Using R-trees for Interactive Visualization of
Large Multidimensional Datasets

Alfredo Giménez, René Rosenbaum, Mario Hlawitschka, and Bernd Hamann

Institute for Data Analysis and Visualization (IDAV), Department of Computer
Science, University of California, Davis, CA 95616-8562

Abstract. Large, multidimensional datasets are difficult to visualize
and analyze. Visualization interfaces are constrained in resolution and di-
mension, so cluttering and problems of projecting many dimensions into
the available low dimensions are inherent. Methods of real-time interac-
tion facilitate analysis, but often these are not available due to the com-
putational complexity required to use them. By organizing the dataset
into a level-of-detail (LOD) hierarchy, our proposed method solves prob-
lems of both inefficient interaction and visual cluttering. We do this
by introducing an implementation of R-trees for large multidimensional
datasets. We introduce several useful methods for interaction, by queries
and refinement, to explain the relevance of interaction and show that it
can be done efficiently with R-trees. We examine the applicability of hier-
archical parallel coordinates to datasets organized within an R-tree, and
build upon previous work in hierarchical star coordinates to introduce
a novel method for visualizing bounding hyperbozes of internal R-tree
nodes. Finally, we examine two datasets using our proposed method and
present and discuss results.

1 Introduction

As measuring instruments advance technologically, datasets increase in both
dimension and quantity. It becomes very difficult to interactively explore and
analyze large, multidimensional datasets because of the high computational com-
plexity required. Visualizing these dimensions also becomes a major problem for
large dimensionalities and large datasets since standard visualization interfaces
are constrained to a small number of dimensions and resolutions.

In fields of algorithms and complexity, efficient methods for data processing
are often introduced through the use of hierarchical data structures. We have
applied a hierarchical structure to large multidimensional datasets by generat-
ing an R-tree that contains the dataset. We utilized the efficiency of R-trees by
implementing several interactive operations for analysis, and also used the hier-
archical properties of R-trees to visualize the data at increasing levels-of-detail
(LODs) in order to reduce visual clutter.

To achieve appropriate low-dimensional visualization of high-dimensional
data within a hierarchy, we have implemented existing methods of hierarchical
multidimensional visualization and have extended upon one of these methods in



2 Alfredo Giménez, René Rosenbaum, Mario Hlawitschka, and Bernd Hamann

order to accommodate it for more beneficial and efficient use within an R-tree
structure. Specifically, we have examined hierarchical parallel coordinates and
built on previous work to develop a new method for hierarchical star coordi-
nates.

2 Previous Work

2.1 Multidimensional Visualization

Multidimensional visualization explicitly involves the problem of how to project
d dimensions onto the a small number of dimensions available on visualization
interfaces. Popular methods to do so include using visual cues, multiple visual-
izations, and alternative coordinate systems.

Chernoff [1] introduced a method using visual cues which involved trans-
forming individual features of a face geometrically, and visualizing each multidi-
mensional element as the resulting face. However, he stated that this technique
is constrained to a small number of dimensions. This is an inherent problem:;
visual cues must be explicitly defined for each dimension.

Wright [2] introduced the use of multiple visualizations, scatterplot matri-
ces, where a matrix of two-dimensional scatterplots is displayed such that every
dimension is plotted against every other dimension. Similar multiple visualiza-
tion schemes have been developed as well; however, with all these techniques,
either the number of dimensions is constrained by the screen space available for
multiple plots, or the visualization cannot display all dimensions at once.

Alternative coordinate systems attempt to provide a visualization for any
number of dimensions. We have implemented and built on two of these tech-
niques, specifically parallel coordinates [3] and star coordinates [4].

2.2 Hierarchical Visualization of Multidimensional Data

In order to generate a visualizable hierarchy from a dataset, several proposed
methods involve hierarchical clustering algorithms. Fua [5] presented one of these
algorithms based on proximity information and Linsen [6] presented another one
based on density functions. Though effective for generation of a hierarchy, they
both involve an added preprocessing step to cluster the data. These approaches
have high computational complexity for generation and interactive operations,
since they are not guaranteed to be balanced trees.

3 Main Idea

We introduce a method to generate a hierarchical structure of data which allows
for efficient interactive operations as well as methods for visualization of data
within this hierarchical structure. In contrast to previous work, our method pro-
vides a great degree of efficiency and requires minimal data-specific information,
while also adding functionality for analysis.



We propose using R-trees to generate this hierarchy and examine the benefits
for doing so in section 4. R-trees provide functionally visualizable aggregate items
within an LOD-hierarchy while also increasing efficiency, which improves upon
the problems encountered in some previous proposals (see subsection 2.2).

We examine methods to visualize aggregate items as well as data items within
the R-tree in section 5. Some of these methods are already well-known, and we
introduce a new method to visualize multidimensional R-tree aggregate items
based on some existing proposals. We examine two types of interactive oper-
ations, queries and refinement, in section 6. Finally, we apply our proposed
methods on real datasets in section 7.

4 R-trees: An Effective Data Structure for Interactive
Visualization of Large Multidimensional Datasets

In order to provide 1) a scalable hierarchy for large multidimensional datasets, 2)
visualizable and accurately representative aggregate items within that hierarchy,
and 3) efficient interactive operations on the structure, we propose organizing
datasets into R-trees.

4.1 Generation of an LOD-Hierarchy

R-trees generate an LOD-hierarchy of aggregate and data items in a “bottom-
up” fashion. All individual data elements are inserted into the bottom level,
and nodes are split into two new ones when their respective number of children
exceeds the maximum number of children, m. Whenever the root node is split, a
new LOD in the hierarchy is introduced. Every internal node contains a number
of children and a region which bounds all of its children. Node splitting in R-trees
is a widely covered research topic, as the optimal solution requires factorial time
complexity [7]. Our implementation uses linear splitting, a method which delivers
accurate enough results for our application as well as linear time complexity.

Fig. 1. Two R-trees with the same 8
elements inserted, but with different
user-specified values for m (maximum
number of children per node). The top
has an m value of 2 and 4 levels-of-
detail (LODs), while the bottom has
an m value of 3 and 3 LODs. The top
requires storage of 7 hyperbozes (one
per internal node), while the bottom re-
quires storage of 4. The ability to define
m allows for dynamic LODs and storage
space, and in turn, different quantities
of refinable hyperboxes and regions-of-
interest (ROIs) within each level.

O-
o
oN
o
.
og
(ON
o
w Nk awINR

o
of
©-
of
e.
o
o




4 Alfredo Giménez, René Rosenbaum, Mario Hlawitschka, and Bernd Hamann

R-trees allow for alteration of their internal tree depth, and different tree
depths directly affect both user preferences and storage space. We can control
the depth of the hierarchy by specifying different values for m. A larger value of m
corresponds to fewer splits and, therefore, fewer levels within the hierarchy. With
more children per node, there are more available refinable nodes per level and
less total aggregate items. This means that there are more detailed specification
of ROIs within a level, and less total internal storage space is required. However,
having too many children per node contributes to visual clutter and less LODs
within the hierarchy. For smaller datasets, a small value of m is useful, because
more LODs organize the data more efficiently for interactive operations and
introduce more LODs. Lower values do, however, increase the storage space. An
illustration of the differences between high and low m values is shown in figure 1.

4.2 Effective, Visualizable Aggregates

In order to allow for a scalable representation, we require a structure that not
only organizes the data into an LOD-hierarchy, but allows for appropriate visual-
ization of levels within it. For this reason, it is crucial that we generate aggregate
items that are accurately representative to the actual data, as well as usable in
various visualization schemes. An item that is accurately representative of the
data is one which does not remove semantic information from the dataset.

The R-tree aggregate items are ranges of values for each of the total d di-
mensions, which we will denote as hyperbozxes. In one dimension, a hyperboz is a
range of points, or an extension of a single point, which is a line segment. In two
dimensions, a hyperboz is a range of lines, or an extension of a single line segment,
which is a rectangle. We continue this process of extending lower-dimensional
hyperboxes in order to generate hyperbozes of unlimited dimensionality.

These hyperbozes are accurately representative aggregate items for visualizing
internal levels of a hierarchical data structure because they denote where the
children of their respective nodes are as well as how sparse or dense the elements
within that hyperbox are, due to their bounding property. These characteristics
allow the user to draw conclusions about what values within the dimensions of
the data are most common as well as how varied the dimensional values are in
comparison with each other.

4.3 Efficiency for Real-Time Interaction

It is crucial for our application to interactively operate on datasets that are not
only large in quantity of elements, but large in dimensionality as well; therefore,
generation, queries, and refinement operations must be low in computational
complexity. The use of R-trees allows us to execute hierarchical generation and
interactive operations very quickly, even with large datasets of many dimensions.

R-trees are inherently balanced trees, which provides a great deal of effi-
ciency. Every time a node is split, its children are distributed amongst the new
nodes in order to maintain the same depth throughout the R-tree and avoid
empty nodes. This property allows for insertions, deletions, and searches to be



made in worst-case O(mdlog,, n) time for n data elements of d dimensions. Our
proposed method to execute queries requires even less time than searches, as we
will explain in detail in section 6.2. This method for generation of a hierarchy
improves upon Linsen’s [6], which does not maintain tree balance and generates
many empty nodes. Furthermore, while Linsen’s [6] method applies a more ac-
curate automatic generation of clusters, it necessitates specification of a density
function and introduction of another preprocessing step to evaluate densities and
quantities of clusters.

5 Visualization of Datasets within R-trees

The visualization of massive multidimensional datasets as organized within R-
trees requires a transformation from the d dimensions of the R-tree data into
the two dimensions available on screen space, as well as effective methods of
visualizing both aggregate items and individual data elements.

We examined and implemented two alternative coordinate systems for mul-
tidimensional visualization. We show that R-trees are visualizable using hier-
archical parallel coordinates, and introduce a method which builds upon Kan-
dogan’s [4], which we denote as hierarchical star coordinates. In both cases, we
describe how to represent multidimensional data elements as well as bounding
hyperboxes.

5.1 Hierarchical Parallel Coordinates

Parallel coordinate visualization was defined by Inselberg [3], and has been ex-
tended to represent multidimensional value ranges, hyperbozes, by Fua [5]. In
parallel coordinates, each dimension is denoted by a single line such that all lines
are unique and parallel to each other, and points are represented as polygonal
lines with values plotted on each respective dimensional line. To represent hy-
perbozxes, we simply plot two data elements in this fashion, the maximum and
minimum, and fill the area between both segments, so that we attain a polygon
which covers all values within the range of the hyperboz.

5.2 Hierarchical Star Coordinates

For single elements within star coordinates, the technique is, again, explicitly
defined [4], and we propose extending this idea to also represent hyperbozes, as
Fua [5] did with parallel coordinates. The dimensional axes are represented by a
set of lines which all emanate from a single point (the star coordinate origin).
The data elements in star coordinates can either be represented as a polygonal
line which connects dimensional values, or as a single point which is translated in
the direction of each dimensional line by the magnitude of the value. We use the
latter. In order to represent the hyperboxes, we cannot simply plot the minima
and maxima of the range as with parallel coordinates, because the area between
the minimum point and maximum point no longer accurately represents the



6 Alfredo Giménez, René Rosenbaum, Mario Hlawitschka, and Bernd Hamann

range. Instead we introduce a method that plots all possible combinations of the
minimum and maximum values in each dimension—the corners of the hyperbozr—
and fills the area between those points. We fill the area by calculating the convex
hull of these points and constructing its respective convex polygon.

6 Interactive Operations for Visualization and Analysis

6.1 Refinement Methods for Dynamic Removal of Clutter

The fact that R-trees are an LOD-hierarchy allows for several methods to remove
clutter, both programmatically and interactively. Clutter is defined as the ratio
of LOD to available screen resolution; thus, LOD corresponds directly to the
amount of clutter in the visualization. In an LOD-hierarchy, it is possible to refine
down the hierarchy and therefore alter the LOD of the visualization dynamically.
Dynamic alteration of LODs, in turn, allows for dynamic removal of clutter.

To be more explicit, refinement means breaking down certain regions within
the R-tree into their more detailed components. This is done by removing a
hyperbox from the visualization and replacing it with its child hyperbozres or
data elements. This provides us with a more accurately detailed visualization.

Refinement can be done uniformly or non-uniformly as well as programmat-
ically or interactively, with different benefits for each.

Uniform Programmatic We introduce one uniform programmatic method for
refinement: a simple breadth-first search (BFS). This method refines all hyper-
bozxes of a single level within the hierarchy. In this way, it is possible to alter the
LOD uniformly—all elements visualized have the same LOD at all times. In this
way, the user can draw initial conclusions about the dataset as a whole and de-
termine which areas are more of interest than others. When the user determines
a region within the dataset that is particularly of interest, the ability to refine
non-uniformly and interactively becomes crucial.

Non-Uniform Interactive To facilitate interactive non-uniform refinement,
we introduce a method to execute queries. These queries allow the user to define
which dimensions and regions are of interest, and then refine the corresponding
hyperboxes as desired.

6.2 Interactive Queries for Real-time Analysis

The user may construct and execute two types of queries on the R-tree: 1)
bounded and 2) overlap. Both query methods iterate over nodes of the R-tree and
execute comparisons between the constructed query and each node processed.
Both also require the same input: a set of 3-tuples, which each specify 1) a
dimensional index, from 1 to d inclusively, 2) a value within that dimension, and
3) a margin value.



Bounded Queries Bounded queries find nodes whose hyperbozes completely
encompass the query values and margins in the specified dimensions.

This type of query facilitates interactive searching for programmatically gen-
erated clusters of data—because it tests for nodes that completely encompass the
query region, this is an effective way for the user to find bounded clusters created
by the R-tree generation.

Overlap Queries Overlap queries find all nodes which overlap any part of the
query values and margins in the specified dimensions.

Because overlap queries allow searching for any data within the specified
range, they are useful for drawing conclusions about the data regardless of the
internal R-tree structure, and therefore is based on the data elements rather
than the data structure.

Fig. 2. We highlight visualized hyperboxes in parallel coordinates (left) and star co-
ordinates (right). By increasing the LOD of a large hyperbox containing sparsely dis-
tributed data, we obtained detail of a small hyperbox (at the end of the axis numbered
10) within that region containing densely distributed data (the small red hyperbox).

7 Visual and Interactive Data Exploration and Analysis

7.1 Isolating Outliers

It is essential in visual data analysis to isolate and either extract more detail
from or eliminate outliers. With our system, it is possible to discover outliers
quickly and either decrease their significance or refine them in order to examine
them more closely. We explain the process by example, with a dataset of regional
wines [8] of 13 dimensions and 178 elements.



8 Alfredo Giménez, René Rosenbaum, Mario Hlawitschka, and Bernd Hamann

As 178 elements is a fairly small number of data, we choose a small value
for m, 2, in order to increase LODs available. Next, we execute BFS refinements
to draw initial conclusions about where outliers may lie. From this step, we can
see distributions of values in each dimension. Some are densely packed around
certain values, like dimension 10 and dimension 5. The outliers in each dimension
are those values which lie outside of the densely packed regions. In order to
show the efficacy of removal as well as examination, we remove the outliers in
dimension 5 and examine in detail the outliers of dimension 10.

In order to remove an outlier, we construct a query which contains it. As
explained in section 6, when we are looking for specific elements, like outliers,
overlap queries are more effective. After running the overlap query and coloring
the result white, the outliers in dimension 5 barely contribute to the visualiza-
tions.

To examine an outlier, we execute an overlap query in red followed by a
number of overlap refinement operations until we obtain the LOD required. After
just a few overlap refines, we achieve a very specific outlying region visualized
in both the parallel coordinates and star coordinates, while avoiding clutter due
to the region-specific refinement operations.

7.2 Examining Correlations

We can examine correlations between dimensions and between individual clus-
ters/elements by performing refinement operations until we achieve the desired
LOD in a ROI, and arranging the visualization to show correlations. As example
we analyze a dataset of forest fires within the northeast region of Portugal [9].

After initial setup, we determine a good ROI and begin rearranging the
visualization methods in order to analyze correlations. We rearrange the parallel
coordinate axes to observe dimensional correlations: high values in dimension
4 correlate with low values of dimensions 11 and 12. In the star coordinate
view, we increase the magnitude and vary the direction of certain dimensions,
in this case 4, 7, 11, and 12, shown in figure 7.2. As we can manipulate these
axes, we observe to what extent the shape of the aggregates is affected. The
blue aggregates are fairly unaffected by manipulation of dimensional axis 11 and
highly affected by manipulation of dimensional axis 4; therefore, these aggregates
have low values in dimension 11 and high values in dimension 4. Furthermore,
large hyperboxes represent very sparse distributions of data, observed in red,
whereas small hyperboxes represent dense distributions, observed in blue. We
conclude that a large quantity of the data has fairly high values in dimension 4
and extremely low values in dimension 11.

8 Possible Drawbacks

One principal drawback of our hyperboz visualization method is that it requires
O(2%) complexity to calculate the hyperbox corners. The effects are rather detri-
mental if visualization of 20 or more dimensions is required, so improved methods



12

Fig. 3. We show hyperboxes as colored regions in parallel coordinates (left) and star co-
ordinates (right) for a dataset of forest fires. Each numbered line in the star coordinate
visualization corresponds to a dimension. These numbered lines can be manipulated in
direction and length. If we extrude the line numbered 11, the red hyperbox is extruded
more than any other hyperboxes. Therefore, the red hyperbox contains data with a
high range of values in dimension 11.

would be necessary to provide real-time visualizations at this level of dimension-
ality. Note that this complexity applies to the visualization, rather than the
interactive operations.

9 Conclusions and Possible Future Research

We have implemented and built upon several existing methods for multidimen-
sional visualization and visualizable hierarchical structuring of multidimensional
datasets. We have introduced a novel method to generate an efficient LOD-
hierarchy for large, multidimensional datasets using R-trees, we have examined
methods to visualize hyperbozes and elements within that LOD-hierarchy, and
we have examined the use of interactive operations on the data to facilitate
analysis. We have used existing visualization schemes, parallel and star coordi-
nates, in order to introduce a new method for visualizing hyperboxes, while re-
taining the ability to use existing visualization methods as well. Our method for
LOD-hierarchy generation provides a great deal of efficiency and functionality in
contrast to previous ones, and in combination with the introduced visualization
schemes and interactive operations, added benefits for analysis and exploration
of data.

A possible improvement to the drawback of complexity mentioned in section 8
could be to apply Linsen’s [6] splat-based ray-tracing method to these hyperbozes,
in which case the complexity would be constrained by screen resolution, rather



10 Alfredo Giménez, René Rosenbaum, Mario Hlawitschka, and Bernd Hamann

than the data dimensionality. Another possible improvement, for more accurate
hierarchical cluster generation, could be to develop new node-splitting algorithms
based on factors other than proximity.

Future implementations of our method could significantly influence areas
which use progressive refinement, such as Rosenbaum’s [10] technique for de-
vice adaptation. As progressive refinement methods require generation of LOD-
hierarchies for many types and sizes of multidimensional data, our method pro-
vides much of the necessary functionality.

10 Acknowledgements

René Rosenbaum was supported by the German Research Foundation Deutsche
Forschungsgesellschaft (DFG), and Mario Hlawitschka was supported in part by
NSF grant CCF-0702817. We thank our colleagues from the Institute of Data
Analysis and Visualization (IDAV) at UC Davis.

References

1. Chernoff, H.: The use of faces to represent points in k-dimensional space graphi-
cally. Journal of the American Statistical Association 68 (1973) 361-368

2. Wright, D.B.: Scatterplot matrices. Encyclopedia of Statistics in Behavioral Sci-
ence 4 (2005) 1794-1795

3. Inselberg, A.: The plane with parallel coordinates. The Visual Computer 1 (1985)
69-91

4. Kandogan, E.: Visualizing multi-dimensional clusters, trends, and outliers using
star coordinates. In: Proceedings of the seventh ACM SIGKDD international con-
ference on Knowledge discovery and data mining. KDD ’01, New York, NY, USA,
ACM (2001) 107-116

5. Fua, Y.H., Ward, M.O., Rundensteiner, E.A.: Hierarchical parallel coordinates for
exploration of large datasets. In: Proceedings of the conference on Visualization '99:
celebrating ten years. VIS ’99, Los Alamitos, CA, USA, IEEE Computer Society
Press (1999) 43-50

6. Linsen, L., Long, T.V., Rosenthal, P., Rosswog, S.: Surface extraction from multi-
field particle volume data using multi-dimensional cluster visualization. IEEE
Transactions on Visualization and Computer Graphics 14 (2008) 1483-1490

7. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: IN-
TERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, ACM (1984)
47-57

8. Forina, M.: An extendible package for data exploration, classification and correla-
tion (2010)

9. Cortez, P., Morais, A.: A data mining approach to predict forest fires using mete-
orological data. In: Proceedings of the 13th EPIA 2007 - Portuguese Conference
on Artificial Intelligence. (2007)

10. Rosenbaum, R., Hamann, B.: Progressive presentation of large hierarchies using
treemaps. In: ISVC ’09: Proceedings of the 5th International Symposium on Ad-
vances in Visual Computing, Berlin, Heidelberg, Springer-Verlag (2009) 71-80



