
Real-time Procedural Volumetric Fire

Alfred R. Fuller∗ Hari Krishnan† Karim Mahrous‡ Bernd Hamann§ Kenneth I. Joy¶

Institute of Data Analysis and Visualization (IDAV) and Department of Computer Science,
University of California, Davis, Davis, CA 95616

Figure 1: Procedural noise generation is used to animate the micro details of the fire to make every frame look unique.

Abstract

We present a method for generating procedural volumetric fire in
real time. By combining curve-based volumetric free-form defor-
mation, hardware-accelerated volumetric rendering and Improved
Perlin Noise or M-Noise we are able to render a vibrant and
uniquely animated volumetric fire that supports bi-directional en-
vironmental macro-level interactivity. Our system is easily cus-
tomizable by content artists. The fire is animated both on the macro
and micro levels. Macro changes are controlled either by a pre-
scripted sequence of movements, or by a realistic particle simula-
tion that takes into account movement, wind, high-energy particle
dispersion and thermal buoyancy. Micro fire effects such as indi-
vidual flame shape, location, and flicker are generated in a pixel
shader using three- to four-dimensional Improved Perlin Noise or
M-Noise (depending on hardware limitations and performance re-
quirements). Our method supports efficient collision detection,
which, when combined with a sufficiently intelligent particle simu-
lation, enables real-time bi-directional interaction between the fire
and its environment. The result is a three-dimensional procedural
fire that is easily designed and animated by content artists, supports
dynamic interaction, and can be rendered in real time.

CR Categories: I.3.1 [COMPUTER GRAPHICS]: Hard-
ware Architecture—Graphics processors; I.3.3 [COMPUTER
GRAPHICS]: Picture/Image Generation—Display algorithms;
I.3.7 [COMPUTER GRAPHICS]: Three-Dimensional Graph-
ics and Realism—Animation; I.3.7 [COMPUTER GRAPHICS]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture;

Keywords: Hardware Acceleration, Volume Rendering, Free-
form Deformation, Fire Modeling

∗e-mail:arfuller@ucdavis.edu
†e-mail:hkrishnan@ucdavis.edu
‡e-mail:kmmahrous@ucdavis.edu
§e-mail:bhamann@ucdavis.edu
¶e-mail:joy@cs.ucdavis.edu

1 Introduction

Figure 2: The pixel shader takes into account the artist-created fire
profile texture (Section 2) and the geometry created by a volumetric
free-form deformation driven by a particle simulation or animation
script (Section 3); the shader renders it using Perlin noise (Section
4).

Interactive media applications strive to produce the most immersive
experiences possible. An immersive experience is one in which the
user actually feels that they are a part of the experience. This is
done by creating an environment that is cohesive and consistent
enough that the user accepts the illusion of its existence. Intermit-
tent defects in a rendered environment can shatter the impression of



reality for the user and destroy the immersion. In many of today’s
interactive media applications, real-time fire is a major source for
interaction defects and visual artifacts that dispell the illusion of a
given environment.

Most fires generated in current interactive media applications are
sprite- or billboard-based. These techniques use animated two-
dimensional images to try to create the illusion of three-dimensional
fires. In ideal circumstances, these fires, through the use of clever
placement, color blending, and misdirection, can produce effects
that maintain a high level of believability. Unfortunately, interac-
tive media applications rarely foster ideal conditions. When the
user is allowed to explore and interact with the environment the
intrinsic and unavoidable artifacts associated with these methods
become distracting. For example, when two-dimensional sprites
intersect the three-dimensional environment, seams become appar-
ent at the point of intersection, and the flat and lifeless nature
of the fire becomes obvious, see Figure 3. Additionally, since
these sprites are based on a predefined finite sequence of animation
frames, the cyclic repetition in the animation is inevitably noticed.
Again, clever placement can help eliminate these visual artifacts
in controlled situations, however interactive media’s intrinsic un-
predictability requires a more robust solution. Furthermore, these
methods do not support user-driven interaction, which is becoming
increasingly important for modern interactive media applications.

[Remedy 2003]

Figure 3: The game “Max Payne 2” uses sprite-based fire extremely
effectively. Unfortunately, even this example suffers from the in-
trinsic drawbacks of sprite-based methods. The seams seen in the
bottom picture are undesirable artifacts.

Both visually stunning and physically accurate rendering solutions
have been developed in computer graphics, but unfortunately these
methods require offline rendering. The movie industry (not con-
strained by real-time requirements) has amassed an arsenal of ex-
tremely robust, believable but computationally intense solutions.
The approach discussed in [Nguyen et al. 2002] accomplishes a

[Nguyen 2004]

Figure 4: In a recent technology demo, “Vulcan,” an attempt was
made to hide the cyclic repetition artifact by covering the top of the
fire with smoke. Unfortunately, even in the computer-controlled
camera sequence many animation artifacts are still visible when the
fire beast swings its head and the smoke is momentarily cleared.

high degree of realism through a sophisticated physical simulation
that requires about three minutes per rendered frame when given
simple physical environments. The method described in [Lamor-
lette and Foster 2002] uses a curve-based algorithm combined with
an extensive particle simulation to create fire that can easily interact
with complicated environments, and is used in the movie “Shrek.”
Our method builds on the basic idea of curve-based fire design and,
through the use of recent innovations in graphics hardware, creates
a visually appealing real-time fire visualization capable of macro-
level bi-directional interactivity.

In Section 2, we discuss how a unit fire volume is derived directly
from a content artist’s input. In Section 3, we describe how to ma-
nipulate the macro shape and flow of the unit fire volume through a
curve-based volumetric free-form deformation. Section 4 presents
the technique used to render the volumetric fire and the noise-driven
method for the procedural animation of the fire’s micro details.

2 Fire Profile Texture

In interactive media, consistency is crucial to creating an immer-
sive experience. To serve this end, our fire allows content artists
to customize and control the fire’s look and feel. Our method ac-
complishes this through the use of a fire profile texture as shown in
Figure 5. This texture has no restrictions on size or shape and is eas-
ily created or modified in any image editing application. Through
this texture, content artists can control the color, shape and intensity
of the fire to fit any desired visual style. To create a blue fire, for
example, one simply colors the fire profile texture blue. To create a
column of fire instead of a flame, one simply draws a straight ver-
tical line of fire instead of a curved flame. To create an intensely
vibrant flame, one simply increases the values in the alpha channel
of the texture.

From this two-dimensional representation we create the cylindrical
unit fire volume shown in Figure 5. The fire profile texture is swept



Figure 5: Left: Artist-created fire profile texture serving as the base
for our volumetric rendering. It controls the shape, color and inten-
sity of the volumetric fire. Right: Resulting unit fire volume created
from the profile texture through the mapping defined by Equations
(1) and (2).

around the z-axis through the mapping defined by:

~uv = (
√

tex2
x + tex2

y , texz) (1)

color = FirePro f ileTexture(~uv) (2)

Here, the two-dimensional vector ~uv is the positional vector sam-
pled in fire profile texture for the three-dimensional location tex in
the unit fire volume. The unit fire volume has coordinates in the
range [−1,1] for the horizontal axes x and y and [0,1] for the verti-
cal axis z.

3 Volumetric Free-Form Deformation

To manipulate the shape of the unit fire volume, we use a curve-
based volumetric free-form deformation that can be adjusted at run-
time. For our implementation we define the curve function C(t) to
be an open uniform B-spline curve defined by:

ti =


0 i f (i <= degree)

i−degree
n−degree i f (degree < i < n)

1 otherwise
(3)

Ni,0(t) =
{

1 i f (ti ≤ t < ti+1)
0 otherwise (4)

Ni,p(t) =
t− ti

ti+p − ti
Ni,p−1(t)+

ti+p+1 − t
ti+p+1− ti+1

Ni+1,p−1(t) (5)

C(t) =
n−1

∑
i=0

Ni,degree(t) ·Pi (6)

Here, n is the number of control points, the ti values are the so-
called knot values, Ni,p is the B-spline basis function and Pi is a
control point, see [Bartels et al. 1987], [Cohen et al. 2001] and
[Farin 2002]. Any well-chosen C(t) could be used. The deforma-
tion can be controlled by a pre-scripted sequence of control point
movements, or by moving the control points with an interactive par-
ticle simulation. We have implemented the particle simulation de-
scribed in [Lamorlette and Foster 2002], where the velocity of a
particle at position x is defined by:

dx
dt

= ~v+~w(x, t)+ ~d(T )+~c(T,age) (7)

c(T,age) = −β ·g · (T0−T ) ·age2 (8)

where:

• t is time and T is the temperature of the fire.

• ~v is the velocity of the fire.

• ~w() is the wind velocity as a function of position and time.

• ~d() is the velocity attributed to high energy dispersion as a
function of temperature.

• ~c() is the velocity attributed to thermal buoyancy as a function
of the temperature and particle age.

• β is the thermal expansion coefficient of and ideal gas (=
1/T ), g is a gravitational constant, and T0 is the environment’s
ambient temperature (usually about 300K).

In a fully interactive environment this simulation could also receive
interaction forces from the player and the environment.

Figure 6 shows an example of an ideal curve-based volumetric free-
form deformation. This the model employed by the method de-
scribed in [Lamorlette and Foster 2002] and used in the movie
“Shrek.” This model is currently intractable on modern graphics
hardware. A pixel shader operates on P‘ and returns P, and not the
other way around as defined by D(P). This problem is known as in-
verse parameterization. This is a well-recognized problem that can-
not be solved analytically, and its numerical solution requires sig-
nificant computation and exhibits many robustness problems. We
can, however, easily solve for P‘ from P through the function D(P)
on the CPU. This means that we can deform a fixed number of
points without any loss of detail, but cannot deform the entire vol-
ume, which has virtually infinite detail once noise is applied, in real
time. Additionally, the pixel shader can only render to a location
occupied by a triangle fragment; thus, triangles must be rendered
that cover every point P‘ of the deformed fire. This presents a
complication since the final pixel coverage of the rendered fire is
not known a priori and the degree of frame-to-frame coherence can
vary substantially.

Figure 6: Mapping of coordinate space for curve-based volumetric
free-form deformation:

• P is a point in texture coordinate space.
• P‘ is the deformed location of P in world space.
• C(t) is a curve that defines the coordinate transformation.
• D(p) is a non-linear deformation such that P‘ = D(P).

Our method solves these problems by using the graphics hardware
to approximate D(P) on discrete intervals. By constructing a lattice
around the deformed volume in world space and associating each
point of the lattice with texture coordinates in the unit fire volume,
the graphics hardware implicitly evaluates the mapping D(P) when
it interpolates the texture coordinates, see Figure 7. Unfortunately,



Figure 7: Left: Lattice in uniform texture space. Right: Lattice
in deformed world space. The associated blue points are the same
points from the perspective of the graphics card. This lattice map-
ping implicitly evaluates the deformation function D(P).

since current graphics hardware only supports linear interpolation
the discrete nature of this lattice creates discontinuities in the first
derivative of the curve on the borders of each lattice section. How-
ever, by further refining the detail of the lattice we can approximate
the continuous curve-based volumetric free-form deformation to an
arbitrary degree of accuracy. The Nyquist theorem when used to
define for the resolution of this lattice, requires us to use two lattice
sections per pixel. However, the actual lattice resolution required
is dependent on the curvature of C(t), the final pixel coverage of
the deformed volume, and the length of the fire. Generally, the
lowest resolution with least visual artifacts is desirable. This reso-
lution can range anywhere from a single section to several hundred
sections. Fortunately, the performance impact of additional lattice
sections is relatively small so the required lattice resolution can be
over-estimated.

Additionally, this lattice also solves the pixel coverage problem
fairly efficiently. By dividing the lattice into a finite set of cubes and
only drawing the required number of triangles within these cubes,
the coverage of the pixel shader is minimized, and we ensure that
every section of the fire is rendered.

3.1 Lattice Construction

The lattice surrounding the fire must be flexible while maintaining
appropriate texture coordinates for rendering. To do this, we take
advantage of the [0,1] domain of normalized B-spline curves. For
each control point Pi in the center spline we sample the normal vec-
tor ~Ni and velocity vector ~Vi of the spline at t = i

n−1 , i = 0 . . .n−1,
where n is the number of control points. This is the position of the
curve that is most affected by that particular control point. We then
generate four additional curves by placing control points on the cor-
ners of a square in the plane defined by Pi and ~Vi and centered at Pi.
The curve can additionally define a “fourth dimension” of our cen-
tral curve using the radius r of the fire so that the length of an edge
of this square is 2r. We align all n squares along their respective
central curve normal ~Ni to reduce twisting. The central curve and
the four corner curves are shown in Figure 9.

We exploit the fact that each B-spline is defined over the domain
[0,1] regardless of arc-length. By sampling the center curve by
length c times, where c is the resolution of the lattice, we obtain c
values of t. We use these values of t to solve Equation (6) for each
corner curve. This step yields c sets of correlated positions on the
four corner curves which define the lattice sections as seen in Figure
9. We also assign each point in our lattice the texture coordinate
texi = (x, i/(c− 1),z), where x and z are 1 or −1, depending on
which corner curve they are from, and i is the level of the current
lattice. This approach effectively generates the texture coordinates
for the volumetric free-form deformation. The result of using these

Figure 8: Curve-based volumetric free-form deformation. Top: The
screen space in which the pixel shader is active, shown in white.
Bottom: The result of deforming the unit fire volume from Figure
5.

texture coordinates in the mapping defined by Equations (1) and (2)
is shown in Figure 8 and 9.

4 Rendering Volumetric Fire

4.1 Hardware-accelerated Volumetric Rendering

To render the volumetric fire, we use a technique similar to that de-
scribed in [Cabral et al. 1994]. Every time the volume is rendered
it is sliced into evenly spaced view-aligned slices as seen in Figure
10. Each slice is rendered through a pixel shader that uses the fire
profile texture and additive blending to create a volume rendering
that is equivalent to a ray tracer that uses evenly spaced samples.
This can be done efficiently by implementing a highly optimized
cube slicing algorithm and applying it to each segment of the lat-
tice. Additive blending is used to handle translucency to account
for the fire’s emissive nature. Other types of blending can also be
used to create additional effects such as using cartoon-like fire, see
Figure 11. The slice spacing is selected based on performance re-
quirements, and it can be adjusted on the fly. Larger spacing creates
less slices and decreases rendering time.



Figure 9: Left: Center curve with control points and four corner
curves. Middle: Lattice constructed around the deformed volume
using the four corner curves. Right: Rendered unit fire volume that
is implicitly deformed by the graphics hardware.

Figure 10: View-aligned slices are used to emulate ray tracing in
hardware. Left: Head-on view. Right: Side view.

4.2 Noise

We have described how to manipulate the shape of the fire on a
macro level. To actually create the micro-level details and anima-
tion that bring the fire to life we procedurally generate spatially con-
sistent noise in the pixel shader. The ideal type of noise to use in this
situation is Perlin Noise. There have been a number of attempts to
adapt Perlin Noise for use on graphics hardware. The most notable
of these are Improved Perlin Noise, described in [Green 2005],
and M-Noise, described in [Olano 2005]. Improved Perlin Noise
more closely approximates real Perlin Noise, while M-Noise is sub-
stantially more efficient. Three-dimensional Improved Perlin Noise
uses six dependent texture look-ups while M-Noise only uses two
independent look-ups. A single octave of M-Noise uses about 40
pixel shader instructions and can be compiled for pixel shader 2.0
hardware, while Improved Perlin Noise uses about 64 instructions
per octave and can only be compiled for pixel shader 2.a or newer
hardware. For most applications M-Noise is the better choice.

A turbulence function is employed to create a higher degree of re-
alism. The turbulence function sums different octaves of noise to
simulate natural fractal phenomena [Mandelbrot 1983], and it is de-
fined by Equation (9). The gain and lacunarity depend on personal
preference and control relative amplitude and frequency of each oc-
tave of noise. Common values are .5 and 2, respectively. Increasing
the number of octaves refines the fire and increases rendering time.
For applications requiring highly realistic fire simulations, three or
more octaves are usually required. For applications that are meant
to produce more stylized or cartoon-like enviornments, two or fewer
octaves are usually sufficient.

To create the deformed cylindrical volume the pixel shader is given
as input the three-dimensional texture coordinates in the unit fire
volume defined by the volumetric free-form deformation. These
coordinates are mapped to the two-dimensional fire profile texture
coordinate vector ~uv as defined by Equations (1) and (2). To create

Figure 11: Left: Making the flame opaque results in fire that looks
hand-drawn. Right: Tinting the flame quickly changes its appear-
ance.

micro-level details we refine that mapping to include noise. Since
Perlin Noise is smooth and spatially coherent, it can be employed
to create small flames and fire plumes in the deformed unit fire vol-
ume by simply offsetting the vertical texture coordinate by noise as
defined by Equation (13). We also enhance the mapping by taking
into account several aspects of the deformation.

Figure 12: Noise is used to animate the detail of the fire. The
frequency of the noise is scaled to world coordinates in the pixel
shader to eliminate stretching and scaling artifacts. The middle im-
age shows a procedurally generated animation sequence. The bot-
tom picture shows the smooth spikes and plume created by offset-
ting the vertical texture coordinates with noise, see Equation (13).

When the fire is enlarged by either elongating the central curve or
adjusting the radius associated with a control point, it should not
stretch the effects of the noise. This would create visual artifacts
across rendered frames. To address this problem we dynamically
scale “noise space” according to Equation (10). Since the radius
and length of the fire are known at any given point in world space
we scale the horizontal and vertical axes of noise space by the radius
and length, respectively.

The fourth dimension of noise space is time and it remains un-
scaled. Additionally, since various types of fire have different de-
sired levels of detail (and since the mapping has no concept of world
space scale) we multiply noisescale by an application-specific fre-
quency. Each version of noise has its own inherent frequency, so
we correct each noise function such that they have a base frequency



of one. This makes the f requency factor in Equation (10) the spatial
frequency of the micro-level detail in world space.

Each triangle fragment in the pixel shader has an associated posi-
tion in noise space as defined by Equation (11). This position is
found by scaling the unit fire volume texture coordinates by the
noisescale. The fourth dimension is set as time to enable the use of
four-dimensional noise. Additionally, in order to create a sense of
upward flow we offset the vertical axis by −time. In order to make
each fire unique, we add a different constant offset to the noise po-
sition for each instance of the fire. With this position in noise space
we can apply the turbulence function defined by Equation (9). We
multiply this value by a customizable kernel f (texz) and add it to
the vertical component of our texture look-up, see Equation (13).
f (texz) can be any kernel, but we have found that a stability factor
times the square root of the height leads to visually pleasing results.
Finally, we use Equation (14) to look up the color at the offsetted
texture coordinates. When taking into account both the physical
properties of the deformation and the desired effects of noise, the
mapping is defined by these equations:

turb =
#octaves

∑
i=0

gaini ·noise(position · lacunarityi) (9)

noisescale = (radius,radius, length,1) · f requency (10)
noisepos = (texx, texy, texz− time, time) ·noisescale (11)

u =
√

tex2
x + tex2

y (12)

v = texz + f (texz) · turb(noisepos +o f f set) (13)
color = FirePro f ileTexture(u,v) (14)

Results of this mapping are shown in Figure 12.

5 Conclusions

We have presented a method for creating and rendering uniquely
animated, visually impressive and fully three-dimensional volumet-
ric fire in real time.1 Our method is easily customizable by content
artists to match application-specific needs. It is efficaciously ani-
mated though either a pre-scripted sequence of control point move-
ments or an intelligent particle simulation. The performance of our
volumetric fire can also be fine-tuned to meet a wide range of re-
quirements.

The performance of our real-time volumetric fire method depends
on occupied screen space, size of the fire, slice spacing, number of
octaves of noise, lattice resolution, type of noise and graphics hard-
ware. All these factors influence overall performance. Fortunately,
almost all these factors can be adjusted to fit any demand. Table 1
shows performance results for a unit-radius fire with a slice spacing
of 0.2, taking up approximately 90,000 pixels on a nVidia GeForce
7800 GT graphics card.

6 Acknowledgements

This work was supported in part by Electronic Arts and the Insti-
tute for Data Analysis and Visualization (IDAV) at University of

1Demonstrations of our method are available at the following sites:
codec: http://idav.ucdavis.edu/%7Ealfnoodl/tscc.exe
video: http://idav.ucdavis.edu/%7Ealfnoodl/VolumetricFireDemo.avi
video: http://idav.ucdavis.edu/%7Ealfnoodl/vfire.avi

Pixel Octaves Noise Type Lattice Frames
Shader Resolution per
Version Second

N/A 0 No Fire N/A 197
2.0 1 M-Noise 35 157
2.0 1 M-Noise 135 141
2.a 3 Improved Perlin 35 94
2.a 3 Improved Perlin 135 66
3.0 3 of 4D Improved Perlin 35 45
3.0 3 of 4D Improved Perlin 135 30

Table 1: Performance results for a unit-radius fire with a slice
spacing of 0.2, taking up approximately 90,000 pixels on a nVidia
GeForce 7800 GT graphics card.

California, Davis. We would like to thank the members of the Vi-
sualization and Computer Graphics Research Group of IDAV.

References

BARTELS, R., BEATTY, J., AND BARSKY, B. 1987. An Intro-
duction to Splines for Use in Computer Graphics and Geometric
Modeling. Morgan Kaufmann Publishers, San Francisco, CA,
USA.

CABRAL, B., CAM, N., AND FORAN, J. 1994. Accelerated
volume rendering and tomographic reconstruction using texture
mapping hardware. In VVS ’94: Proceedings of the 1994 Sympo-
sium on Volume Visualization, ACM Press, New York, NY, USA,
91–98.

COHEN, E., RIESENFELD, R., AND ELBER, G. 2001. Geometric
Modeling with Splines: An Introduction. A K Peters, Wellesley,
Mass.

EBERLY, D. H. 2004. Game Physics. Series in Interactive 3D
Technology. Morgan Kaufmann Publishers, San Francisco, CA,
USA.

FARIN, G. 2002. Curves and Surfaces for Computer Aided Geo-
metric Design, fifth ed. Academic Press, San Diego, CA, USA.

GREEN, S. 2005. Implementing improved perlin noise. In GPU
Gems 2, M. Pharr, Ed. Addison-Wesley, March, ch. 26.

LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling of
flames for a production environment. In SIGGRAPH ’02: Pro-
ceedings of the 29th Annual Conference on Computer Graphics
and Interactive Techniques, ACM Press, New York, NY, USA,
729–735.

MANDELBROT, B. B. 1983. The Fractal Geometry of Nature,
revised and enlarged ed. W.H. Freeman and Co., New York, NY,
USA.

NGUYEN, D. Q., FEDKIW, R., AND JENSEN, H. W. 2002. Phys-
ically based modeling and animation of fire. In SIGGRAPH
’02: Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques, ACM Press, New York,
NY, USA, 721–728.

NGUYEN, H. 2004. Fire in the “vulcan” demo. In GPU Gems,
R. Fernando, Ed. Addison-Wesley, March, ch. 6.



OLANO, M. 2005. Modified noise for evaluation on graph-
ics hardware. In HWWS ’05: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
ACM Press, New York, NY, USA, 105–110.

PERLIN, K. 1985. An image synthesizer. Computer Graphics 19,
3, 287–296.

REMEDY. 2003. Max Payne 2: The Fall of Max Payne. Rockstar
Games.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form deforma-
tion of solid geometric models. In SIGGRAPH ’86: Proceedings
of the 13th Annual Conference on Computer Graphics and Inter-
active Techniques, ACM Press, New York, NY, USA, 151–160.


