
Accelerated Single Ray Tracing for Wide Vector Units
Valentin Fuetterling

Fraunhofer ITWM
Competence Center

High Performance Computing
valentin.fuetterling@itwm.fhg.de

Carsten Lojewski
Fraunhofer ITWM
Competence Center

High Performance Computing
carsten.lojewski@itwm.fhg.de

Franz-Josef Pfreundt
Fraunhofer ITWM
Competence Center

High Performance Computing
franz-josef.pfreundt@itwm.fhg.de

Bernd Hamann
Department of Computer Science
University of California, Davis

hamann@cs.ucdavis.edu

Achim Ebert
Department of Computer Science

University of Kaiserslautern
ebert@cs.uni-kl.de

Figure 1: Test scenes rendered with our novel single ray traversal algorithm for wide vector units (WiVe) using di�use path
tracing. On the left side is V���� and on the right side is P��������� with 37.5M and 12.8M triangles, respectively. Our test
implementation ofWiVe based on the AVX-512 instruction set delivers 15%-25% increased single ray tracing performance over
Embree, shading included.

ABSTRACT
Utilizing the vector units of current processors for ray tracing single
rays through Bounding Volume Hierarchies has been accomplished
by increasing the branching factor of the acceleration structure to
match the vector width. A high branching factor allows vectorized
bounding box tests but requires a complex control �ow for the
calculation of a front-to-back traversal order. We propose a novel
algorithm for single rays entirely based on vector operations that
performs a complete traversal iteration in constant time, ideally
suited for current and future micro architectures featuring wide vec-
tor units. In addition we use our single ray technique as a building
block to construct a fast packet traversal for coherent rays. We val-
idate our algorithms with implementations utilizing the AVX2 and
AVX-512 instruction sets and demonstrate signi�cant performance
gains over state-of-the-art solutions.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HPG ’17, July 28-30, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5101-0/17/07. . . $15.00
https://doi.org/10.1145/3105762.3105785

CCS CONCEPTS
• Computing methodologies→ Ray tracing;

KEYWORDS
ray tracing, spatial data structure, bounding volume hierarchy, vec-
torized data processing

ACM Reference format:
Valentin Fuetterling, Carsten Lojewski, Franz-Josef Pfreundt, BerndHamann,
and Achim Ebert. 2017. Accelerated Single Ray Tracing for Wide Vector
Units. In Proceedings of HPG ’17, Los Angeles, CA, USA, July 28-30, 2017,
9 pages.
https://doi.org/10.1145/3105762.3105785

1 INTRODUCTION
A bounding volume hierarchy (BVH) is a structure often used for
e�cient ray tracing when considering global illumination e�ects.
E�ciency is especially important in the �lm and games industry.
For over a decade ray tracing research has been focused on map-
ping traversal and intersection routines onto evolving hardware
architectures and instruction sets. In particular the data parallel
vector units on CPUs and GPUs have sparked the development of
new algorithms. The reason is that the basic traversal of a single
ray through a binary BVH o�ers very little data parallelism. Two

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA V. Fue�erling et al.

fundamental approaches have emerged from the e�orts to remedy
the situation, tracing multiple rays simultaneously, and increas-
ing the branching factor of the BVH. Both approach are e�cient
only if certain constrains apply. Tracing multiple rays requires the
availability of multiple rays in the �rst place which is often not
convenient for applications to provide. Ideally rays that are traced
together are coherent with respect to the traversal path through
the BVH which is di�cult to achieve in practice. Increasing the
branching factor of a BVH provides data parallel calculations for
single rays but reduces culling opportunities and complicates the
computation of a front-to-back traversal order. The sweet spot for
the branching factor appears to be between two and eight, depend-
ing on the hardware architecture and the implementation used. The
two approaches have also been combined for hybrid traversal meth-
ods. For real world applications the most relevant approach by far is
single ray traversal of multi-branching BVHs due to its straightfor-
ward integration into complex shading pipelines. Industry-driven
development of ray tracing libraries for both CPUs [Wald et al.
2014] and GPUs [Parker et al. 2010] has led to highly optimized
traversal implementations for current micro architectures which
are challenging to compete with. However the introduction of new
hardware features such as AVX-512 sometimes makes the e�cient
implementation of novel algorithmic ideas feasible.

Our contribution is a novel single ray traversal algorithm which
maps all relevant traversal operations to vector instructions, includ-
ing front-to-back ordering for multi-branching BVHs with branch-
ing factors of 8 (BVH8) or higher. The bene�t is signi�cantly reduced
algorithm complexity and constant-time execution, which is ideal
for current and future wide vector micro architectures. In addition
we use our single ray algorithm as a building block to construct
a fast packet-based traversal for coherent rays. We validate our
algorithms with implementations utilizing the AVX2 and AVX-512
instruction sets and demonstrate signi�cant performance gains
over state-of-the-art solutions.

2 RELATEDWORK
Amulti-branch BVH [Dammertz et al. 2008; Ernst and Greiner 2008;
Wald et al. 2008] reduces the depth of a binary hierarchy by remov-
ing intermediate nodes to make it possible in a single traversal step
to test multiple children. In addition to increased memory access,
coherence and fewer traversal steps this approach enables data-
parallel bounding box intersection tests using vector instructions.
Computation time spent during a traversal step is shifted from
intersection tests to child ordering and stack operations. Since the
introduction of the multi-branch BVH approach, CPU performance
of single ray tracing has been stagnant. Recent advancements in
stack-less methods [Áfra and Szirmay-Kalos 2014] have reduced the
size of a ray’s traversal state to facilitate massively parallel single
ray tracing, but they have not demonstrated performance improve-
ments. On GPUs multiple single rays can be processed e�ciently,
independently within vector registers [Aila and Laine 2009] and
traced via a binary BVH.

Ray packets [Wald et al. 2001] o�er another possibility to map
ray tracing to vector instructions by processing a di�erent ray in
each vector element simultaneously. Bounding volumes for ray
packets such as frustums, intervals and corner rays [Boulos et al.

2006] can be used to cull nodes conservatively to reduce the number
of ray-bounding box intersections. Rays within a packet must be
coherent, i.e. follow the same traversal path in order to be active
at the same time. Such behavior is frequent for camera rays or
shadow rays towards small light sources, but not necessarily for
higher order e�ects. Various packet assembly strategies have been
investigated to apply packets to e�ects that produce incoherent
rays as well [Boulos et al. 2007]. In order to deal with degrading
ray coherence as packets descent deeper down the BVH, Benthin
et al. [Benthin et al. 2012] proposed to combine packet and single
ray traversal by switching between the two modes depending on
packet utilization.

Ray streams is a technique focused on incoherent rays, where
for every traversal step a stream of single rays is intersected with
the same node and partitioned into hit and miss groups. In order to
utilize vector registers, rays need to be gathered from the stream
which is an expensive operation on many architectures with wide
vector units. Combining ray streams with a multi-branch BVH can
reduce or remove gather operations [Tsakok 2009]. For front-to-
back traversal algorithms have been developed that allow each ray
to follow its preferred order through the BVH which is important
for culling [Barringer and Akenine-Möller 2014; Fuetterling et al.
2015]

Accessing a node’s children in a front-to-back order for a given
ray is facilitated by either the distance heuristic [Kajiya and Kay
1986] or the sign heuristic [Mahovsky 2005], which are both guaran-
teed to be accurate only in the case of non-overlapping children’s
bounding boxes. In case of the distance heuristic, children are or-
dered by the ray’s entry point [Kajiya and Kay 1986], whereas for
the sign heuristic only the ray direction’s signs are considered to
chose among precomputed traversal orders [Mahovsky 2005; Wald
et al. 2007]. The sign heuristic has been applied to the BVH4 by
storing the intermediate binary BVH [Dammertz et al. 2008], by
a local look-up table stored within the nodes [Ernst and Greiner
2008], or by a global look-up table returning a compact list of ac-
tive nodes [Fuetterling et al. 2015]. The distance heuristic has been
extended to arbitrary BVH branching factors by Wald et al. [Wald
et al. 2008].

3 WIVE SINGLE RAY TRAVERSAL
Single ray traversal algorithms generally can be divided into sepa-
rate phases, which are: ray setup, inner node traversal, leaf inter-
section, and the stack pop. Ray setup performs pre-computation
and register alignment with the ray data to facilitate e�cient exe-
cution of the remaining phases. During inner node traversal the ray
descents down the BVH until it misses all children of an inner node
or encounters a leaf. In the �rst case, traversal directly proceeds
to the stack pop; in the second case, intersection with the leaf’s
primitives is performed �rst, reducing the maximum ray distance
tf ar to the closest primitive intersection (if any). The stack pop
takes the top node from the stack (if a node exists) and determines
whether the corresponding ray entry distance is still within tf ar . If
this is not the case, the next node is taken from the stack. After the
stack pop ray traversal continues with inner node traversal.

Inner node traversal is usually most time-consuming; it can be
divided into bounding box intersection (slab test), child ordering,

Accelerated Single Ray Tracing for Wide Vector Units HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

1

0

6

3
2

7

5

4

7 6

0 1

3 2 5 4

Y

X

Y

Y

X

Y Y

0 1 2 3 4 5 6 7

1 0 6 7 3 2 5 4

1 0 2 4

1 0 6 7 3 2 5 4

4

2

0

1

A

B

C

D X

Y

a) b) c)

Figure 2:WiVe single ray algorithm for wide vector units. (a) A treelet embedded in a larger binary BVH. Collapsing the treelet
yields a BVH8 node cluster (colored squares). The inner nodes of the treelet (disks) are labeled according to the split axis used
during binary BVH construction. (b) Bounding boxes of the BVH8 node cluster from (a) in a 2D, xy-coordinate system. A ray
with positive x and negative � sign is shown, with marked entry and exit points on the edges of bounding boxes. (c) Ordered
traversal for the ray in (b). The initial order of the nodes is based on the order in memory, which is chosen to conform with
positive ray signs. Step A performs the node permutation for the ray, which can be deduced from (a) by �ipping the children
of the Y nodes due to the negative � sign. Step B performs the intersection test resulting in a mask that is applied in stepC for
compressing the valid nodes into a continuous array. This array is stored on the stack with the next node to be traversed on
top.

and stack push. The key idea of the method described here is to
map child ordering and stack push operations to permute and com-
press vector operations, respectively, yielding a traversal algorithm
with reduced complexity and increased performance compared to
state-of-the-art approaches [Wald et al. 2014]. Instead of ordering
children by ray distance we use precomputed front-to-back traver-
sal orders based on the split axes of the BVH construction and ray
signs. This sign heuristic has been previously employed only for
BVHs with branching factors less than or equal to four.

3.1 Construction of the Multi-branching BVH
A multi-branching BVH is constructed either natively or by col-
lapsing an existing binary BVH. Native construction is faster while
collapsing is easier to implement on top of a pre-existing framework
[Wald et al. 2008]. Collapsing is illustrated in Figure 2a. The binary
BVH is divided into treelets starting at the root node and following
branches with largest surface area �rst. The treelet’s intermediate
leaves form a node cluster, whereas the treelet’s inner nodes are re-
moved after establishment of the front-to-back traversal order. The
permutation vector for a particular ray direction’s sign combination
is derived from the original split axes of the inner nodes. If the split
axis of an inner node corresponds to a positive sign, the left branch
will be traversed before the right branch; if the sign is negative,
the order will be reversed. The example shown in Figure 2 shows
a treelet with inner nodes labeled by split axis and intermediate
leaves labeled by memory order (a), and the corresponding node
cluster together with a ray in positive x� and negative ��direction
(b). The ordering step (c,A) can be performedmanually by swapping
the branches in (a) with a ��direction split axis.

3.2 Algorithm
We start with a high-level description of our algorithm, referencing
the pseudo code in Listing 1. The traversal begins with the initial
node and tests if it is an inner node or a leaf, i.e. references a node
cluster or a primitive cluster, respectively (line 4). In the �rst case the
traverseCluster function returns a sorted list of elements referencing
intersected children and the corresponding entry distances (line 5).
This list is pushed to the stack (line 6). In the second case the ray is
intersected with the primitives (line 7), and if a valid intersection
exists the stack is compressed (line 8) by keeping only elements with
a node entry distance closer compared to the primitive distance. The
algorithm continues by checking the stack (line 9) and terminates
if the stack is empty. Otherwise the stack is popped and the top
element becomes the next node (10).

1 def t r a v e r s eR ay (node , ray)
s t a c k = { }

3 while (t r u e)
i f (node . i s I n n e r ())

5 (elems , num) = t r a v e r s e C l u s t e r (node . c l u s t e r , ray)
s t a c k . push (elems , num)

7 e l se i f (i n t e r s e c t L e a f (node , ray))
s t a c k . compress (ray . t f a r)

9 i f (s t a c k . i sEmpty ()) return
node = s t a c k . pop (1)

Listing 1: Main traversal function for WiVe.

The traverseCluster function and the stack push are the key
components of the algorithm, illustrated for a BVH8 in Figure 2c,
referring to the node cluster and the ray shown in Figure 2b, and
the hierarchical representation of the node cluster together with the
original split axes as represented in Figure 2a. Child ordering during
traversal relies on pre-computed traversal orders for the nodes in

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA V. Fue�erling et al.

 xmin
0 xmax

0 xmin
1 xmax

1 xmin
7 xmax

7

 ymin
0 ymax

0 ymin
1 ymax

1 ymin
7 ymax

7

 zmin
0 zmax

0 zmin
1 zmax

1 zmin
7 zmax

7

 n0 s0 n1 s1 n7 s7

256b

64b

4b

3b 5b

 −tmin
1 tmax

1 −tmin
0 tmax

0 −tmin
7 tmax

7

 tmin

n

 tmin

n

 tmin

n

8b

a)

b)

c)

even

odd

Figure 3: Data layouts. (a) BVH8 node cluster of total size
256 bytes. The nodes’ bounding boxes are stored as separate
x-, y- and z-vectors with alternatingmax/min coordinates. A
fourth vector contains �ve bytes for child o�set and�ags (n)
and three bytes for permutation indices (s) per node. (b) Reg-
ister layout for bounding box intersection. Entry (tmin) and
exit (tmax) distances are computed simultaneously within 8-
byte lanes for each node, which requires one to treat tmin
as negative. (c) Stack layout. Stack elements are 8 byte in
size with interleaved child o�set and entry distance (tmin)
for culling. Di�erent colors indicate di�erent nodes.

every node cluster, where the appropriate order for a speci�c ray
is selected based on the signs of the ray’s directional components.
Since there are the x�, �� and z�components which can either
be negative or positive, 23 = 8 predetermined orders are required
per node cluster. A traversal order is represented by a permutation
vector that speci�es how to re-arrange the nodes with respect to
the base order, i.e., the order in which the nodes are laid out in
memory. Thus, eight permutation vectors need to be pre-computed
and stored with every node cluster. With the permutation vectors
in place the node elements in Figure 2c are permuted (A), followed
by the slab test producing an active mask (B). The mask is used to
compress the active elements into a continuous array (C) which
is stored directly on top of the stack (D). A detailed description is
provided in Section 3.3

In the case of single-instruction support for the permutation and
compression operations, this algorithm has a time complexity of
O(1) for both the child ordering and stack push operations com-
pared to the typical O(n logn) complexity for sorting n active nodes
and O(n) complexity for pushing them onto the stack. Even though
n is usually small (two or three), the uni�ed treatment of all cases
of n makes possible a simpler and more e�cient implementation
compared to previous approaches.

We note that the WiVe algorithm is general and applicable to
any vector architecture supporting the proper permutation and
compression operations. It also works for all branching factors in
principle (practical up to BVH16).

3.3 Implementation
Our algorithm is suitable for BVH branching factors corresponding
to either the full vector width or half the vector width. We provide
BVH8 implementations for both variants based on the AVX2 and
AVX-512 instruction sets, respectively. Since the AVX-512 instruc-
tions map better to WiVe, we focus on the half vector width variant
and point out the key di�erences for the AVX2 version in the last
paragraph of this section.

The AVX-512 vector registers are 512 bit in size for computation
on 16⇥32-bit elements or 8⇥64-bit elements. We fully utilize the
single precision �oating point capabilities by computing the min-
imum and maximum distances of the slab test interleaved in the
same vector register. In the following we refer to 64-bit elements
as node lanes and to lower and upper 32-bit elements within 64-bit
elements as even and uneven lanes, respectively (Figure 3b). The
instructions key to our algorithm are:

• vpermq a, b, c: Copy 64-bit elements from c selected by the
lower three bit of the 64-bit elements in b to the correspond-
ing positions in a.

• vpcompressq a{k}, b: Select 64 bit elements in b using mask
k and compress the selected elements to form a continuous
array aligned to the low element in a.

A detailed description of the AVX-512 instruction set is provided in
the o�cial documentation [Intel Corporation 2017b].

The memory layout of a BVH8 cluster is illustrated in Figure
3a, which has a standard 256-byte footprint corresponding to four
64-byte AVX-512 vectors. The nodes’ bounding boxes are stored
in a separate vector for every axis, with alternating maximum
and minimum bounds. The fourth vector encodes the permutation
vectors and the node data, which includes a �ag to indicate an
inner node or a leaf, the corresponding child cluster or primitive
cluster o�set, a mask to identify valid nodes in a child cluster or
the number of primitive clusters within a leaf. Permutation indices
are three bit in size to reference one of eight nodes, and the eight
permutation vectors are compressed into three bytes per node.

Listing 2 shows the traverseCluster function which is described
in detail in the next paragraphs, referencing the corresponding line
numbers.

For the slab test the three bounding box vectors for the x�,��
and z�axes are loaded into registers (line 2), so that the max/min
pairs align with the node lanes, see Figure 3a. If the sign of a ray
component is negative, the corresponding max/min values will be
swapped within node lanes to conform with the ray’s point of view
(lines 3-5). The swaps are performed e�ciently with masked 64-bit
rotate operations, where the mask for every axis is assumed to have
been pre-computed during the ray setup phase. After swapping,
the slab test is performed for all eight nodes in parallel (lines 6-9)
computing tmax and �tmin in even and odd lanes, respectively,
based on the following four equations, utilizing full vector width,
see also Figure 3b:

Accelerated Single Ray Tracing for Wide Vector Units HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

t

n,i
max = (bn,imax � o

i) ⇤ di

t

n
max = min

i=x,�,z
t

n,i
max

�tn,imin = (bn,imin � o

i) ⇤ (�di)
�tnmin = min

i=x,�,z
�tn,imin

(1)

Here, i and n denote the axis and the node lane, respectively, oi is a
component of the ray origin, di is the inverse component of the ray
direction, and bn,i represent the minimum and maximum bounding
box components after the initial swap. Both oi and di are constant
throughout traversal, and the sign of the dn,i = (�1)ndi vector can
be adjusted during the ray setup phase to alternate between di and
�di . The tnmax and �tnmin values are further clipped to the active
segment of the ray de�ned by tnear and tf ar , and the �nal result
is laid out in the vector register as illustrated in Figure 3b.

Next, the slab test results are arranged using the vpermq instruc-
tion according to the front-to-back traversal order stored in the
node cluster. The appropriate permutation vector is extracted (line
10) from the fourth vector shown in Figure 3a by bit-shifting with
the concatenated sign bits of the ray direction, i.e., a pre-computed
three-bit value, to align the permutation vector’s components to
the lower three bits of the vector register’s 64-bit elements. Follow-
ing the permutation step (line 11), the tmax �tmin pairs are
ordered such that the �rst node to be traversed corresponds to the
last active node lane in the register.

The slab test is completed by comparing tmax and tmin to re-
trieve the active mask, which requires the values to be in separate
registers aligned to the odd lanes. This requirement is met via a
64-bit rotate operation to form �tmin tmax pairs (line 12) and
a sign �ip with an exclusive or operation to obtain tmax tmin
pairs (line 13). Since tmin � 0 always holds, the predicate of the test
tmin tmax can be determined correctly with integer arithmetic
by re-interpreting the �oating-point patterns of the pairs as 64-bit
signed integers (line 14).

For the stack push operation, the permutation applied to the slab
test results is repeated for the node data (line 15), which is then
interleaved with the tmin values to form 64-bit stack elements (line
16). The stack elements are compressed into a continuous array
with the vpcompressq instruction (line 17), using the active mask,
and stored to the stack (line 19), see Figure 3c. The stack pointer
is incremented according to the number of set bits in the active
mask (line 18-19). This method supports up to 32-bit node data. If
all available 40 bits are required, it will not be possible to interleave
the node data with the tmin values. Instead, it is compressed and
stored separately on a second stack.

Primitives in the leaf nodes are packed into primitive clusters
with four primitives per cluster, which we have found to be near-
ideal for performance. Larger clusters increase vector utilization
at the cost of performing more intersection tests and increased
bandwidth demand. Smaller clusters have the inverse e�ect. Once
traversal reaches a leaf node the contained clusters are tested and
when an actual intersection is found themaximum ray distance tf ar
is updated accordingly. Thus, nodes on the stack with tf ar < tmin
may be removed when such an actual intersection is found (Listing
1, line 8). This pruning procedure is e�ciently implemented by

loading eight stack elements at a time, starting from the stack
bottom, performing the comparison, and compressing and storing
the remaining valid elements on the stack.

def t r a v e r s e C l u s t e r (c l u s t e r , ray)
2 (bx , by , bz , node) = c l u s t e r . l o ad ()

i f (ray . s i gn . x) bx = swapEvenOdd (bx)
4 i f (ray . s i gn . y) by = swapEvenOdd (by)

i f (ray . s i gn . z) bz = swapEvenOdd (bz)
6 t x = (bx � { ray . org . x }) ∗ {� ray . i d i r . x , ray . i d i r . x }

ty = (by � { ray . org . y }) ∗ {� ray . i d i r . y , ray . i d i r . y }
8 t z = (bz � { ray . org . z }) ∗ {� ray . i d i r . z , ray . i d i r . z }

t = min (tx , ty , t z , {� r . tnea r , r . t f a r })
10 index = s h i f t (node , { ray . s i gn . xyz })

t = permute (t , i ndex)
12 tmax = swapEvenOdd (t)

tmin = f l i p S i g n sOdd (t)
14 mask = compare (tmin , tmax)

node = permute (node , index)
16 e lems = in te r l eaveOddOdd (node , tmin)

e lems = compress [mask] (e lems)
18 num = coun tB i t s (mask)

return (elems , num)

Listing 2: Core traversal function for WiVe. All local
variables are vectors with the exception of mask and num.
The {} operator performs a broadcast of scalar values.

For the full vector width implementation based on AVX2 tmin
and tmax calculations are no longer interleaved in the same vector
register. They are performed separately instead which makes the
algorithm easier to implement but also requires more instructions.
To support this approach, the node layout in Figure 3 is changed
to a de-interleaved format corresponding to eight 32-byte AVX2
vectors, and the combined stack is split into separate node and tmin
stacks. Since AVX2 does not provide a compression instruction, we
emulate the operation by a permute instruction and a table look-up
using the slab test mask as index. Since the mask is a 8-bit value
the table requires 256 entries. The information for a single entry
can be compressed into 3 bytes (8⇥3 bit), encoding eight indices
referencing one of eight elements. Decompression is performed by
broadcasting an entry into an AVX2 register and shifting each lane
by a di�erent amount to align the corresponding index bits.

3.4 Any-hit Traversal
Any-hit traversal is used for shadow rays and can terminate as soon
as an intersection with a primitive is found. For this type of query,
a front-to-back order is not important and specialized traversal
orders are more e�cient [Ogaki and Derouet-jourdan 2016]. These
specialized traversal orders are identical for all rays and can be
encoded into a BVH by arranging the nodes in memory accordingly.
The same approach is compatible with WiVe.

3.5 Multi-hit Traversal
Multi-hit traversal [Gribble et al. 2014] attempts to �nd the �rst n
closest intersections with primitives along a ray. Our WiVe algo-
rithm is compatible with current multi-hit optimization techniques
[Gribble 2016]. We expect multi-hit traversal to perform more e�-
cient with WiVe compared to other approaches. The explanation is
the fact that limited culling possibilities in a multi-hit scenario lead
to a higher number of active children, reducing the performance of
other approaches but not WiVe’s.

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA V. Fue�erling et al.

4 WIVE COHERENT TRAVERSAL
Packet tracing [Wald et al. 2001] is an e�cient ray tracing technique
using vector instructions for groups of coherent rays, i.e., rays that
have similar origins and directions. The computational cost per
ray when performing packet tracing can be signi�cantly lower
compared to single-ray traversal due to e�cient vector utilization,
amortization of memory access latency, node ordering and stack
operations. The optimal packet size is de�ned by vector width, and,
when more coherent rays are available, tracing multiple packets
simultaneously can be an additional bene�t. Packet tracing can
be combined with frustum culling [Wald et al. 2007], reducing the
number of bounding box tests considerably during traversal. This
section discusses the elegant idea of augmenting packet tracing
with our WiVe single ray algorithm for interval arithmetic (IA)
culling. The combination is a high-performance coherent traversal
method (WiVeC) for the BVH8, while also being applicable to other
branching factors.

Applying IA to ray packets generates intervals for the x-,y- and
z-coordinates of ray origins and directions for all rays of a packet
to perform a conservative rejection test for nodes outside these
intervals. The slab test is an IA operation as well, producing the
[tmin , tmax] interval. By expanding the de�nition of an origin o

i

and inverse direction d

i from points and vectors to the intervals
[oi ,oi] and [di ,di], respectively, tmin and tmax can be computed
conservatively for a set of rays with the following changes applied
to Equation 1:

t

n,i
max = (bn,imax � o

i) ⇤ di

�tn,imin = (bn,imin � o

i) ⇤ (�di)
(2)

Here, we assume that (di ,di) does not contain 0, i.e., all ray direc-
tions in the packet have the same sign combinations. During the
set-up phase, a special interval ray is created with maximum and
negative minimum values located in the even and odd lanes, re-
spectively, for the origin and the direction vectors. Bounding boxes
missed by this interval ray will be missed by the ray packet and
can be ignored.

If multiple ray packets are to be traced in parallel, the interval ray
must be expanded accordingly and a mechanism is required to track
active packets. We achieve this by means of a �rst packet index
(FPI), initialized to the �rst element in the packet list. Bounding box
intersection starts with the FPI packet, and if a valid intersection
exists the remaining packets will be assumed to hit the node as well;
otherwise, the FPI will be incremented until either the �rst packet
with a valid intersection is found, which will continue traversal,
or all packets have been tested, triggering a stack-pop operation.
The assumption is that if packets have high coherence the result
of a single packet correctly predicts the behavior of the remaining
packets, reducing bounding box tests considerably. Wrong predic-
tions will drag uninvolved packets down the BVH and increase the
number of bounding box tests instead. This method is well-suited
for primary rays.

Listing 3 provides pseudo code for the WiVeC algorithm. The
input variable packets is a list containing one or more ray packets
(line 1). The interval ray is calculated (line 3) to enclose all rays
within the packets. If the current node points to a node cluster the

traverseCluster function de�ned in Listing 2 is performed on the
interval ray (line 6) and the sorted list of active elements is stored to
the stack (line 7). The function is slightly modi�ed in the sense that
it returns di�erent stack elements compared to those illustrated
in Figure 3c. Instead of a direct reference to the child cluster, a
reference to the parent node is stored, along with the current FPI.
The tmin value is not required. If the current node points to a
primitive cluster, primitive intersection is performed (line 9). The
following loop (line 10) repeatedly pops the stack to retrieve a new
node (line 12) until either the stack is empty (line 11) or a valid
packet intersection exists (line 16). The setNext method (line 13)
restores the current FPI from the stack, the current method (line 15)
returns the packet pointed to by the FPI, and the next method (line
17) advances the FPI to the next packet. If only a single packet is
traversed, lines 13, 14 and 17 can be omitted.

1 def t r a v e r s e P a c k e t s (node , p a ck e t s)
s t a c k = { }

3 ray = pa ck e t s . i n t e r v a l R a y ()
while (t r u e) outerLoop :

5 i f (node . i s I n n e r ())
(elems , num) = t r a v e r s e C l u s t e r ^ (node . c l u s t e r , ray)

7 s t a c k . push (elems , num)
e l se

9 i n t e r s e c t L e a f (node , p a ck e t s)
while (t r u e)

11 i f (s t a c k . i sEmpty ()) return
(node , f p i) = s t a c k . pop ()

13 p a ck e t s . s e tNex t (f p i)
do

15 i f (i n t e r s e c t (node , p a ck e t s . c u r r e n t ())
goto outerLoop

17 while (p a c k e t s . nex t ())

Listing 3: Main traversal function for WiVeC.

The addition of our WiVe single-ray algorithm to the standard
packet traversal approach leads to two improvements: First, the
number of bounding box intersections is reduced signi�cantly via IA
culling. Second, front-to-back traversal is done implicitly through
the stack. The result is a simple and highly e�cient technique for
multi-branching BVH coherent traversal.

5 RESULTS
We have evaluated our ray traversal algorithm by generating per-
formance data based on our AVX2 and AVX-512 implementations
on the dual-socket Intel® Xeon™ E5 2680v3 @ 2.5GHz (HW) and
the Intel® Xeon Phi™ 7250 @ 1.4GHz (KNL), respectively. We com-
pare our results with those obtained with Embree 2.15.0 [Wald
et al. 2014], the leading high-performance ray tracing library for
CPUs. In order to ensure comparability of performance data, we
integrated our code into the open source Embree benchmark suite
Protoray [Intel Corporation 2017a], which by default o�ers Embree
and Nvidia® OptiX™ [Parker et al. 2010] kernels. A comparison
to the GPU-leading OptiX ray tracing library is outside the scope
of this paper, however results from the Protoray benchmark have
been published elsewhere [Farber 2017]. Embree constructs a native
BVH8 using SAH-based centroid binning[Wald 2007], which we
directly convert to our own data layout retaining the exact same
topology. We have disabled spatial splits [Stich et al. 2009] to en-
sure better comparability of our results with results obtained with
other methods. In order to generate the permutation indices for the

Accelerated Single Ray Tracing for Wide Vector Units HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

Table 1: Traversal statistics for sign and distance ordering based on Embree’s SAH-binned BVH8. The columns Inner Nodes,
Leaves and Triangles list the per-ray average numbers of inner nodes visited, leaves intersected, and triangles intersected,
respectively. The SAH cost associated with each scene is also broken down by Inner Nodes and Leaves. The rendered images
are shown in Figures 1, 4, 5 and 6.

Sign Distance SAH
Inner Nodes Leaves Triangles Inner Nodes Leaves Triangles Inner Nodes Leaves

M���� 14.1 3.6 4.1 14.1 3.6 4.1 4.20 2.23
S��M����� 21.2 4.5 5.4 21.2 4.2 5.1 4.01 1.90
A�� D��� 11.1 2.3 2.9 11.0 2.2 2.8 4.59 2.74
P��������� 20.5 5.6 9.3 20.3 5.6 9.2 5.78 4.21
V���� 17.4 4.6 5.5 17.4 4.5 5.4 20.7 15.6

sign heuristic we have modi�ed the Embree code to annotate each
node cluster with the original split hierarchy. Triangle intersec-
tion is served by the same Möller-Trumbore [Möller and Trumbore
1997] implementation and triangle data structure as used in Embree.
Therefore, the traversal algorithms are solely responsible for the
observed performance di�erences. The performance evaluation is
based on �ve scenes consisting of between 5.7M and 37.5M triangles.
On the KNL, these benchmarks were processed by all 272 threads,
with all data allocated in the high-bandwidth MCDRAM memory
segment. The on-chip mesh network was con�gured in quadrant
mode. On the HW all 48 threads were active.

Table 2: Performance in million-rays per second (MRays/s)
for our sign-based WiVe algorithm and Embree based on
AVX2 and AVX-512 implementations. Rendering is per-
formed at a resolution of 3840⇥2160 pixels using di�use
path tracing with up to eight bounces. Colors are based on
surface normals and the shading cost is included in the re-
sults, accounting for 8-12% of the rendering time. The ren-
dered images are shown in Figures 1, 4, 5 and 6.

M���� S��M����� A�� D��� P��������� V����
triangles[M] 5.7 10.5 10.7 12.8 37.5

AVX2
WiVe 74.0 46.0 97.2 57.4 48.8
Embree 70.9 43.0 93.7 51.9 46.2
WiVe[+%] 4 7 4 11 6

AVX-512
WiVe 126.7 73.1 165.0 85.4 87.4
Embree 110.0 63.2 143.4 68.4 76.3
WiVe[+%] 15 16 15 25 15

Table 3: Distribution of numbers regarding valid child node
intersections (in percent) for a single traversal step.

0 1 2 3 >3
M���� 24 39 22 9 6
S��M����� 29 35 19 9 8
A�� D��� 30 38 17 8 7
P��������� 40 24 14 10 12
V���� 25 36 20 11 8

The key comparison between distance and sign heuristics com-
pares how well they approximate a front-to-back traversal order

to maximize node culling, see Table 1. The three per-ray average
indicators (inner nodes visited, leaves intersected, and triangles
intersected) are very close to being equal across the scenes, with a
slight bias towards the distance heuristic. A notable discrepancy is
observed for S��M�����, where the number of intersected leaves
and triangles is up 6-7% for the sign heuristic, which we attribute
to the high degree of overlap of the alpha-textured leaf triangles.
In such a setting, the distance heuristic can be more precise as it
considers the actual intersection point of the ray. For completeness
Table 1 also lists the surface area heuristic (SAH) cost [Goldsmith
and Salmon 1987; Wald et al. 2008] associated with each of the
generated BVH8s.

Table 2 provides performance data measured in million-rays per
second (MRay/s) for a basic di�use path tracer with up to eight
bounces per sample. When comparing the AVX-512 implementa-
tions of our sign-basedWiVe traversal to the distance-based Embree
algorithm, we observe a seizable speed-up of between 15% and 25%
across all scenes. The increased e�ciency can only originate from
the traversal phase since all other parts share the same implementa-
tion. This implies that the reduced code complexity due to our novel
algorithm is the only signi�cant di�erentiating factor. Variance in
memory access patterns due to slight di�erences in traversal order
between the two heuristics is negligible, which follows from the
nearly identical data listed in Table 1. Our algorithm is especially
advantageous when rays frequently overlap with more than three
children during a traversal step, e.g., in the P��������� scene. The
resulting performance data are shown in Table 3. In this case, the
distance heuristic requires increasingly expensive sorting and stack
operations while our algorithm’s execution is independent of the
number of active children.

Performance comparison of the AVX2-based implementations
of WiVe and Embree demonstrates that WiVe is faster also for the
“BVH branching factor equals vector width” variant, albeit with a
smaller relative di�erence of between 4% and 11%. Since Embree also
uses an interleaved slab test for AVX-512 and a regular slab test for
AVX2, the only notable di�erences between theWiVe variants is the
compress operation and the double stack. The compress operation
is emulated due to the lack of hardware support by a sequence of
four instruction including a memory access into a sizable table. The
double stack is intrinsic to the algorithm and requires an additional
compress operations and an additional store to memory.

Finally, we provide performance comparison data for our WiVeC
traversal and Embree’s hybrid traversal for primary rays in Table 4.

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA V. Fue�erling et al.

We note that we consider this a valid comparison since WiVeC is
executed on a single ray packet at a time, thus exploiting coherence
at the same granularity as the hybrid traversal. The results demon-
strate a signi�cant and consistent speed-up of between 83% and
142% for WiVeC across all scenes. The culling statistics shown in
Table 4 indicate that the frustum ray avoids between 73% and 82%
of all node intersection tests, partly explaining these impressive re-
sults. The other important aspect, again, is reduced code complexity
resulting from our integrated culling and ordering technique. Since
we only trace a single ray packet at a time conventional culling
implementations would pose a signi�cant overhead. We have cho-
sen high image resolution favoring frustum culling methods due to
high ray coherence. Less coherence would reduce culling e�ciency
and speed-up accordingly. However, this is true for packet tracing
in general. As an avenue for future work we imagine that fusing
WiVeC and hybrid traversal could be bene�cial to further accelerate
partly coherent ray packets such as those occurring for shadows
and specular e�ects.

Table 4: Performance in million-rays per second (MRays/s)
for our WiVe coherent algorithm (WiVeC) and Embree’s
hybrid traversal based on AVX-512 implementations. The
packet size is 4⇥4 pixels. An image is rendered at a resolu-
tion of 3840⇥2160 pixels using primary rays. The camera
perspectives in the scenes correspond to Figures 1, 4, 5, 6.

M���� S��M����� A�� D��� P��������� V����
triangles[M] 5.7 10.5 10.7 12.8 37.5

AVX-512
WiVeC 555 533 796 472 337
Culling[%] 73 82 82 78 76
Embree 275 220 409 212 184
WiVeC[+%] 102 142 95 123 83

6 CONCLUSIONS
Almost ten years ago the multi-branching bounding volume hierar-
chy led to the last major performance gain in single ray traversal,
by utilizing vector instructions for bounding box tests. We have
continued and completed the formulation of an innovative, fully
vectorized traversal algorithm by introducing the WiVe algorithm.
The e�ciency gain obtained by WiVe is made possible by trans-
forming node ordering and stack-push operations from conditional
scalar execution paths to constant-time vector operations, making
them ideal for current and future massively parallel micro archi-
tectures. Furthermore, we have introduced WiVeC to accelerate
traversal of coherent rays, using the WiVe methodology. We have
demonstrated the performance gains resulting from our algorithms
with implementations for the AVX-512 instruction set. Our perfor-
mance data document that we outperform the industry-leading ray
tracing library Embree by between 15% and 25%, and by between
83% and 142% on an Intel®Xeon Phi™ CPU. In addition, we have
investigated an AVX2 implementation of WiVe on an Intel® Xeon™
CPU that is faster compared to Embree by between 4% and 11%
despite limited instruction support. WiVe promises to accelerate
single ray traversal for multi-branching bounding volume hierar-
chies on the GPU as well. We plan to investigate this possibility in
the future.

7 ACKNOWLEDGEMENTS
The authors would like to thank Carsten Benthin for his generous
support. This research was supported by the German Research
Foundation (DFG) as part of the the IRTG 2057 “Physical Modeling
for Virtual Manufacturing Systems and Processes”.

REFERENCES
Attila T. Áfra and László Szirmay-Kalos. 2014. Stackless Multi-BVH Traversal for CPU,

MIC and GPU Ray Tracing. Computer Graphics Forum 33, 1 (2014), 129–140. DOI:
https://doi.org/10.1111/cgf.12259

Timo Aila and Samuli Laine. 2009. Understanding the E�ciency of Ray Traversal on
GPUs. In Proceedings of the Conference on High Performance Graphics 2009 (HPG ’09).
ACM, New York, NY, USA, 145–149. DOI:https://doi.org/10.1145/1572769.1572792

Rasmus Barringer and Tomas Akenine-Möller. 2014. Dynamic Ray Stream Traversal.
ACM Trans. Graph. 33, 4, Article 151 (July 2014), 9 pages. DOI:https://doi.org/10.
1145/2601097.2601222

Carsten Benthin, Ingo Wald, Sven Woop, Manfred Ernst, and William R. Mark. 2012.
Combining Single and Packet-Ray Tracing for Arbitrary Ray Distributions on the
Intel MIC Architecture. IEEE Transactions on Visualization and Computer Graphics
18, 9 (Sept 2012), 1438–1448. DOI:https://doi.org/10.1109/TVCG.2011.277

Solomon Boulos, Dave Edwards, J. Dylan Lacewell, Joe Kniss, Jan Kautz, Peter Shirley,
and Ingo Wald. 2007. Packet-based Whitted and Distribution Ray Tracing. In
Proceedings of Graphics Interface 2007 (GI ’07). ACM, New York, NY, USA, 177–184.
DOI:https://doi.org/10.1145/1268517.1268547

Solomon Boulos, Ingo Wald, and Peter Shirley. 2006. Geometric and Arithmetic Culling
Methods for Entire Ray Packets. Technical Report. SCI Institute, University of Utah,
2006.

Holger Dammertz, Johannes Hanika, and Alexander Keller. 2008. Shallow Bounding
Volume Hierarchies for Fast SIMD Ray Tracing of Incoherent Rays. Computer
Graphics Forum 27, 4 (2008), 1225–1233. DOI:https://doi.org/10.1111/j.1467-8659.
2008.01261.x

Manfred Ernst and Günther Greiner. 2008. Multi Bounding Volume Hierarchies. In
2008 IEEE Symposium on Interactive Ray Tracing. 35–40. DOI:https://doi.org/10.
1109/RT.2008.4634618

Rob Farber. 2017. Rede�ning HPC Visualization Using CPUs. (2017). http://www.
hpctoday.com/state-of-the-art/rede�ning-hpc-visualization-using-cpus

Valentin Fuetterling, Carsten Lojewski, Franz-Josef Pfreundt, and Achim Ebert. 2015.
E�cient Ray Tracing Kernels for Modern CPU Architectures. Journal of Computer
Graphics Techniques (JCGT) 4, 4 (2015), 89–109.

Je�rey Goldsmith and John Salmon. 1987. Automatic Creation of Object Hierarchies
for Ray Tracing. (May 1987). DOI:https://doi.org/10.1109/MCG.1987.276983

Christiaan Gribble. 2016. Node Culling Multi-hit BVH Traversal. In Proceedings of
the Eurographics Symposium on Rendering: Experimental Ideas & Implementations
(EGSR ’16). Eurographics Association, Goslar Germany, Germany, 85–90. DOI:
https://doi.org/10.2312/sre.20161213 arXiv:arXiv:1011.1669v3

Christiaan Gribble, Alexis Naveros, and Ethan Kerzner. 2014. Multi-Hit Ray Traversal.
Journal of Computer Graphics Techniques (JCGT) 3, 1 (feb 2014), 1–17. http://jcgt.
org/published/0003/01/01/

Intel Corporation. 2017a. Embree Protoray. (2017). https://github.com/embree/
embree-benchmark-protoray

Intel Corporation. 2017b. Intel® Architecture Instruction Set Extensions
Programming Reference. (2017). https://software.intel.com/en-us/
intel-architecture-instruction-set-extensions-programming-reference

James T. Kajiya and Timothy L. Kay. 1986. Ray Tracing Complex Scenes. ACM
SIGGRAPH Computer Graphics 20, 4 (1986), 269–278. DOI:https://doi.org/10.1145/
15886.15916

Je�rey Mahovsky. 2005. Ray Tracing with Reduced-Precision Bounding Volume Hierar-
chies. Ph.D. Dissertation. University of Calgary.

Tomas Möller and Ben Trumbore. 1997. Fast, Minimum Storage Ray-triangle Intersec-
tion. J. Graph. Tools 2, 1 (Oct. 1997), 21–28. DOI:https://doi.org/10.1080/10867651.
1997.10487468

Shinji Ogaki and Alexandre Derouet-jourdan. 2016. An N-ary BVH Child Node Sorting
Technique for Occlusion Tests. Journal of Computer Graphics Techniques (JCGT) 5,
2 (2016), 22–37.

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David Mcallister, and Martin Stich. 2010. OptiX: A general purpose
ray tracing engine. ACM Transactions on Graphics TOG 29, 4 (2010), 1–13. DOI:
https://doi.org/10.1145/1833349.1778803

Martin Stich, Heiko Friedrich, and Andreas Dietrich. 2009. Spatial Splits in Bounding
Volume Hierarchies. Proceedings of the Conference on High Performance Graphics
2009 (HPG’09) (2009), 7–14. DOI:https://doi.org/10.1145/1572769.1572771

John A. Tsakok. 2009. Faster Incoherent Rays: Multi-BVH Ray Stream Tracing. Proceed-
ings of the Conference on High Performance Graphics 2009 (HPG’09) (2009), 151–158.
DOI:https://doi.org/10.1145/1572769.1572793

Accelerated Single Ray Tracing for Wide Vector Units HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

Ingo Wald. 2007. On Fast Construction of SAH-based Bounding Volume Hierarchies.
RT’07 - IEEE/ EG Symposium on Interactive Ray Tracing 2007 Proceedings 1 (2007),
33–40. DOI:https://doi.org/10.1109/RT.2007.4342588

Ingo Wald, Carsten Benthin, and Solomon Boulos. 2008. Getting Rid of Packets -
E�cient SIMD Single-Ray Traversal using Multi-branching BVHs. RT’08 - IEEE/EG
Symposium on Interactive Ray Tracing 2008, Proceedings (2008), 49–57. DOI:https:
//doi.org/10.1109/RT.2008.4634620

Ingo Wald, Solomon Boulos, and Peter Shirley. 2007. Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies. ACM Transactions on Graphics 26, 1
(2007), 1–10. DOI:https://doi.org/10.1145/1186644.1186650

Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. 2001. Interactive
Rendering with Coherent Ray Tracing. Computer Graphics Forum 20, 3 (2001),
153–165. DOI:https://doi.org/10.1111/1467-8659.00508

Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred Ernst. 2014.
Embree: A Kernel Framework for E�cient CPU Ray Tracing. ACM Transactions on
Graphics 33, 4 (2014). DOI:https://doi.org/10.1145/2601097.2601199

APPENDIX

Figure 4: TheM���� scene with 5.7M triangles.

Figure 5: The A�� D��� scene with 10.5M triangles.

Figure 6: The S��M����� scene with 10.7M triangles.

