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Summary. We present a simple and efficient approach to generate a dense set of
anisotropic, spatially varying glyphs over a two-dimensional domain. Such glyph
samples are useful for many visualization and graphics applications. The glyphs
are embedded in a set of non-overlapping ellipses whose size and density match a
given anisotropic metric. An additional parameter controls the arrangement of the
ellipses on lines, which can be favorable for some applications, e.g., vector fields, and
distracting for others. To generate samples with the desired properties we combine
ideas from sampling theory and mesh generation. We start with constructing a first
set of non-overlapping ellipses whose distribution closely matches the underlying
metric. This set of samples is used as input for a generalized anisotropic Lloyd
relaxation to distribute samples more evenly.

Key words: tensor field visualization, glyph packing, anisotropic Voronoi
diagram

1 Introduction

Anisotropic spot samples with certain characteristics, such as spatially vary-
ing density and size, have many applications in visualization and computer
graphics ranging from glyph rendering and texture generation for visualiza-
tion purposes [14, 8, 13, 11, 12, 3], digital halftoning [19, 15, 25] to mesh
generation [2, 16, 22]. While some of the desirable properties of the samples
are similar across applications, the goals and appropriate sampling strategies
are problem-dependent. When using the samples as input for texture genera-
tion as, e.g., line integral convolution (LIC), it is important to avoid structural
patterns. An ellipse alignment leads to distracting artifacts in the LIC texture.
But an alignment of glyphs is desirable for other applications, e.g., vector field
visualization, where it supports the impression of flow.

To achieve the objectives listed above we have designed a method, which
generates an anisotropic sample distribution in two main steps. First, we con-
struct a set of non-overlapping ellipses. This first sample set already exhibits
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most of the desired properties. Next, we use a generalized anisotropic Lloyd
relaxation to distribute the spot samples more evenly. Our anisotropic Lloyd
relaxation is a straight-forward generalization of the isotropic version and is
based on the work of Labelle and Shewchuk [16] and Du et al. [2]. A parameter
in the Voronoi cell definition controls the alignment of the ellipses. We have
applied our method to several test data sets and various vector and tensor
fields.

2 Related Work

The generation of point or spot distributions with certain properties is the
subject of research in different fields. Dependent on the specific needs many
algorithms have been developed.

Generating uniformly distributed points with constant or varying density
without large scale patterns has a long tradition in the area of noise genera-
tion, sampling or halftoning. These fields are closely related, many sampling
algorithms are directly used to generate noise textures. Some techniques use
a form of stochastic sampling, where random points are added or rejected
according to certain criterions. Such methods often suffer from low conver-
gence rates. Other approaches use relaxation techniques, in particular Lloyd’s
relaxation [18, 1] and its variants resulting in high-quality blue-noise samples.
To improve efficiency of the sampling algorithm several approaches have been
suggested using tile sets, which then are repeatedly tiled across the plane. Us-
ing this strategy, e.g., Ostromoukhov et al. introduced a very efficient isotropic
blue-noise sampling method based on Penrose tiling [20]. Most of these meth-
ods assume that the samples are isotropic. For a survey on sampling tech-
niques, we refer the reader to [5, 24]. Anisotropic settings can be found in the
area of stippling or automatic mosaic generation, where objects of different
size and shape are distributed on a plane [7, 6, 4]. Different from our defini-
tion, here the orientation of the distributed objects is not predefined by the
metric but can change during relaxation. Most of the proposed methods use
a Lloyd relaxation based on a generalized Voronoi cell definition, where the
Euclidean distance of the objects is approximated.

The goal of generating an anisotropic distribution following a given metric
also appears in the area of mesh generation. Shimada et al. [22] introduced
a mesh generation approach using a close packing of ellipsoidal bubbles. The
packing is performed using a particle system, where particles move according
to repulsive and attractive forces. The equations of motion are solved nu-
merically to yield a force-balancing configuration. A geometric approach for
anisotropic mesh generation was chosen by Du et al. [2] and Labelle et al. [16].
Both methods define a generalized Voronoi tessellation based on a non Eu-
clidean metric using different distance approximations as basis for the final
triangulation. Our work builds on the ideas introduced in these methods.
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Fig. 1. Generalized Poisson disk property. The minimum distance of two sample
points is defined by the local ellipses, which are not allowed to overlap.

The use of glyphs for visualization of local field properties is common in
visualization. The question of placing these glyphs has been subject of discus-
sion in several contexts. The most common strategies are regular sampling,
random sampling with or without Poisson property [17, 13] or procedural
texture generation, e.g., using reaction diffusion. In vector field visualization,
Turk and Banks proposed a method to place arrows along streamlines gener-
ated by streamline optimization [23]. Kindlmann introduced reaction-diffusion
into the visualization community applying it to diffusion tensor MRI data [11].
Sanderson et al. used a reaction-diffusion model to generate spot noise based
on the underlying vector field placing glyphs at the spot center [21]. Reaction
diffusion provides automatic control of density, size and placement of patterns
but the specification of appropriate parameters is not trivial. Stable patterns
only form for a very narrow band of values for the parameters. In addition it
is computationally expensive. Recently Kindelmann and Westin proposed a
glyph packing algorithm in the context of diffusion tensor visualization [12].
Their work is built on a particle approach simulating attractive and repulsive
forces. This work is an extension to our recent work for the generation of
anisotropic noise samples [3] by adding a control over the alignment of the
ellipses.

3 Assumptions and Goals

The starting point for the generation of the elliptic noise samples is a metric
g = (gij) given over a domain D ⊂ R2, which defines the sample properties.
The metric can be user-defined or derived from scalar fields, vector fields, or
tensor fields, see Section 6. The metric is given as a two-by-two symmetric,
positive definite matrix depending on the location P = (x, y) ∈ R2. We assume
that the metric is non-degenerate everywhere. In general, it is spatially varying
and anisotropic. Size and density of the ellipses are specified by the metric in
their center P0 = (x0, y0). Their shape is defined as unit circle with respect
to the metric g0 in P0, i.e.,
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g011(x− x0)2 + 2g012(x− x0)(y − y0) + g022(y − y0)2 = 1. (1)

Their half-axes are aligned to the eigenvectors and their squared principal radii
a2(x0, y0) and b2(x0, y0) are scaled according to the reciprocal eigenvalues

a2(x0, y0) =
1

λ1(x0, y0)
and b2(x0, y0) =

1
λ2(x0, y0)

, (2)

where λ1(x0, y0) and λ2(x0, y0) are the eigenvalues of g(x0, y0). The sample
density is implicitly defined by the size of the ellipses. In order to make a glyph-
based visualization reasonable we further assume that the frequency of the
generated spots is higher than the frequency of the change of the underlying
metric. This means that density and eigendirections do not vary much from
one sample to its neighbors. In summary, we have designed our algorithm to
generate noise samples with the following properties:

• Size and shape of the spots are determined by the local metric. By choosing
the right scaling we can define the spots as unit circles, see Equation 1.

• The spots are closely packed without holes resulting in an uniform density,
defined as covered pixels per unit area.

• The spots are non-intersecting having a minimum distance, defined by a
generalized Poisson disk property, see Figure 1.

• The degree of alignment of the spots can be controlled by a parameter.

4 Algorithm

Texture generation can be divided into two independent steps:

1. Computation of a reasonable starting distribution of ellipses, where we
generate a set of spot candidate based on a dense set of uniformly sampled
jittered points, and then traverse the candidate set to select ellipses such
that the resulting distribution fulfills a generalized Poisson disk property.
This start distribution provides the basis for most of the properties of the
resulting sample set.

2. Optimization of the starting distribution using an anisotropic Lloyd relax-
ation. Dependent on a parameter controlling the anisotropy the relaxation
more or less favors an alignment.

Both steps are important. The first step determines the number of samples, the
density and the Poisson disk property. The second step leads to a more uniform
sample distribution, approaching a stable configuration. In the following we
shortly explain the single steps. For more details we refer to [3].

4.1 Generating the Initial Sample Set

The generation of the initial sample set is done in two steps. In the first step,
a set of jittered grid points is generated as locations for the candidate spots.
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The initial set must have higher density than the target density. target den-
sity leads to good results. The candidate spots in each location are defined
by the local metric as “unit-circle.” For a general metric g, these are ellipses
defined by Equation 1. At this stage, the generated candidate spots generally
overlap. Once the initial set of points is generated, the algorithm traverses the
set of points. A candidate spot is accepted when its ellipse does not overlap
with the ellipses at any other already selected samples. The underlying regular
grid structure of random points has the nice property that it supports effi-
cient spatial search of neighboring points, therefore simplifying the checking
process.

4.2 Anisotropic Voronoi Relaxation

By eliminating overlapping samples, holes can result in certain areas. To re-
move these artifacts we use a method similar to Lloyd relaxation.

Lloyd relaxation (also known as Voronoi iteration) is a method to generate
evenly distributed samples. It is an iteration of constructing Voronoi tessella-
tion and its centroids. In each iteration the sample points are moved into the
cell centroid, which corresponds to the center of mass of the cell. The process
converges against a centroidal Voronoi diagram, where each sample point lies
in its cell centroid. This diagram minimizes the energy given as

E =
∑
i∈I

∫
V ori

ρ(x)||r − ri||2dr (3)

where I is the index set for the samples, V ori the Voronoi cell of the ith
sample, ri its position and ρ a local scalar density.

Due to the anisotropy of the metric, we use an anisotropic Voronoi dia-
gram and an anisotropic centroid computation for the relaxation step. For the
definition of the anisotropic Voronoi diagram and the centroid computation
we built on the works of Labelle and Shewchuk [16] and Du et al. [2]. Our
method is a combination of these two methods, satisfying our demands. De-
pending on the special choice of the metric used to define the Voronoi cells
the alignment of ellipses is more or less supported.

Definition of the Voronoi regions

Let {Pi ∈ D, i ∈ I} be the set of sample points resulting from our previous
step, where I is an index set for the points. The most natural way of general-
izing the Voronoi tessellation to other more general metrics would be to define
a Voronoi cell Vor(Pi) of a point Pi as the set of all points P ∈ D that are at
least as close to Pi as to any other point Pj , j 6= i, using the geodesic instead
of the Euclidean distance. However, since the computation of this shortest
path is difficult and computationally expensive we use an approximate dis-
tance function for two points proposed by Labelle and Shewchuk, because it
matches our conditions well, i.e.,
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d2(P,Q) = (P −Q)T g(P )(P −Q). (4)

The distance measure is not symmetric d(P,Q) 6= d(Q,P ). Also, the triangle
inequality is not necessarily satisfied. Based on this approximate distance, a
Voronoi cell of point Pi is defined as

V or(Pi) = {P ∈ D|d(Pi, P ) ≤ d(Pj , P ) for all j ∈ I with i 6= j. (5)

When using the metric defining the ellipses, this distance function guarantees
that ellipses of our start configuration lie entirely inside the Voronoi cells.
The resulting Voronoi cells are in general not convex and may not even be
connected. Therefore, we define a localized version of the Voronoi cells con-
sidering only the part containing the sample point. For more details we refer
to [3]. We define

V orr(Pi) = {P ∈ D|i ∈ IP and d(Pi, P ) ≤ d(Pj , P ) for all j ∈ IP with i 6= j,

with IP = {i ∈ I|(Pi − Pj) · (P − Pi) ≤ 0,∀j 6= i}. (6)

Centroid definition

For the definition of the centroid we follow the idea of Du et al. [2], which is
a straight-forward generalization of centroid definition as the center of mass
to an anisotropic setting. The center of mass ci of a Voronoi cell V or(Pi) is
defined as

ci =

∫
V or(Pi)

d(r)r dr∫
V or(Pi)

d(r) dr
, (7)

where d is an isotropic scalar density and r = (x, y). By replacing the density
d by the metric tensor g the centroid ci is defined as

ci =

(∫
V or(Pi)

g(r) dr

)−1

·

(∫
V or(Pi)

g(r) · r dr

)
. (8)

As an integral over positive definite matrices, the left matrix is always invert-
ible. When using an isotropic metric this definition reduces to the standard
weighted centroid definition. If the metric is uniform, i.e., it does not depend
on r, the anisotropic centroid definition coincides with isotropic uniform case.

4.3 Implementation

Intersection test

The initial sampling requires intersection tests between neighboring samples.
In the isotropic case, this intersection test is simply the circle to circle intersec-
tion test and can be done efficiently. In the more general case, the samples are
represented by ellipses. The algebraic method of ellipse to ellipse intersection
test involve solving a quadratic polynomial, which is computationally expen-
sive and numerically unstable. We use polylines to approximate the ellipses
during intersection test to reduce complexity. This approximation produces
good results without the issues involved in the algebraic method.
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Relaxation

For the computation of the Voronoi cells and the centroid we use a discrete
approach. Considering the domain as a set of uniform cells represented by
their center R the discretized of Equation 8 results in

ci − Pi︸ ︷︷ ︸
≡Ti

=

 ∑
R∈V or(Pi)

g(R)


︸ ︷︷ ︸

≡Mi

−1 ·
∑

R∈V or(Pi)

g(R) · (R− Pi)︸ ︷︷ ︸
≡ti

(9)

Instead of computing the Voronoi cell explicitly and using these cells for
the centroid computation, we perform both computations in one step. We
initialize all sample positions Pi, i ∈ I, with a zero vector ti and zero matrix
Mi. Next, we march through the discretized domain performing the following
steps for each cell represented by the point R:

• Find the Voronoi Cell V orr(Pi) containing point R to specify i, by com-
paring the distances to sample points lying inside a local bin.

• Update the matrix Mi and the vector ti in the following way:

Mi → Mi + g(R)
ti → ti + g(R) · (R− Pi)

(10)

After traversing the entire domain, the new position of the sample points Pi,
given by Equation 9, is determined by the translation vector Ti, i.e.,

Ti = M−1 · ti and Pi → P ′
i = Pi + Ti. (11)

5 Structural Behavior

The distance approximation makes general statements about the convergence
behavior of the point set difficult. For the quality of the results the effect
of a couple of relaxation steps is more important than convergence. We can
identify fix-points of the relaxation process for the uniform case, as e.g., hexag-
onal structures or any other point symmetric configurations. In our examples
we observe that after several iterations regions with hexagonal patterns are
forming, see Figure 2. Inside these regions the patterns become soon rela-
tively stable. Between these regions the structure still changes slightly even
after many iterations.

Dependent on the orientation of the ellipses in relation to the orientation of
the hexagonal structure, these configurations result in an aligned structure or
not. A similar behavior can be observed for slowly varying fields. Whether an
alignment is desirable depends on the specific application. While it generates
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(a) (b) (c)

Fig. 2. After many iterations the sample positions converge and lead to stable pat-
terns. This is especially visible for uniform data sets. After 50 iterations (b) we can
already see the formation of basically two different structures (highlighted by the
red box). These regions hardly change over the nest 75 iterations (c). Looking at
difference images between the single iterations we can see that there is still a fluctu-
ation in the regions between the stable patterns. (a) shows the start configuration
before relaxation.

artifacts when the samples are used as input for texture generation or in non-
photorelalistic rendering applications, it enhances perception of flow field data
sets.

This behavior can be controlled by the anisotropy of the metric used for
the Voronoi cells in the relaxation. Figure 3 shows Voronoi cells for different
types of anisotropies: isotropic, given by the ellipse and with an exaggerated
anisotropy. The shape of the Voronoi cell determines the movement of the
sample point in the next iteration. Especially if the start configuration is not
very dense, the anisotropy given by the ellipses is not sufficient to prevent the
samples from aligning.

In our implementation we have adjusted the anisotropy by multiplying the
larger eigenvalue λ2 with a positive parameter p. Since only the ratio of the
eigenvalues is important it is enough to manipulate one eigenvalue. A value of
λ2/λ1 results in an isotropic metric. A value larger then one leads to a higher

(a) (b) (c)

Fig. 3. Example of the Voronoi diagram of six points using three different uniform
metrics. (a) isotropic metric, (b) metric given by the ellipses, (c) metric with higher
anisotropy.
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(a) (b)

(c) (d)

Fig. 4. Relaxation of uniform anisotropic samples. (a) shows the samples after ten
relaxations with intersection test. The other images show results after ten iterations
without intersection test using three different metrics for the relaxation: (b) original
metric, (c) scaling of the of the larger eigenvalue with two, (d) scaling of the larger
eigenvalues with three.

degree of anisotropy. Since alignment often goes hand in hand with overlapping
of the ellipses, we also implemented a relaxation with intersection test. In case
of an intersection with neighboring ellipses the translation vector is shortened.
Whereas this prevents the ellipses from overlapping and reduces the alignment
it results in a less uniform distribution, see Figure 5(a). It is important to
note that only the anisotropy of the relaxation process is influenced by the
alignment parameter. Size and shape of the represented glyph are not changed
and thus still represent the local field properties. It also does not change the
general convergence properties but the characteristics of the resulting texture
see Figure 5(b-d).
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(a) (b) (c)

Fig. 5. Relaxation of nonuniform anisotropic samples. The definition of the Voronoi
cells uses the original metric. Top row shows the sample set. (a) first sample set, (b)
after one iteration, (c) after ten iterations. The bottom row shows the images after
applying a Gaussian blur.

6 Results

The evaluation of our algorithm is guided by the goals described in Section
3. We first discuss examples for a simple isotropic and anisotropic metric
definition, which already exhibit most characteristic behaviors of our method.
Then we show some results for applications in different contexts. Our main
applications are related to visualization, but we also considered ”artistic”
image rendering applications. The use of glyph sampling with varying density
and size is appropriate for any glyph-based visualization, using glyphs that
can be embedded into an elliptical shape. For visualization purposes the main
step is the definition of the metric, ensuring that it incorporates the most
important features of the data. A further analysis of the results in frequency
space can be found in [3].

Representation of the metric by sampling shape and density

Size and shape of the spots are determined by the local metric. Thus, each
spot reflects the metric values in the sample point exactly. The scalar density
d, which is defined as covered pixels per unit area, can be measured by using
a Gaussian filter. The local density is then given as gray value. Due to the
discrete structure of the samples we cannot expect a constant, but almost
uniform density. An example for an anisotropic data set is shown in Figure 6.
The size of the Gaussian filter used for these examples is the same for both
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examples. It can be observed that the density is fast approaching a uniform
distribution. After six relaxation steps there are no holes visible anymore. In
particular there is no dependence of the coverage on the size and shape of the
samples. Close to the boundary a slightly higher density can be seen for both
data sets.

Control of alignment

To evaluate the influence of the shape of the Voronoi cells on the relaxation
we started with a uniform anisotropic data set. We used the same data set
as for Figure 2, where the initial sample set can be seen in (a). Figure 5
shows results using different relaxation methods after ten iterations. For the
generation of Figure 5(a) and (b) the Voronoi cells are computed using the
original metric as given by the ellipses. In (a) we performed an intersection
test after each iteration. This enforces the maintenance of the Poisson disk
property but also hinders the relaxation process. There are holes in the dataset
even after ten iterations. (b) shows the result without intersection test. We
can observe hexagonal structures with and without alignment of the ellipses.
There almost no holes left, but there are a few regions where the ellipses start
overlapping. For Figure 5(c) and (d) we used an exaggerated anisotropy for
the Voronoi cell computation. Especially (d) shows a very uniform structure
with almost no overlapping and alignment along the major eigenvector.

Vector field visualization

One of the most direct vector field visualization methods is the use of arrows
or other icons. We applied our glyph sampling method to provide a dense
placement of glyphs without clustering based on a synthetic vector field. The
major eigendirection of the metric is determined by the direction of the vector
field. The major eigenvalue is specified by vector magnitude λ1 = |v| the minor
eigenvalue λ2 is defined as a constant. The metric is given as

g = λ1ev · eT
v + λ2e

⊥
v · e⊥T

v . (12)

Figure 7 shows the results for two different degrees of anisotropy in the re-
laxation after five iterations. The left image uses the original metric g, in the
right image the larger eigenvalue is scaled by a factor of three. Both images
show a uniform sampling of the ellipses, but the perception of flow is much
better in (a). To achieve similar results Turk and Banks proposed a method to
place arrows along streamlines generated using streamline optimization [23].
Sanderson et al. [21] used a reaction-diffusion model to generate spot noise
based on the underlying vector field, and places glyphs at spot centers.

Tensor field visualization

To be able to use anisotropic noise for the visualization of tensor data, we
must define a metric based on the given tensors. Some of the tensor fields we
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are interested in are already positive definite, e.g., diffusion tensor fields. But
other tensor fields, like stress or strain fields, also have negative eigenvalues.
To be able to treat such tensor fields we interpret them as distortion of a flat
metric [9]. Assume that we have a positive definite tensor field T defined over
a domain D. Let λ1 and λ2 be its eigenvalues and v1 and v2 the respective
eigenvectors. We define the metric for the sample generation as

g =
1√
λ1

v1 · vT
1 +

1√
λ2

v2 · vT
2 (13)

the resulting samples are ellipses aligned to v1 and v2 and scaled according
to the eigenvalues. Depending on the application it may be necessary to nor-
malize the eigenvalues.

(a) (b)

(c) (d)

Fig. 6. Effect of manipulating the anisotropy value during the relaxation process:
First row shows the 10th relaxation step of a uniform data set starting from the same
sample configuration. Second row shows our method for vector field visualization.
The left images (a,c) use the original metric for relaxation, for (b,d) the larger
eigenvalue has been multiplied by three. It can be seen that the original metric
favors an alignment along the field lines whereas the exaggerated anisotropy favors
an alignment orthogonal to the field lines.
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Our first example is a stress field of a solid block with two applied loads
with opposite sign, resulting from a three-dimensional numerical finite element
simulation. Figure 8(a) shows a slice of this data set orthogonal to the applied
forces. The displayed ellipses represent the shape of a unit sphere deformed
according to the local stress field. Small ellipse half-axes indicate compression,
large half-axis indicate expansion in the respective direction. Ellipses with high
eccentricity mean strong shear forces.

We also applied our method to a slice of a diffusion tensor MRI dataset
of a brain. The use of glyphs, ranging from simple ellipses to more advanced
glyphs as superquadrics [10], is commonly done for visualizing such data sets.
The glyphs are mostly placed in grid points or are randomly spread [17].
Figure 8(b) shows a result using our sample generation. We used a mask
image representing the confidence values of the tensors as provided by Gordon
Kindlmann together with the data set. The color is used to represent the
principal diffusion direction. The result is a uniform and dense representation
of the data independent from the grid points. Similar results were obtained
by Kindlmann et al. [12] using a particle simulating approach with repulsive
and attractive forces.

Non-photorealistic Rendering

Non-photorealistic rendering is often used to simulate painting or drawing
styles an artist would use. There are many techniques to simulate these styles.
Anisotropic noise samples can be used for generating “artistic images” where

(a) (b)

Fig. 7. (a) Slice of a numerical simulation of a solid block with two forces acting
on the block, one pushing and one pulling force. The image shows the tensor data
as ellipses. The ellipses given an idea of directions of contraction or deletion inside
the material. (b) shows a close-up view obtained after three relaxation steps of
a diffusion MRI slice. The color code is the standard color map of encoding the
major eigendirection. The projected tensors are represented by ellipses. Each ellipse
is defined by the tensor value given at its center.
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Fig. 8. Mosaic-like images generated by our technique. The metric used for ellipse
generation results from the gradient field of the blurred original image. The top
image shows the result before relaxation and the bottom image after three relaxation
steps.

elements of the image have directional properties, such as paint brush di-
rection or rectangular mosaic tiles. Our example images were generated by
constructing a gradient vector field based on the intensity values of the im-
ages. To reduce noise in the vector field, the original images were blurred by
applying a Gaussian filter. We defined a tensor metric over the image using
the gradient vector field and its orthogonal vector field. The orthogonal vec-
tor field essentially points in the direction tangent to the boundary features
in the images. One example can be seen in Figure 9, the left image shows
the ellipses before relaxation the right image after three relaxations using the
original metric.

7 Conclusion

We have introduced a method to generate a dense set of uniformly spread
glyphs. Besides the local control of size and density the methods provides a
parameter to control the alignment of the glyphs. This is a desirable property
not only in tensor field visualization. As for all glyph-based methods the reso-
lution of the representation is limited by the size of the glyphs that are used.
The method as described is applicable for two-dimensional fields. A general-
ization to tree-dimensiona is principally possible but yields as well time as
perceptually issues.

Our method is a purely geometric process. The centroid can be computed
explicitly without involving numerics. In contrast to models using repulsive
forces the Voronoi cell based relaxation is very stable. Using a good start
configuration of the samples only a few relaxation steps are needed to achieve
a uniform distribution. Thus the method is reasonable fast.
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Due to the lack of repulsive forces the Voronoi relaxation does not neces-
sarily preserve the Poisson disk property. We have shown that we can reduce
the violation of the Poisson disk property by manipulating the shape of the
Voronoi cell appropriately. The key entity thereby is the anisotropy of the
metric used for the Voronoi cell definition. In contrast to expensive intersec-
tion tests, this approach does not hinder the relaxation process and does not
introduce any additional computational costs.
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