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Abstract

We present a new method to produce a hierarchical set of triangle

meshes that can be used to blend different levels of detail in a smooth
fashion. The algorithm produces a sequence of meshes Mo, M,
Mo, ..., My, where each mesh M; can be transformed to mesh
M 41 through a set of triangle-collapse operations. For each tri-
angle, a function is generated that approximates the underlying sur-
face in the area of the triangle, and this function serves as a basis
for assigning a weight to the triangle in the ordering operation, and
for supplying the point to which the triangles are collapsed. This
technique allows us to view a triangulated surface model at varying
levels of detail while insuring that the simplified mesh approximates
the original surface well.

CR Categories and Subject Descriptors: 1.3.3 [Computer Graph-
ics]: Picture/Image Generation - Viewing Algorithms; 1.3.6 [Com-
puter Graphics]: Methodology and Techniques - Interation Tech-
niques.

Additional Keywords: mesh simplification, triangle meshes, level-
of-detail representation, shape approximation.

1 INTRODUCTION

The most critical and fundamental research problem encountered in
the visualization of complex models is the development of methods
for storing, approximating, and rendering the very large data sets
that define them. The problem is to develop different representa-
tions of the data set, each of which can be substituted for the com-
plete set depending on the requirements of the visualization tech-
nique. The data set may be represented by a few points, or by sev-
eral million points if necessary, with each of the data sets contain-
ing the essential features of the original data. A hierarchical or mul-
tiresolution representation allows the study of large-scale features
by considering the data set at a coarse resolution and the study of
small-scale features by considering the data set at a fine resolution.
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We introduce a method to produce a hierarchical representation
of large unstructured triangle meshes. Given an initial mesh M,
our algorithm reduces the number of triangles through a series of
triangle-collapse operations. A triangle is sclected from the mesh
and removed by collapsing it to a point (see Figure 1). A weight is
assigned to each triangle and is used as the criterion to select trian-
gles to be collapsed. This weight is partially based on a curvature
measure determined by the principal curvatures of a function that
approximates the surface in the area of each triangle. To insure that
the new mesh accurately approximates the underlying surface, we
use the surface approximate to supply the point to which the trian-
gle is collapsed.

In a given mesh, we can identify a number of triangles that can be
collapsed simultaneously, and this allows our algorithm to outputa
sequence of meshes Mo, M1, M>, ..., M,, with the property that
M ; can be smoothly collapsed to M;1. By collapsing a relatively
large number of triangles in an intermediate triangulation simultane-
ously, we achieve significant memory savings. Thus the transition
from mesh M; to M4, is characterized by collapsing many tri-
angles in parallel — instead of collapsing just one. The sequence of
meshes, along with the triangle-collapse operation, can be used to
create a smooth visual transition between levels in the hierarchy of
triangle meshes.

In Section 2, we discuss the related work in mesh reduction. We
examine the triangle-collapse operation in Section 3. Here we de-
fine what it means for a triangle to be “collapsible,” and exhibit the
effect of the triangle-collapse operation on the mesh. In Section 4,
we construct a function that approximates the underlying surface in
the area of a triangle. This approximating surface is used in two
ways: (1) to define the point to which a triangle will collapse, and (2)
to assign weights to the triangles. The calculation of the weights is
discussedin Section 5. In Section 6, we give a complete description
of the algorithm which generates a sequence of triangle-collapse op-
erations and a sequence of meshes. Implementation issues are dis-
cussed in Section 7 and results of the algorithm’s use are given in
Section 8.

2 RELATED WORK

Three classes of algorithms exist that are used to reduce the number
of triangles in a mesh:

o algorithms that simplify the mesh by removing vertices [13,
14].

o algorithms that simplify the mesh by removing edges [9], and

¢ algorithms that simplify the mesh by removing faces [8]
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Figure 1: Collapsing a triangle: The shaded triangle is selected from the mesh in (a), collapsed toward the centroid of the triangle in (b),
creating a new mesh in (c) which has four fewer triangles than the original mesh.

The problems of vertex-removal are characterized by the algo-
rithm of Schroeder et al. [14]. In this algorithm, vertices are iden-
tified through a distance-to-plane criterion, where an average plane
is formed through a vertex and its adjacent vertices. If the vertex is
within a specified distance of the average plane, it can be deleted,
otherwise it is retained. Removing a vertex from the mesh creates a
hole that must be re-triangulated, and several strategies may be used.

Hoppe [9] describes a continuous-resolution representation of a
mesh, based upon an edge-collapse operation. The mesh reduction
problem is formulated in terms of a optimization problem [10], or-
dering the edges according to an energy minimization function. The
result is an initial coarse representation of the mesh, and 4 linear
list of edge-collapse operations, each of which can be regenerated
to generate finer representations of the mesh. The geometrically-
continuous edge-collapse operation allows the development of a
smooth visual transition between various levels of the representa-
tion.

Hamann [8] has developed an algorithm that simplifies the mesh
by removing triangles. Triangles are selected for removal by first
ordering them according to the principal curvatures at their vertices
(see [7]). The curvature values are pre-computed based on the orig-
inal triangulated mesh. Triangles are then inserted into a priority
queue and removed iteratively. Modified triangles have new curva-
tures calculated at their vertices and are inserted back into the pri-
ority queue. The user can specify a percentage of triangles to be re-
moved or an error tolerance.

Our algorithm is also based upon a triangle-removal strategy but
creates a hierarchy of meshes, not just a hierarchy of triangles.
These meshes can be used to create a continuous-reduction algo-
rithm that enables us to vary the level of detail over the set of meshes
and to blend the levels in a continuous-resolution representation of
the data set.

3 TRIANGLE-COLLAPSE OPERATIONS

In this context, our surface is a piecewise linear surface defined by
a mesh of triangles. We require that the triangle mesh be connected
and that each edge in the mesh be shared by at most two triangles.
Meshes should not be self-intersecting — that is, no triangle of the
mesh should have an intersection with the interior of another trian-
gle.

3.1 Stencils

If we are to collapse a given triangle T, it is the triangles surround-
ing T that influence the resulting mesh after the collapse. This set
of triangles, the stencil St of T, is the set of triangles T;, where
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Figure 2: Stencils of triangles: (a) The shaded triangle has a con-
nected acyclic stencil; (b) the shaded triangle has a disconnected
acyclic stencil; (c) the shaded triangle has a connected cyclic sten-
cil; and (d) the shaded triangle has a complete stencil. In this last
case, the stencil boundary polygon is outlined in bold. We note that
the boundary polygon of the triangle in (a) would contain a vertex
of the triangle, and therefore the stencil is not complete.

T; # T and such that T; shares a vertex with T" (see Figure 2). The
stencil is called connected if for each pair of triangles T3, and T,
in the stencil, a sequence of triangles T}, , Ty, ..., T3, _, exist such
that T;; and T, are neighbors' for j = 1,...,k — 1.

Three triangles T3, T2, and T3 form a cycle in the mesh if they
are pairwise neighbors. Each triangle of a cycle must have a vertex
of valence three. A stencil § is called cyclic if there is a cycle in the
stencil, otherwise the stencil is called acyclic. We note that a cycle
can only exist in the stencil if the cycle contains a neighboring tri-
angle of T2. Cycles can be eliminated in the original mesh by edge

! A neighboring triangle of T shares an edge with T'.
2[f the cycle does not contain a neighbor of T, then it will not be in the
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Figure 3: Edge swapping to remove cycles in the stencil: (a) the
selected triangle contains a cycle in the stencil; and (b) the cycle is
removed by swapping the common edge between the triangle and
its neighboring triangle that belongs to the cycle.

Figure 4: Introducing cycles into the triangulation: (a) The vertex
P2 has valence four, and when triangle T is collapsed in (b), a cycle
is introduced in the stencils of the triangles 77 and 7.

swapping (see Figure 3) where repeated swapping may be necessary
to eliminate the three cycles that could possibly occur in the stencil.

If a triangle T" has a connected acyclic stencil Sz, we can order
the triangles of'the stencil such that a polygon describing the bound-
ary of the stencil is obtained (the stencil boundary polygon). If this
polygon contains no vertices of the original triangle T', the stencil
is called complete. Examples of various triangles and their stencils
are shown in Figure 2.

3.2 Considerations when collapsing a triangle

As can be seen in Figure 1, as a triangle is collapsed, the triangle
and its neighbors are eliminated from the mesh. The triangle is re-
placed by a single point, which is connected to all points of the sten-
cil boundary polygon, creating a new triangulation of the region.
The new mesh contains four fewer triangles. Geometrically, this
transition is smooth; topologically, it is “discontinuous™ when the
three vertices eventually become one.

The collapsing process can introduce triangles with acyclic sten-
cils. Cycles in the stencil occur only in neighboring triangles and
each triangle in the cycle must have a vertex of valence three. If
any of the points p,, P2, or p3 has valence four, collapsing the tri-
angle T" will result in reducing the valence of this vertex by one —
thus creating a vertex of valence three and a cycle. This cycle will
cause three triangles of the mesh to have acyclic stencils (see Fig-
ure4). We define a collapsible triangle as one that does not introduce
additional cycles as a result of the collapsing step.

Collapsinga triangle affects all triangles in the stencil. Ifthe sten-
cil is “oddly shaped,” this can potentially create folds in the resulting
triangles. To avoid this problem, we require the stencil boundary

stencil.

Figure 5: To establish coordinates of the stencil points, each point
is projected onto P. The local coordinates u; and v;, along with the
distance d; from the plane, define the coordinates of the point in the
local coordinate system.

polygon, when projected onto the plane of the triangle, to be star-
shaped.

With these observations, we define a triangle T to be collapsi-
ble if (1) it has a complete stencil St; (2) the unique vertices of the
neighboring triangles that are not part of the triangle T do not have
valence four; and (3) its boundary polygon is star-shaped when pro-
jected to the plane of the triangle. With the collapsing operation,

" vertices change valences, and triangles disappear. Thus a triangle

may not be collapsible in one mesh of the hierarchy, but may be
collapsible in other meshes. To collapse a triangle, we only need
identify the stencil boundary polygon and the point ¢ p to which the
triangle is collapsed. For a complete discussion of the topological
considerations of the collapsing operation, see [6].

4 APPROXIMATING THE UNDERLYING
SURFACE

Let p1, P2, ..., Pn be the vertices of the triangles that make up the
stencil of T', and let ¢ be the centroid of 7. We establish a local
coordinate system in the plane of " whose origin is ¢, uses any
two orthonormal vectors @ and V in the plane of P, and uses the
unit normal vector i to the plane of the triangle 7. For each ver-
tex pj, we denote its coordinates in the local coordinate system
as (uj, v, d;) (see Figure 5). If each p; can be transformed into
(uj,v5,d;) in the new coordinate system for ; = 1,2...,n, then
we can use the points (u1,v1,d1), (u2,v2,d2), ..., (n, Vn, dn) to
construct a least-squares, degree-two polynomial

2 2
Jr(u,v) = c20u” + c1,1u0 + co,29” + ¢1,04 + 0,19 + Co,0,
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which will be used to approximate the original surface in the area
of the triangle. We can substitute the coordinates of the points
(u5,v5,d;) into equation (1), creating the linear system
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The resulting normal equations are

C2,0
C1,1 21
yTy |2 | - pr z 3)
€1,0 e
Co,1 dn
C0,0

and, provided the determinant of UZU does not vanish?, this sys-
tem can be solved and the coefficients of the function fr(u, v) de-
termined.

4.1 Curvature estimates
The two principal curvatures of the graph of fr(u, v) are

k1= H++/H? — K and 4
k2 = H—+/H? K, )

where K is the Gaussian curvature of the surface at (u, v), and H
is the mean curvature at (u, v) (see [4]). The Gaussian curvature is
defined by

= fuufvv o5 fgv
K=typrnr %

and the mean curvature by

g = At Sl = 2fufofu t At fidfun ()
21+ f2+f2)3

In ourcase, fr(u, v) isa bivariate polynomial, and its partial deriva-
tives are

fu=2c20u+c11v+ c1,0,
fo=c11u+ 2¢c0,2v + co,1,
Suu = 2¢2,0,
fm, = 26012, and

fuu =70a1,1,

defining the coefficients that we can substitute directly into equa-
tions (6) and (7) to obtain the Gaussian and mean curvatures of fr
at (u, v). These can then be substituted in to equations (4) and (5)
to obtain the two principal curvatures.

We use this bivariate polynomial to determine both the curvatures
of the underlying surfaces and to determine the point to which a tri-
angle T is to be collapsed. The curvatures are evaluated at (u, v) =
(0, 0) and the “collapse point” is defined to be

¢+ fr(0,0)d. ®)

This is the point where the approximating surface intersects a line
through the centroid ¢ in the direction given by 1.

5 TRIANGLE WEIGHTS

Given a triangle 7', we calculate its weight as

W(T) = A(T) (wek(T) + wae(T) + wu, V(T)),

31f the determinant does vanish, points in an “extended stencil” are con-
sidered.

where A(T) is the area of T, k(T is the absolute curvature* of
the approximating function in the area about 7', o(T) is a shape
measure which assigns higher weights to triangles that are near-
equilateral, and V(T') is a topological measure which penalizes
triangles that will produce high-valence vertices when collapsed.
These quantities are combined through user-specified weights W,
Wo and wy, With 0 < we, Wa, Wy < 1 and wy + wo + wy = 1.
Those triangles with a small weight will have the least impact on the
mesh when collapsed.

The curvature weight x(T') is the absolute curvature of the graph
of the approximating function fr(u,v) of T atu = v = 0, normal-
ized by the maximum absolute curvature observed in the data set.
When we multiply this weight by the area of the triangle, large tri-
angles in areas of high curvature have the largest weight, and small
triangles in flat areas have the smallest.

The angle weight a(T") is given by

(1) =2 ((Z) . 1)

where ai, ¢ = 1,2,3, are T"s interior angles; (') ranges from
zero for degenerate triangles to one for equilateral triangles. When
multiplied by the area of the triangle, this assigns a greater weight
to large equilateral triangles and a smaller weight to narrow small
triangles.

Triangles that have high-valence vertices have difficulty in pass-
ing the star-shaped requirement for collapsibility. We seek to avoid
these situations by adding a term that depends on the potential va-
lence of the vertex to which the triangle will be collapsed. The topo-
logical term V' (T") penalizes triangles that produce vertices of high
valence when collapsed (see Figure 6). This term is given by

V(T) = |val(cp) — 6],

My

where m, is chosen to be a maximum-valence normalizing factor
and c p is the point to which the triangle is collapsed.

6 MESH REDUCTION

Given an initial triangle mesh Mo, we calculate a weight for each
triangle T" of the mesh and place the triangle on a priority queue —
ordered by increasing weight. Then iterate over the following pro-
cedure: :

o A triangle T' is removed from the front of the queue, collapsed,
and a new mesh is generated.

o The triangles of the stencil of 7" that were modified have their
weights recalculated and are reinserted into the queue.

We continue until a coarse mesh is generated with a specified num-
ber of triangles.

We This process generates a series of triangle-collapse
operations Co,C1,Cz,...,C, and a sequence of meshes
Mo, M1, M3, ..., My, each of which differs from the pre-
vious mesh by one triangle collapse. Since each of the triangle
collapse operations .s reversible, we can store the coarse mesh
M, and the sequence Cn,Cm—1, ...,C1 (in similar way to [10])
and create desired meshes of various resolutions by reversing
the triangle-collapse operations — “expanding the vertices into
triangles” — in sequence.

We can make a straightforward modification to this algorithm
that, instead of collapsing just a single triangle in a set, identifies a

*We define the absolute curvature x 4 as the sum of the absolute values
of the principal curvatures k 4 = |51 | + |K2|.
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Figure 6: Producing vertices of high valence. If the dark-shaded triangle in () is collapsed, the mesh in (b) is produced. If the dark triangle
in (b) is collapsed, the mesh in (c) is produced, which contains a vertex of valence 12.

Figure 7: Several triangles of the mesh can be collapsed simultane-
ously. To qualify for this, the triangle stencils must not intersect.

certain percentage of triangles that can be collapsed in parallel. This
algorithm recognizes that two triangles can be collapsed in simulta-
neously if their stencils do not overlap (see Figure 7).

Therefore, we remove a set of triangles from the queue if these
conditions hold:

o Each triangle has a weight less than a specified value.

o If we have removed triangles Ty, 71,73, ..., Tk, then we can
only remove a triangle 7" if it has a weight less than a speci-
fied value, and if the stencil of T' does not intersect any of the
stencils of the T}, 1 =0, ..., k.

Once the sequence of triangles To,T1, T3, ..., Tk has been se-
lected, the triangles are collapsed and a new mesh M is generated.
The weights of the triangles in the stencils of T3, i = 0,..., k are
recalculated and the queue is reordered. A new sequence of trian-
gles is selected from the queue and a mesh M is created, and the
process continues. ;

The result of this procedure is a sequence of triangle collapse op-
erations Co,0,C1,0y -+ Ci,j---s Cm,n and meshes Mo, M1, M, ...
with the property that any mesh M can be transformed to mesh
M 41 by simultaneously performing the edge collapses C.;. These
are again stored as a coarse mesh My, and the reversed set of
triangle-collapse operations Cy,,Cn—1, +:;Co Cm,n, -+ Cijj..Co,0
with “markers” indicating which collapses can be done simultane-
ously.

This approach leads to a significantly smaller number of trian-
gulation levels in the final hierarchy and allows a smooth blending
algorithm to be implemented by defining a partial triangle-collapse
operation between consecutive meshes. If we define a parameter 2,
0 < t < 1, we can define a triangle mesh M (t), with the property
that M;(0) = M; and M;(1) = Miqa. M;(t) is constructed
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Figure 8: The triangle T" is the result of triangle 7" after the collapse
of Tc. The ancestral points of T" are the union of the vertices of T"
and Tg.

by “partially collapsing” all selected triangles of M;: If T' is a se-
lected triangle of M;, with p1, p2, and p3 as its vertices, and cp is
the point to which the triangle is collapsing, then the mesh A;(t)
is the result of linearly interpolating p; and cp —that is,

p1(t) =p1 + t(cp — p1),
p2(t) = p2 + t(cp — p2), and
p3(t) = ps + t(cp — pa3).

The meshes M;(t) provide a geometrically continuous method to
vary smoothly between different meshes in the hierarchy.

7 ANCESTRAL INFORMATION

The sequence of meshes and triangle-collapse operations provides
an ancestral hierarchy for any triangle T' of a mesh M which al-
lows T to be associated with a set of vertices in the original mesh.
T is either a triangle in both AM; and M;_1, or T' was modified
from a triangle 7" in M, through the collapse of a triangle T¢.
In the first case, the ancestral points associated with T" in M; are
just the ancestral points of T' in M;_;. In the second case, the an-
cestral points of T" are the union of the ancestral points of 7" and
those of T¢. (see Figure 8). In this way every triangle T" has a set
of ancestral points in the original mesh Ao which are the points that
affect the construction of the vertices of T'.

‘When recalculating the weight of a triangle T in the stencil of a
collapsed triangle, we use the ancestral points in the original mesh
to calculate the approximating surface. These ancestral points are
input to the approximating function calculation in Section 4, a new
approximating function is constructed, and the collapse point is cal-
culated by equation (8). With this procedure, we always use the ver-
tices of the original mesh to calculate the weights of the triangles,

minimizing the errors that could accumulate.



8 RESULTS

The algorithm that we have presented allows the representation of
large triangular meshes at varying levels of detail, requiring a rela-
tively small number of triangulation levels to be stored. Our algo-
rithm is based on the idea of collapsing a large percentage of trian-
gles in an intermediate mesh in a single step. This principle leads
to significant reductions regarding storage requirements. Further-
more, it is possible to smoothly traverse the hierarchy “upwards”
and “downwards”.

We have applied our algorithm to several large triangulated mod-
els and have achieved very encouraging results’.

o The skull data set of Figures 9—12 is the output of a marching-
cubes algorithm [12]°. and is represented by a hierarchy of 48
meshes. Figure 9 shows the complete data set where we have
colored the the collapsing triangles and their stencils. Fig-
ure 10 shows the data set at level seven; Figure 11 shows the
data set at level 16; and Figure 12 shows the data set at level
29. The last level contains less that five percent of the triangles
of the original data set.

¢ The bunny data set of Figures 13—19 contains 69,668 trian-
gles. In Figure 13, which shows the complete data set, we have
colored the the collapsing triangles and their stencils. Various
levels of detail along with their collapsing triangles and sten-
cils are shown in Figures 14—16. These illustrations are cho-
sen to represent meshes M (), where t is a real number. Flat-
shaded illustrations of the bunny data set at levels correspond-
ing to Figures 13, 15, and 16 are shown in Figures 17-19.

The pictures can be viewed in real time on a Silicon Graphics
Indigo® system with a 150MHz R4400 processorand 128MB RAM.
The initial preprocessing step of the algorithm sets up the hierarchy
of meshes in 15 minutes for the skull data set and 20 minutes for
the bunny data set. The illustrations were generated using weights
of Wi = Wa = Wyis :i; When removing a sequence of trian-
gles from the queue the algorithm attempted to select 2.5% of the
triangles to be collapsed simultaneously.

9 CONCLUSIONS

We have introduced a new algorithm for the hierarchical represen-
tation of very large triangle meshes. The algorithm generates a hi-
erarchical set of meshes for a given triangular mesh. This algorithm
produces a sequenceof meshes Mo, M1, Mas, ..., My, where each
mesh M is collapsed to mesh M ;;; through a set of simultaneous
triangle-collapse operations. For each triangle, a function is gener-
ated that approximates the underlying surface in the area of the trian-
gle, and this function serves as a basis for assigning weights to each
triangle and for supplying the point to which triangles are collapsed.
Using this representation allows us to display a large triangle mesh
at various levels of detail in real time, while preserving the geometry
of the original mesh.

This work has extended previous work on level-of-detail analy-
sis for triangle meshes in several ways. First, our algorithm focuses
on the triangle as a primitive —and the triangle-collapse operation as
the primary reduction strategy for the mesh. Second, our algorithm
produces a sequence of meshes which, together with the triangle-
collapse operation, can be used to produce a continuous level-of-
detail variation in the model. We have integrated this model into
a prototype viewing system that supports interactive level-of-detail

3For review purposes we have presented these images in a large format.
For the proceedings, the images would be reduced in size to lie on a single

page.
SThis is the cause of the ridges along the skull in the data set.

manipulation of complex models defined by large triangle meshes.
Finally, whenever we compute the location of a new vertex replac-
ing a triangle, we consider the ancestral hierarchy created by the col-
lapse operations calculate the weights of triangles using the original
surface data. This ensuresthat the simplified mesh approximates the
original surface well.
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Figure 14: The bunny data setat level-of-detail 6.42 contains 39,996
triangles, some of which are partially collapsed. The mesh along
with the collapsing triangles and their stencils are shown.

Figure 17: The original bunny data set using flat shading. The data
set contains 69,668 triangles.

Figure 15: The bunny data set at level-of-detail 18.95 contains

10,408 triangles, some of which are almost completely collapsed. Figure 18: The bunny data set at level-of-detail 18.95 using flat
The mesh along with the collapsing triangles and their stencils are shading. The mesh contains 10,408 triangles.
shown.

Figure 16: The bunny data setat level-of-detail 25.67 contains 4,944 Fi 19: The b dote’ wob at hival : .
triangles, some of which are partially collapsed. The mesh along shﬁgg. ’fhe ersﬁlzﬁgmms 48 343 m?::gigi—detaﬂ Sl Y

with the collapsing triangles and their stencils are shown.
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