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Anisotropic Noise Samples

Louis Feng, Ingrid Hotz, Bernd Hamann, and Kenneth I. Joy

Abstract—We present a practical approach to generate
stochastic anisotropic samples with Poisson-disk characteristic
over a two-dimensional domain. In contrast to isotropic sam-
ples, we understand anisotropic samples as non-overlapping
ellipses whose size and density match a given anisotropic metric.

Anisotropic noise samples are useful for many visualization and

graphics applications. The spot samples can be used as input for

texture generation, e.g., line integral convolution (LIC), but can

also be used directly for visualization. The definition of the spot

samples using a metric tensor makes them especially suitable

for the visualization of tensor fields that can be translated into a

metric. Our work combines ideas from sampling theory and mesh (@) (b)
generation to approximate generalized blue noise properties.

To generate these samples with the desired properties we first Fig- 1. (a) LIC texture generated with a poorly sampled input texture. Holes
construct a set of non-overlapping ellipses whose distribution N the spot texture result in holes in the LIC texture. (b) The same data set
closely matches the underlying metric. This set of samples is USiNg our spot sampling method to generate the input.
used as input for a generalized anisotropicLloyd relaxation to
distribute noise samples more evenly. Instead of computing the

Voronoi tessellation explicitly, we introduce a discrete approach gnisotropic samples over a two-dimensional domain with the
which combines the Voronoi cell and centroid computation in one following properties:

step. Our method supports automatic packing of the elliptical
samples, resulting in textures similar to those generated by « The samples vary in size and shape over a domain,
anisotropic reaction-diffusion methods. We use Fourier analysis represented by a Riemannian metric.

tools for quality measurement of uniformly distributed samples. « The samples are mostly non-overlapping to approximate
The resulting samples have nice sampling properties, e.g., they - . . -

satisfy a blue noise propertywhere low frequencies in the power a generalized Poisson-disk Characterlstlc. .

spectrum are reduced to a minimum. « The samples cover the domain densely, without generat-

Index Terms—tensor field visualization, glyph packing, ing regular patterns.

anisotropic Voronoi diagram, blue noise The metric can be user-defined or derived from a scalar
field, vector field, or tensor field. In general, it is spatially
varying and anisotropic.

To achieve the objectives listed above we have designed a
OISE samples with certain characteristics, such as spaethod which generates an anisotropic sample distribution in
tially varying density and size, have many applicafwo main steps. First, we construct a set of non-overlapping

tions in computer graphics and visualization. The applicatioe$lipses whose distribution closely matches the underlying
range from digital halftoning [1]-[4], mesh generation [5]+metric. This first sample set already exhibits most of the
[8], Monte Carlo ray tracing [9], [10], to texture generatiordesired properties. Next, we use a generalized anisotropic
for visualization purposes [11]-[16]. While some of thé.loyd relaxation to distribute the noise samples more evenly.
desirable properties of the noise are similar across applicatio@sir anisotropic Lloyd relaxation is a straight-forward general-
the goals and appropriate sampling strategies are problemation of the isotropic version, and coupled with the prepro-
dependent. For digital halftoning, the goal is to producgessing steps, can produce both isotropic and anisotropic blue-
aperiodic isotropic patterns to avoid visually disturbing regulaoise. We use a localized anisotropic Voronoi cell and centroid
structures. For applications such as ray tracing, it might loefinition based on the work of Labelle and Shewchuk [7]
important to have exact control over the number of sample®d Du et al. [6]. To speed up the relaxation we introduce
For mesh generation purposes, a primary goal may not &ediscrete approach which combines the Voronoi cell and
avoiding structural patterns but rather to produce an “optimatentroid computation in one step, instead of computing the
triangulation to reflect a given anisotropic metric. Our interedoronoi tessellation explicitly. The total computation time is
in anisotropic spots with good sampling properties arose fro@minated by the relaxation step; the initial sampling time
a tensor field visualization method, where spot samples wighows linearly with the required number of samples.

spatially varying shape and density are used as input for lineAnisotropic noise samples are appropriate for visualizing
integral convolution (LIC) [17]. The shape and density of thdata sets with anisotropic non-uniform properties, and the most
spots determine the thickness and density of the resulting fitmdavious application is the visualization of tensor fields. We
structure. Any low-frequency patterns or holes in the spbave applied our method to stress tensor fields and diffusion
samples will be visible as artifacts in the resulting texture, séensor magnet resonance imaging (DT-MRI) data. Thereby
Figure 13(a). Therefore, our method is designed to generate have used it as a visualization method in its own right

I. INTRODUCTION
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as well as as input for a continuous texture such as LIC.
But anisotropic samples are also interesting for other areas °

in visualization where glyphs with spatially varying size
and orientation are used. Our method automatically fills the
entire domain with glyphs without clustering problems and '

reduces structural patterns to a minimum. A very different
application is the use of anisotropic noise samples for artistic
non-photorealistic rendering, where it opens a wide range of

possibilities of which we discuss only some examples. Fig. 2. Generalized Poisson disk property. The minimum distance of two
sample points is defined by the local ellipses which are not allowed to overlap.

Il. RELATED WORK

The generation of point or spot distributions with certaignisotropic mesh generation was chosen by Du et al. [6] and
properties is the subject of research in different fields. Deapelle et al. [7]. Labelle introduced an anisotropic Voronoi
pending on the specific needs, many algorithms have be@finement of a set of sites which are required to appear in
developed. the mesh. In contrast to our goals, these sites are not allowed

Generating uniformly distributed points with constant ofo move. The method by Du et al. uses a centroidal Voronoi
varying density without large scale patterns has a long tr@laxation to compute a triangulation. Both methods define
dition in the area of noise generation, sampling or halftoning. generalized Voronoi tessellation based on a non-Euclidean
These fields are closely related, many sampling algorithms @fetric using different distance approximations as basis for the
directly used to generate noise textures. Some techniques sig#l triangulation. Our work builds on the ideas introduced
asdart-throwingand others use a form of stochastic samplingn these methods. We have adapted the distance measures
where random points are added or rejected according jffroduced by Labelle et al. since they match our demands
certain criteria [18], [19]. Such methods often suffer from lowetter than the idea of centroidal relaxation of Du et al.
convergence rates. Other approaches use relaxation techniquephe use of glyphs for visualization of local field properties
in particular Lloyd's relaxation [20], [21] and their variantsjs common in visualization. The question of placing these
and they result in high quality blue-noise samples. To reduggphs has been subject of discussion in several contexts.
the number of relaxation steps, a general strategy is to USe most common strategies are regular sampling, random
a more efficient step to produce a set of samples whigAmpling with or without Poisson property [14], [26] or
approximates blue-noise properties, followed by a few itefrocedural texture generation, e.g. using reaction diffusion. In
ations of relaxation on this set to improve overall quality. Toector field visualization, Turk and Banks proposed a method
improve efficiency of the sampling algorithm further, severab place arrows along streamlines generated by streamline
approaches have been suggested using tile sets which therogtgnization [27]. Kindlmann introduced reaction-diffusion
repeatedly tiled across the plane. Using this strategy, for exajito the visualization community by applying it to diffusion
ple, Ostromoukhov et al. introduced a very efficient isotropignsor MRI data [15]. Sanderson et al. used a reaction-
blue-noise sampling method basedRenrose tiling[9]. Most  diffusion model to generate spot noise based on the under-
of these methods assume that the samples are isotropic. [GRfg vector field placing glyphs at the spot center [28].
a survey on sampling techniques, we refer the reader to [Rleaction diffusion simulates a chemical process between two
[18]. morphogenes, which react and diffuse. This changes their

Anisotropic settings can be found in the area of stipplingoncentration and under certain conditions converge toward
or automatic mosaic generation, where objects of differegfable pattern representing the dynamic equilibrium of the
size and shape are distributed on a plane [22]-{24]. Differegistem. The method provides automatic control of density, size
from our definition, the orientation of the distributed objects iand placement of patterns but the specification of appropriate
not precisely predefined by the metric but can change duriggrameters is not trivial. Stable patterns only form for a very
relaxation. Most of the proposed methods use a Lloyd relaarrow band of values for the parameters. In addition, it is
ation based on a generalized Voronoi cell definition, whegmputationally expensive. Recently Kindlmann and Westin
the Euclidean distance of the objects is approximated, using@posed a glyph packing algorithm in the context of diffusion
hardware approach for computation of the Voronoi diagrafansor visualization [16]. Their work is built on a particle

[25]. The centroids used for relaxation are the geometripproach simulating attractive and repulsive forces.
centers without considering the changed metric.

The goal of generating an anisotropic distribution following
a given metric also appears in the area of mesh generation.
Shimada et al. [8] based the mesh generation on a clos&@he starting point for the generation of the elliptic noise
packing of ellipsoidal bubbles. The packing is performesamples is a metrig given over a domainD C R? which
using a particle system, where particles move according defines the sample properties. The metric can be user-defined
repulsive and attractive forces. The defined forces are rmtderived from scalar fields, vector fields, or tensor fields,
linear. The equations of motion are solved numerically to yiekke Section VI. The metric is given as a two-by-two sym-
a force balancing configuration. A geometric approach fonetric, positive definite matrix depending on the location

I11. A SSUMPTIONS ANDGOALS
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squared principal radii? (o, yo) and b*(xg,yo) are scaled

according to the reciprocal eigenvalues Fig. 3. First step of noise generation. Generation of a reasonable starting

distribution of ellipses. A random point set defines candidate points, shown

1 as black dots. Ellipses around these points still overlap each other. A point is
a®(z9,y0) = —— andb*(zg, yo) = ———, (3) accepted as sample if its ellipse does not intersect with any other previously
>\1($07y0) )\2(3307 yo) accepted ellipse. In this example, the red ellipse is the first ellipse drawn

. in the considered region and is accepted. All points lying inside the ellipse,
where Ai(zo,y0) and Ax(zo,yo) are the eigenvalues Of shown as red points, can immediately be removed from the candidate list. For

9(xo,y0). The sample density is implicitly defined by thesimplicity, all points in the blue square containing the red ellipse are checked

size of the eIIipses In order to make a glyph based ViS[?—r intersection and are possibly removed. In this example, one of the two
.. ) ellipses drawn would be removed.

alization reasonable we further assume that the frequency

of the generated spots is higher than the frequency of the

changg of t.he underlying metric. This means that density a.‘ﬁl%t sample set as input for the relaxation and only a few
EIg_eEgll’eCtI:)nS do not vary hmuchdfrqm (?jne san:ple_t:]o 'terations, since the relaxation tends to converge to stable
neignbors. In summary, we have designed our aigorithm ;5%ttern configurations, especially for uniform settings. We

generate nqlse samples with the following propertlgs: explain these steps in more detail in the following sections.
1) The size and shape of the spots are determined by the

local metric. By choosing the right scaling we can define
the spots as unit circles, see Equation 2. A. Generating the Initial Sample Set

2) The spots are closely packed and non-intersecting havingrpe generation of the initial sample set is done in two steps.
a minimum distance, defined by a generalized Poissg{ the first step, a set of jittered grid points is generated as
disk property, see Figure 1. =~ locations for the candidate spots, see Figure 2. The initial set

3) The spots are unstructured, i.e., inherent pattemns @i@st have higher density than the target density. Four times
reduced to a minimum. In terms of the power Spectrufe arget density leads to good results. When using grid points
of the samples this means absence of small frequencigsy oyt jittering the required initial density will be higher and
In contrast to the general blue-noise property we alloWay still introduce structures. The candidate spots in each
an angular dependency of the principal frequencies. |ocation are defined by the local metric as “unit-circle.” For

a general metrig, these are ellipses defined by Equation 2.

IV. ALGORITHM At this stage, the generated candidate spots generally overlap.
Texture generation can be divided into two independef¥nce the initial set of points is generated, the algorithm tra-
steps: verses the set of points and determines whether each candidate

A. Computation of a reasonable starting distribution of efPOt should be accepted or not. A candidate is selected, when
lipses, where we generate a set of spot candidates badeftisfies the following conditions:
on a dense set of uniformly sampled jittered points, ande The point has not been checked previously, and
then traverse the candidate set to select ellipses such that it fulfills the generalized Poisson disk property, meaning
the resulting distribution fulfills a generalized Poisson its ellipse does not overlap with the ellipses at any other
disk property. This start distribution provides the basis already selected spots B

for most of the properties of the resulting sample set.while traversing we check whether a point overlaps with other

B. Optimization of the starting distribution using anspots. The underlying regular grid structure of random points
anisotropic Lloyd relaxation. has the nice property that it supports efficient spatial search

Both steps are important. The first step determines the basicneighboring points, therefore, simplifying the checking
properties of the sample set, including the number of samplespcess. After selecting an ellipse, all candidate points in
the density and the Poisson disk property. The second step immediate neighborhood of the ellipse are checked for
makes the samples more uniform and approaching stabigersection and are possibly removed from the point list. For
configurations. It is important to use a sufficiently complegimplicity we use a squared neighborhood with edge length
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of twice the size of the larger ellipse half axis, see Figure 2,
instead of a the ellipses themselves.

A simple way to traverse the sample set is visiting the points
sequentially in a scan-line fashion. Unfortunately, traversing
the points sequentially introduces artifacts in the resulting spot
texture. Using a Hilbert curve, i.e., a special space filing curve,
to traverse the points as proposed by Gilbert [29] leads to
bett_er results but still ge_nerates undesired patterns. \We h%}é%. (a) The anisotropic bisector of two points is a quadratic curve. (b) In
achieved best results with a random traversal of the spatg uniform case the bisector is a straight line passing through the midpoint of
Differences when using a random traversal or Hilbert curvee two points. In general, it is not orthogonal to the connecting line segment

. . of the two points.
traversal are rarely visible after the relaxation step.

(b)

B. Anisotropic Voronoi relaxation P, as to any other poin®;, j # i, using the geodesic distance
After generating spot samples and selecting ellipses the distance measure, i.e.,
sample set.of elll.pses has the fgllowmg properties: . Vory(Py) = {P € D|dy(Ps, P) < d,(P;, P) 5)
« The ellipses in the current sites represent the local metric. forall j € T withi 2 j }
: J LFED g
« The ellipses do not overlap.
« The coverage of the domain with ellipses is dense.  where d,(P, Q) is the geodesic distance of the two points
« The sites do not follow a regular pattern. P and @ defined by the metrig. This is the length of the
By eliminating overlapping samples, holes can result in certashortest path connecting the two poirftsand Q. However,
areas. To remove these artifacts we use a method similarstace the computation of this shortest path is difficult and
Lloyd relaxation computationally expensive we use an approximate distance
Lloyd relaxation, also known as Voronoi iteration, is dunction for two points.
method to generate evenly distributed samples. It is an iteratiorDifferent distance approximations in the context of the
of constructing Voronoi tessellation and its centroids. In eaélgfinition of anisotropic Voronoi cells have been introduced.
iteration the sample points are moved into the cell centrofe follow the definitions proposed by Labelle and Shewchuk,
which corresponds to the center of mass of the cell. Tikgcause it matches our conditions well, i.e.,
process converges to a centroidal Voronoi diagram, where each

2 —(P_O\T _
sample point lies in its cell centroid. This diagram minimizes d(P,Q) = (P - Q) g(P)(P-Q) ©6)
the energy given as In this case, the distance is not symmethi®, Q) # d(Q, P).
Also, the triangle inequality is not necessarily satisfied. The
— 2
E= Z/V pla)llr —ri|[dr (4)  pisector of two pointsP; and P, is defined as
i€l ¥V ori
whereI is the index set for the samplégpr; the Voronoi cell B(Py, ) = {P|d(P1, P) = d(P», P)}, (7)

of the ith sample,; its position andp a local scalar density.

Due to the anisotropy of the metric, we use an anisotropic
Voronoi diagram and an anisotropic centroid computation for
the relaxation step. Since the orientation of the ellipses is
determined by its location it changes when moving its position.
In contrast to Fritzsche et al’'s mosaic generation technique
using Voronoi structures [24], our method does not perform
explicit rotation to achieve a denser packing because the
ellipses must reflect the local metric. The relaxation step does
not change the density resulting from the first step much; it
merely is a smoothing of the sample distribution. Therefore,
the quality of the result after the relaxation process depends
strongly on the result of the first sample set generation.

For the definition of the anisotropic Voronoi diagram and

the centroid computation we built on the works of Labelle and €) (b)
Shewchuk [7] and Du et al_- [6] Our method is a Combmat'oﬂg. 5. (&) Voronoi cells resulting from the approximate distance function
of these two methods, satisfying our demands. defined by the metric in the sample points. The green Voronoi cell is en

a) Definition of the Voronoi regionsi'_et {Pi eD,ie I} example for a non-conne_cted cell, having one c_)rphan. Such _orphans are
undesirable for the relaxation process. (b) Comparison of the various Voronoi

be the S_Et of §ample points reSUIFmg from our previous stefyis The red lines show the boundaries of the standard Euclidean Voronoi
where[ is an index set for the points. The most natural wagglls. The gray lines show the boundaries of the anisotropic Voronoi cells

of generalizing the Voronoi tessellation to other more gener4fh orphans as defined by Equation 8. Most of the lines are covered by the
. db defi Vi i cafl P of . blue lines, which represent the localized anisotropic Voronoi cells as defined
metrics wou e to define a \Voronoi ¢ Org( z) of a point in Equation 9. The green line indicates the area to which the green Voronoi

P; as the set of all point® € D that are at least as close tocell is restricted.
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where d is an isotropic scalar density and = (z,y). By
replacing the densityl by the metric tensoy the centroide;
is defined as

= (/VOT(R) g(r) dr) . (/VOT(P” g(r)-r dr> . (11)

As an integral over positive definite matrices, the left matrix
is always invertible. By using an isotropic metric with

=" ) 12)
Fig. 6. The set{P|(P; — P;) - (P — P;) > 0} defines an extended
neighborhood of?; (green) which contains the Euclidean Voronoi cell (red)this definition reduces to the standard weighted centroid defi-
We use this neighborhood to define a localization of our Voronoi cells. nition, see Equation 10. If the metric is uniform, i.e., it does
not depend omr, the anisotropic centroid definition coincides
) . . with isotropic uniform case.
and is a quadratic curve. If the metrics # and P, are  After moving the sample point to the centroid of its cell
the same, the bisector is a straight line passing through (jg cannot guarantee that the ellipse is still entirely contained
midpoint of the connection ofy, and P, see Figure 3. Basedin the \oronoi cell and thus does not intersect other ellipses.
on this approximate distance, a Voronoi cell of pofitis This can be avoided by performing an intersection test with
defined as the neighboring ellipses and shortening the translation vector
in case of intersection. This happens mostly for uniform data
Vor(P) ={P € D|d(&’ P) S d(l,Dj’ P) ®) sets and close to the boundary. In our experience this check is
forall j € I with i 7 j }. not necessary for real data sets. For a more detailed discussion,

In contrast to Du et al. [6], this definition uses the metric j§€€ Section V.

the point samples to determine distance. We have chosen this )

distance function because it guarantees that ellipses drawncmlmplementatlon:

the sample points lie entirely inside the Voronoi cells for our @) Intersection test:The initial sampling requires inter-

start configuration with non-intersecting ellipses. This resulggction tests between neighboring samples. In the isotropic

from the fact that the ellipses are unit circles according &#se, this intersection test is simply the circle to circle inter-

the local metric, meaning all points inside the ellipses haw€ction test and can be done efficiently. In the more general

a distance smaller than one, and all points outside havecase, the samples are represented by ellipses. The algebraic

distance larger than one. method of ellipse to ellipse intersection test involve solving a
The resulting Voronoi cells are in general not convex arfifartic polynomial which is computationally expensive and

may not even be connected, see Figure 4(a). The partnsfmerically unstable. We use polylines to approximate the

the cell not containing the sample point is called@phan ellipses during intersection test to reduce complexity. In our

Orphans are undesirable for the relaxation process for tifBPlementation, we approximate each ellipse by a closed

reasons. First, the relaxation should be determined by th@lyline consisting of eight line segments. This approximation

local neighborhood of the sample point and not influenced Byoduces good results without the issues involved in the

regions far away. Second, the distance approximation for thgdgebraic method.

regions is very inaccurate. Therefore, we define a localized

version of the Voronoi cells by reducing the possible region

of influence using the Euclidean Voronoi tessellation, see

Figure 5. It is possible that some of the orphans survive the

localization but this happens very rarely, see Figure 4(b). We

define

(P;-P)(P-P) >0

Vor,(P)) = {P € D|i € Ip andd(P;, P) < d(P;, P)
forall j € Ip with i # j },

with Ip = {i € I|(P;, — P;) - (P — P;) < 0,Vj #i}.

b) Centroid definition:For the definition of the centroid
we follow the idea of Du et al. [6], which is a straight-forward
generalization of centroid definition as the center of mass to
an anisotropic setting. The center of mas®f a Voronoi cell
Vor(F;) is defined as

d(r)r dr
— fVO’”(Pi) (r) (10) Fig. 7. Anisotropic Voronoi cells resulting from the simplified distance

“= J d(r) dr’ measure. The grid used for relaxation has a resolutiohilafx 512
Vor(P;) : .
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b) Relaxation: For the computation of the Voronoi cells
and the centroid we use a discrete approach. Considering the
domain as a set of uniform cells represented by their center
R, the discretized version of Equation 11 results in

c— P = oot D> gR)-(R-P)
=T, ReVor(P;) ReVor(P;)
—_——

=M; =t
(13)

T;, t;, and M; are used in the implementation.

Instead of computing the Voronoi cell explicitly and using
these cells for the centroid computation, we perform both
computations in one step. We initialize all sample positions (a) (b) (c)
P;,i € I, with a zero vectort; and zero matrix)/;. Next, Fig. 8. Relaxation for uniform anisotropic samples. (a) first sample set, (b)
we march through the discretized domain performing ttger one iteration, (c) after six iterations.
following steps for each cell represented by the pdmnt

« Find the Voronoi CelV org(P;) containing pointR, then
compare its distances to sample points lying inside a local
bin to specifyi.

« Update the matrix\/; and the vectot; in the following
way.

M; «— M;+g(R)
ti — ti+g(R)-(R-D)
After traversing the entire domain, the new position of the

sample points?;, given by Equation 13, is determined by the
translation vectofl;, i.e.,

(14)

An example of the computed Voronoi cells of a synthetic (@) (b) (©)

dataset is shown in Figure 6. As the resolution of the dis- _ _ _ , _ _
Fig. 9. Sampling sets for an anisotropic spatially varying metric. The upper

cretization mcrease.s' the centr0|d can be Compmed_ m%’% shows how the sample set evolves over the computation. The row below
accurately. In our implementation, we have used grids efows the image after applying a Gaussian filter. (a) First sample set after the

resolutions betweef?56 x 256 and 1024 x 1024 depending fi]r{%t step o{ ourt_algotrithm; (b) result after one relaxation step; and (c) result
on the desired output resolution of the samples. BHer six relaxation steps.

V. QUALITY MEASUREMENT filter, where the local density is given as gray value. Due

The evaluation of our algorithm is guided by the goalto the discrete structure of the samples we cannot expect a
described in Section Ill. We use spatial (density, uniformnessjnstant density but it should be almost uniform over the
as well as frequency (power spectrum) properties for qualigntire domain even for non-uniform samples. An example
measurements. In the following, we discuss the points definted a uniform anisotropic data set is shown in Figure 7, an
as goals and the methods used to verify their quality. Véxample for a nonuniform data-set in Figure 8. The coverage
discuss examples for a simple isotropic and anisotropic metisccomputed by averaging the pixel grey value of the output
definition. The tensor used for the uniform example is aligneghage. For a visual analysis, we used blurring to measure
to the coordinate axes with eigenvalues 2.0 and 8.0. For tite uniformity of the samples. The size of the Gaussian filter
non-uniform example the eigenvector field is rotated ahgt used for these examples is the same for both examples. In both
from left to right. The tensor field changes from an almosiases it can be observed that the density is fast approaching
isotropic field with eigenvalues 2, to an anisotropic field witl uniform distributions. After six relaxation steps there are no
eigenvalues 2.0 and 8.0, respectively. holes visible anymore. In particular there is no dependency of

a) Representation of the metric by sampling shape atite coverage on the size and shape of the samples. Close to
density: The size and shape of the spots are determined the boundary, a slightly higher density can be seen for both
the local metric. Thus, each spot reflects the metric valudsta sets. The entire coverage of the space is approximately
in the sample point exactly. The density of the spots #0% for the uniform and the nonuniform case.
roughly determined by spot size. For an evaluation of densityThe second density we are interested in is an anisotropic
we consider two different density measures. The first is thiensity. We define the density, (0) for samples with non-
standard scalar densithwhich is defined as covered pixels peeero area as average number of sample hits when traversing a
unit area. This density can be measured by using a Gaussiait area along a straight line in directiéh see Figure 9(a).
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. tend to move towards holes in the texture and the overall
5 /»/)T B T4 density is not changed significantly during the relaxation, in
most cases the Poisson disk property is not violated after
e several iterations, except close to the boundary. In the case
of uniform data-sets hexagonal patterns are fix-points for
the iteration process. After several iterations regions with
q hexagonal patterns are forming, see Figure 10. Inside of these
St regions the pattern become relatively stable fairly quickly. In
] X between these regions the structure still changes slightly after
many iterations. This can lead to an unwanted overlapping
(@) (b) of the ellipses. To avoid overlapping we have implemented
Fig. 10. Definition of an anisotropic density as average number of sam@¢ additional intersection test during the relaxation. Since
hits when traversing a unit cell in a certain direction. Here, sample hits fgr . hon-uniform data-sets there are no such regular stable
two different directions are shown. The average number of sample hits In . . . ..
horizontal direction (blue) is circa 3.4 and circa 6.25 in vertical directiofOnfigurations this test is in general not necessary, we mostly
(black). skip it for performance reasons.
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TABLE |
PERFORMANCE

Grid size | # initial | Removing | # final | Relaxation
samples| overlaps | samples
Anisotropic
128x128 | 16384 0.188s 259 6.2665s

256x256 | 65536 0.812s 1038 26.437s
512x512 | 262144 3.313s 4254 104.39s

Isotropic
128x128 | 16384 0.047s 786 0.078s
256x256 | 65536 0.234s 3075 0.281s
(a) (b) 512x512 | 262144 0.922s 12217 1.141s

¢) Unstructured samplingHalf-toning methods are usu-
ally evaluated by their radially averaged power spectrum. This
measures the frequency content of the spatial distribution of
points, also called “blue-noise characteristic.” Low frequencies
in this spectrum lead to large-scale artifacts, that will become
visible. For the isotropic case the expected pattern in Fourier
space shows no frequencies close to the origin, and it shows
a maximum at a radius representing the principal frequency,
(©) (d) representing the inverse average distance of samples. Since we
Fig. 11.  For a uniform anisotropic data set, regions of regular patteruse elliptical Poisson disks, this principal frequency (PF) is

may form after running the relaxation for many iterations. (a) shows the stﬁrec'{ion'dependem' varying from a minimum to a maximum

configuration before relaxations, (b) after one iteration, (c) after 50 iteratiof¥. The PFs are visible in frequency space as light circle for

and (d) after 125 iterations. After 50 iterations we can see the formationcﬁﬁe isotropic case and as light ellipse for the anisotropic case
two different structures (highlighted by the red box). These regions har P 9 P P !

change over the next 75 iterations. Looking at difference images between%:'ee Figure 17 and 18. The higher frequencie_s representing the
iterations we can see that there is still a fluctuation in the regions betwetgndomness are almost homogeneous and independent of the

the stable pattems. direction even for the anisotropic case.
The relaxation process degrades the anisotropic structure
in the power spectrum which goes hand in hand with the
Practically we count the number of Voronoi cells we hit fopattern formation and overlapping of ellipses mentioned in the
a given direction, see Figure 9(b). This value is especiallyst section. Similar in isotropic settings, one can show that
interesting when we use the samples as input for LIC gesHi hexagonal structures are stable under uniform anisotropic
eration, because it determines the fiber density OrthOgonalr@axation_ The anisotropy is expressed in the shape of the
the convolution direction. The ratio of the anisotropic densiyells but not based on the locations of the centroids. The
in principal direction and the half-axis of the eIIipses Sh0U|ﬂequency pattern approaches the standard blue noise pattern
be the same for both eigendirections. For the uniform casegs we app]y more relaxations but still maintains anisotropy
shown in Figure 7(c) the two ratios vary about 1.5%. after the samples stabilize at final position. This tendency can
b) Generalized Poisson disk propertfdy construction, be diminished by a small margin when using the intersection
the generalized Poisson disk condition is satisfied after ttest during the relaxation process to ensure non-overlapping
first sample set generation. The relaxation itself does rsdamples. The resulting samples with intersection test produce
guarantee that this property is maintained. Since the sampdesne irregularities which can be seen in the frequency domain,
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see Figure 19. the resulting samples are ellipses alignedvtoand v, and

d) Performance:Table ?? shows the running times onscaled according to the eigenvalues. Depending on the appli-
an Intel P4 3.2GHz with 2GB memory. Important observatiocation it may be necessary to normalize the eigenvalues.
is the linear growth of the processing time for both isotropic Our first example is a stress field of a solid block with
and anisotropic tests. In the isotropic case the time for th&o applied loads with opposite sign, resulting from a three
generation of the first sample set and the relaxation stepsdimensional numerical finite element simulation. Figure 11
about the same. For the anisotropic case the computation tish@ws a slice of this data set orthogonal to the applied forces.

is dominated by the relaxation process. The displayed ellipses represent the shape of a unit sphere
deformed according to the local stress field. Small ellipse half-
VI. APPLICATIONS axis indicate compression, large half-axis indicate expansion in

We have used the anisotropic noise generation in differdhi respective direction. Ellipses with high eccentricity mean

contexts. Our main applications are related to visualizatio?lt,rong shear forces.

but we also considered artistic image rendering applicationsAS Second example we applied our method to a slice of a

For visualization purposes the main step is the definition giffusion tensor MRI dataset of a brain. The use of glyphs,
the metric, ensuring that it incorporates the most importaf@"9ing from simple ellipses to more advanced glyphs as

features of the data. In the following sections, we explain ttf/Perquadrics [30], is a common method for visualizing of
definition for specific applications. such data sets. The glyphs are mostly placed in grid points

or are randomly spread [26]. Figure 12 shows a result using
L our sample generation. We used a mask image representing
A. Tensor Visualization the confidence values of the tensors as provided by Gordon

To be able to use anisotropic noise for the visualizaticindimann together with the data set. The color is used to
of tensor data, we must define a metric based on the givieipresents the principal diffusion direction. The result is a
tensors. Some of the tensor fields we are interested in &@fgiform and dense representation of the data independent from
already positive definite, e.g., diffusion tensor fields. But othétie grid points. Similar results were obtained by Kindelmann
tensor fields, like stress or strain fields, also have negatigal. [16] using a particle simulating approach with repulsive
eigenvalues. To be able to treat such tensor fields we interpigtl attractive forces.
them as distortion of a flat metric [17].

Assume that we have a positive definite tensor figld
defined over a domai. Let A\; and )y be its eigenvalues
and v, and v, be the respective eigenvectors. We define the The use of spot samples with varying density and size is not

B. Other Applications

metric for the sample generation as limited to tensor field visualization. It is also appropriate for
1 1 any other glyph based visualization methods, using glyphs that
g=——v1 -V + ——1y V8 (16) can be embedded into an elliptical shape. In this section we
VAL V2 demonstrate manifold possibilities using two exemplary areas,

vector field visualization and non-photorealistic rendering.

1) Vector field visualizationOne of the most direct vector
field visualization methods is the use of arrows or other
icons. The placement of glyphs without clustering or structural
pattern formation is a challenging problem. Turk and Banks
proposed a method to place arrows along streamlines generated
using streamline optimization [27]. Sanderson et al. [28] used
a reaction-diffusion model to generate spot noise based on
the underlying vector field, and places glyphs at spot centers.
Anisotropic noise samples can be used as an alternative to
these methods. To demonstrate this technique we have used
anisotropic noise samples to place arrows based on a synthetic
vector field.

The direction of our metric is determined by the direction of
the vector field and the orthogonal direction. We tried different
ways to assign the eigenvalues to the metric. In Figure 14(a)-
(d), we use the vector magnitudle to define the ellipse size
in direction of the flow,A\; = ¢|v|, and a constant value for
the orthogonal direction); = d. ¢ andd are constants. Thus
the widths of the arrows remain the same for all arrows.

_ T 1 1T
Fig. 12. Slice of a numerical simulation of a solid block with two forces g = A€y - €, + Aoy - € (17)

acting on the block, one pushing and one pulling force. This image shows Lo . Lo
the tensor data as ellipses. The ellipses provide an idea about the directiong) Non-photorealistic rendering:Non-photorealistic ren-

of contraction or expansion inside the material. dering is often used to simulate painting or drawing styles an
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(@) (b)

Fig. 13. These images show a slice of diffusion MRI data. The color code is the standard color map of encoding the major eigendirections in three dimensions.
The projected tensors are represented by ellipses. Each ellipse is defined by the tensor value given at its center. The left image (a) shows the sampling se
before relaxation, the right image (b) a close-up after three relaxation steps with densely packed ellipses. (c) shows the color coding for the direction.

Fig. 16. Mosaic-like images generated by our technique. The metric used for ellipse generation results from the gradient field of the blurred original image.
The left image shows the result before relaxation and the right image after three relaxation steps.

artist would use. There are many techniques to simulate these VII. CONCLUSION AND FUTURE WORK

styles. Anisotropic noise samples can be used for generatinqu have introduced a method to generate anisotropic spot
“artistic images” where elements of the image have directionr%ise on 2D domains. We have demonstrated our method for
properties, such as paint brush direction or rectangular MOSdifterent applications. An automatic generation of uniformly
tlles._ Out exampl_e images are gene_rated _by constructing, & - glyphs with locally varying size is a desirable property
gradient vector field based on the intensity values of they nv'in tensor field visualization. As for all glyph based
images. To reduce noise in the vector field, the original IMagRsthods, the resolution of the representation is limited by the

are blurred 'by applying.a Gaussian filter. We' have defing Ze of the glyphs that are used. The same is valid for the
tensor metric over the image using the gradient vector fi sulting fabric when using the spots as input for LIC.

and its orthogonal vector field. The orthogonal vector fleldg-l-he sampling characteristics of the resulting spot distribu-

essentially points in the direction tangent to the bounda{%n is of high quality. For the uniform case, this can be seen by

features in the images. In Figure 15 and 16, the samples QB%Sidering the frequency behavior of the samples. In contrast

cwcula'r In areas Wh‘?re the_re is lide gradient changg, whe[r models using repulsive forces the Voronoi cell based relax-
the elliptic samples in the image follow the boundaries a ion is very stable. Using a good start configuration of the

make them more visible. samples only a few relaxation steps are needed to achieve good
results. Thus the method is reasonable fast. Due to the lack of
repulsive forces the Voronoi relaxation does not preserve the
Poisson disk property. It turns out that in most cases this is not



TVCG 10

it also hinders the relaxation. As an extension of this work
we want to look for possibilities to change the relaxation
process in order to maintain the Poisson disk distribution
without giving up the simplicity of the method. Further we

plan on extending our work to anisotropic textures on arbitrary
surfaces and volumes.
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(@) (b) (©)

The frequency analysis of an anisotropic, uniform sample set for the initial point set (column (a)) clearly shows an anisotropic characteristic. As
we apply relaxation to the samples, the anisotropy property start to diminish. When the samples converge to a stable position, the power spectrum still shows

fairly strong anisotropy. Similar to the blue-noise samples there are almost no low frequencies but here the principal frequency is direction-dependent. This
is a result of the generalized Poisson disk property.

Column (a): initial point set, column (b): after 25 iterations, column (c): after 50 iterations.

Fig. 18.

@) (b) ()

Fig. 19. When an intersection test is enforced during relaxation, the samples converge to stable locations faster because their movements are more restricted

The power spectrum shows an slightly improved anisotropic behavior for non-overlap samples but with irregularities due to the restricted relaxation process.
(a) Initial sample set, (b) after 25 iterations, (c) after 35 iterations.
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