. Close to
the boundary, a slightly higher density can be seen for both
data sets. The entire coverage of the space is approximately
40% for the uniform and the nonuniform case.

The second density we are interested in is an anisotropic
density. We define the densityda(θ) for samples with non-
zero area as average number of sample hits when traversing a
unit area along a straight line in directionθ, see Figure 9(a).
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(a) (b)

Fig. 10. Definition of an anisotropic density as average number of sample
hits when traversing a unit cell in a certain direction. Here, sample hits for
two different directions are shown. The average number of sample hits in
horizontal direction (blue) is circa 3.4 and circa 6.25 in vertical direction
(black).

(a) (b)

(c) (d)

Fig. 11. For a uniform anisotropic data set, regions of regular patterns
may form after running the relaxation for many iterations. (a) shows the start
configuration before relaxations, (b) after one iteration, (c) after 50 iterations
and (d) after 125 iterations. After 50 iterations we can see the formation of
two different structures (highlighted by the red box). These regions hardly
change over the next 75 iterations. Looking at difference images between the
iterations we can see that there is still a fluctuation in the regions between
the stable patterns.

Practically we count the number of Voronoi cells we hit for
a given direction, see Figure 9(b). This value is especially
interesting when we use the samples as input for LIC gen-
eration, because it determines the fiber density orthogonal to
the convolution direction. The ratio of the anisotropic density
in principal direction and the half-axis of the ellipses should
be the same for both eigendirections. For the uniform case as
shown in Figure 7(c) the two ratios vary about 1.5%.

b) Generalized Poisson disk property:By construction,
the generalized Poisson disk condition is satisfied after the
first sample set generation. The relaxation itself does not
guarantee that this property is maintained. Since the samples

tend to move towards holes in the texture and the overall
density is not changed significantly during the relaxation, in
most cases the Poisson disk property is not violated after
several iterations, except close to the boundary. In the case
of uniform data-sets hexagonal patterns are fix-points for
the iteration process. After several iterations regions with
hexagonal patterns are forming, see Figure 10. Inside of these
regions the pattern become relatively stable fairly quickly. In
between these regions the structure still changes slightly after
many iterations. This can lead to an unwanted overlapping
of the ellipses. To avoid overlapping we have implemented
an additional intersection test during the relaxation. Since
for non-uniform data-sets there are no such regular stable
configurations this test is in general not necessary, we mostly
skip it for performance reasons.

TABLE I

PERFORMANCE

Grid size # initial Removing # final Relaxation
samples overlaps samples

Anisotropic
128x128 16384 0.188s 259 6.266s
256x256 65536 0.812s 1038 26.437s
512x512 262144 3.313s 4254 104.39s

Isotropic
128x128 16384 0.047s 786 0.078s
256x256 65536 0.234s 3075 0.281s
512x512 262144 0.922s 12217 1.141s

c) Unstructured sampling:Half-toning methods are usu-
ally evaluated by their radially averaged power spectrum. This
measures the frequency content of the spatial distribution of
points, also called “blue-noise characteristic.” Low frequencies
in this spectrum lead to large-scale artifacts, that will become
visible. For the isotropic case the expected pattern in Fourier
space shows no frequencies close to the origin, and it shows
a maximum at a radius representing the principal frequency,
representing the inverse average distance of samples. Since we
use elliptical Poisson disks, this principal frequency (PF) is
direction-dependent, varying from a minimum to a maximum
PF. The PFs are visible in frequency space as light circle for
the isotropic case and as light ellipse for the anisotropic case,
see Figure 17 and 18. The higher frequencies representing the
randomness are almost homogeneous and independent of the
direction even for the anisotropic case.

The relaxation process degrades the anisotropic structure
in the power spectrum which goes hand in hand with the
pattern formation and overlapping of ellipses mentioned in the
last section. Similar in isotropic settings, one can show that
all hexagonal structures are stable under uniform anisotropic
relaxation. The anisotropy is expressed in the shape of the
cells but not based on the locations of the centroids. The
frequency pattern approaches the standard blue noise pattern
as we apply more relaxations but still maintains anisotropy
after the samples stabilize at final position. This tendency can
be diminished by a small margin when using the intersection
test during the relaxation process to ensure non-overlapping
samples. The resulting samples with intersection test produce
some irregularities which can be seen in the frequency domain,
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see Figure 19.
d) Performance:Table ?? shows the running times on

an Intel P4 3.2GHz with 2GB memory. Important observation
is the linear growth of the processing time for both isotropic
and anisotropic tests. In the isotropic case the time for the
generation of the first sample set and the relaxation steps is
about the same. For the anisotropic case the computation time
is dominated by the relaxation process.

VI. A PPLICATIONS

We have used the anisotropic noise generation in different
contexts. Our main applications are related to visualization,
but we also considered artistic image rendering applications.
For visualization purposes the main step is the definition of
the metric, ensuring that it incorporates the most important
features of the data. In the following sections, we explain the
definition for specific applications.

A. Tensor Visualization

To be able to use anisotropic noise for the visualization
of tensor data, we must define a metric based on the given
tensors. Some of the tensor fields we are interested in are
already positive definite, e.g., diffusion tensor fields. But other
tensor fields, like stress or strain fields, also have negative
eigenvalues. To be able to treat such tensor fields we interpret
them as distortion of a flat metric [17].

Assume that we have a positive definite tensor fieldT
defined over a domainD. Let λ1 and λ2 be its eigenvalues
and v1 and v2 be the respective eigenvectors. We define the
metric for the sample generation as

g =
1√
λ1

v1 · vT
1 +

1√
λ2

v2 · vT
2 (16)

Fig. 12. Slice of a numerical simulation of a solid block with two forces
acting on the block, one pushing and one pulling force. This image shows
the tensor data as ellipses. The ellipses provide an idea about the directions
of contraction or expansion inside the material.

the resulting samples are ellipses aligned tov1 and v2 and
scaled according to the eigenvalues. Depending on the appli-
cation it may be necessary to normalize the eigenvalues.

Our first example is a stress field of a solid block with
two applied loads with opposite sign, resulting from a three
dimensional numerical finite element simulation. Figure 11
shows a slice of this data set orthogonal to the applied forces.
The displayed ellipses represent the shape of a unit sphere
deformed according to the local stress field. Small ellipse half-
axis indicate compression, large half-axis indicate expansion in
the respective direction. Ellipses with high eccentricity mean
strong shear forces.

As second example we applied our method to a slice of a
diffusion tensor MRI dataset of a brain. The use of glyphs,
ranging from simple ellipses to more advanced glyphs as
superquadrics [30], is a common method for visualizing of
such data sets. The glyphs are mostly placed in grid points
or are randomly spread [26]. Figure 12 shows a result using
our sample generation. We used a mask image representing
the confidence values of the tensors as provided by Gordon
Kindlmann together with the data set. The color is used to
represents the principal diffusion direction. The result is a
uniform and dense representation of the data independent from
the grid points. Similar results were obtained by Kindelmann
et al. [16] using a particle simulating approach with repulsive
and attractive forces.

B. Other Applications

The use of spot samples with varying density and size is not
limited to tensor field visualization. It is also appropriate for
any other glyph based visualization methods, using glyphs that
can be embedded into an elliptical shape. In this section we
demonstrate manifold possibilities using two exemplary areas,
vector field visualization and non-photorealistic rendering.

1) Vector field visualization:One of the most direct vector
field visualization methods is the use of arrows or other
icons. The placement of glyphs without clustering or structural
pattern formation is a challenging problem. Turk and Banks
proposed a method to place arrows along streamlines generated
using streamline optimization [27]. Sanderson et al. [28] used
a reaction-diffusion model to generate spot noise based on
the underlying vector field, and places glyphs at spot centers.
Anisotropic noise samples can be used as an alternative to
these methods. To demonstrate this technique we have used
anisotropic noise samples to place arrows based on a synthetic
vector field.

The direction of our metric is determined by the direction of
the vector field and the orthogonal direction. We tried different
ways to assign the eigenvalues to the metric. In Figure 14(a)-
(d), we use the vector magnitude|v| to define the ellipse size
in direction of the flow,λ1 = c|v|, and a constant value for
the orthogonal direction,λ2 = d. c andd are constants. Thus
the widths of the arrows remain the same for all arrows.

g = λ1ev · eT
v + λ2e

⊥
v · e⊥T

v (17)

2) Non-photorealistic rendering:Non-photorealistic ren-
dering is often used to simulate painting or drawing styles an
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(a) (b)

Fig. 13. These images show a slice of diffusion MRI data. The color code is the standard color map of encoding the major eigendirections in three dimensions.
The projected tensors are represented by ellipses. Each ellipse is defined by the tensor value given at its center. The left image (a) shows the sampling set
before relaxation, the right image (b) a close-up after three relaxation steps with densely packed ellipses. (c) shows the color coding for the direction.

Fig. 16. Mosaic-like images generated by our technique. The metric used for ellipse generation results from the gradient field of the blurred original image.
The left image shows the result before relaxation and the right image after three relaxation steps.

artist would use. There are many techniques to simulate these
styles. Anisotropic noise samples can be used for generating
“artistic images” where elements of the image have directional
properties, such as paint brush direction or rectangular mosaic
tiles. Out example images are generated by constructing a
gradient vector field based on the intensity values of the
images. To reduce noise in the vector field, the original images
are blurred by applying a Gaussian filter. We have defined a
tensor metric over the image using the gradient vector field
and its orthogonal vector field. The orthogonal vector field
essentially points in the direction tangent to the boundary
features in the images. In Figure 15 and 16, the samples are
circular in areas where there is little gradient change, where
the elliptic samples in the image follow the boundaries and
make them more visible.

VII. C ONCLUSION AND FUTURE WORK

We have introduced a method to generate anisotropic spot
noise on 2D domains. We have demonstrated our method for
different applications. An automatic generation of uniformly
spread glyphs with locally varying size is a desirable property
not only in tensor field visualization. As for all glyph based
methods, the resolution of the representation is limited by the
size of the glyphs that are used. The same is valid for the
resulting fabric when using the spots as input for LIC.

The sampling characteristics of the resulting spot distribu-
tion is of high quality. For the uniform case, this can be seen by
considering the frequency behavior of the samples. In contrast
to models using repulsive forces the Voronoi cell based relax-
ation is very stable. Using a good start configuration of the
samples only a few relaxation steps are needed to achieve good
results. Thus the method is reasonable fast. Due to the lack of
repulsive forces the Voronoi relaxation does not preserve the
Poisson disk property. It turns out that in most cases this is not
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(a) (b)

(c) (d)

Fig. 14. Our method used for vector field visualization. We can generate a
dense sample of vector glyphs. These images show two simple datasets defined
by blending simple critical-point configurations. The principal directions of
the metric are defined in parallel and orthogonal to the vector field. The
corresponding eigenvalues are given by the velocity. It can be seen that already
a small number of relaxations improves the result. (a) and (c) Glyphs before
relaxation, (b) and (d) after two relaxation steps.

a problem if only a few relaxation steps are performed. But in
uniform regions unpleasing patterns with overlapping ellipses
may form. This can be avoided introducing an additional
intersection test, which is not entirely satisfactory because

Fig. 15. Mosaic-like image generated by our technique. The metric used
for ellipse generation results from the gradient field of the blurred original
image. The ellipses automatically align with edges with high gradients and
thus emphasize image structure.

it also hinders the relaxation. As an extension of this work
we want to look for possibilities to change the relaxation
process in order to maintain the Poisson disk distribution
without giving up the simplicity of the method. Further we
plan on extending our work to anisotropic textures on arbitrary
surfaces and volumes.
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spot around the origin) and a peak (light circle) for the principal frequency, representing the average distance between nearest neighbors. These characteristics
become more expressed after the first iterations. After the third iterations the changes are hardly visible anymore. First row: initial point set, second row: after
five iterations, third row: after ten iterations.
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(a) (b) (c)

Fig. 18. The frequency analysis of an anisotropic, uniform sample set for the initial point set (column (a)) clearly shows an anisotropic characteristic. As
we apply relaxation to the samples, the anisotropy property start to diminish. When the samples converge to a stable position, the power spectrum still shows
fairly strong anisotropy. Similar to the blue-noise samples there are almost no low frequencies but here the principal frequency is direction-dependent. This
is a result of the generalized Poisson disk property.
Column (a): initial point set, column (b): after 25 iterations, column (c): after 50 iterations.

(a) (b) (c)

Fig. 19. When an intersection test is enforced during relaxation, the samples converge to stable locations faster because their movements are more restricted.
The power spectrum shows an slightly improved anisotropic behavior for non-overlap samples but with irregularities due to the restricted relaxation process.
(a) Initial sample set, (b) after 25 iterations, (c) after 35 iterations.

PLACE
PHOTO
HERE

Louis Feng Biography text here.

Ingrid Hotz Biography text here.

Bernd Hamann Biography text here.

Ken Joy Biography text here.


