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ABSTRACT
Adaptive, and especially view-dependent, volume visual-
ization is used to display large volume data at interac-
tive frame rates preserving high visual quality in specified
or implied regions of importance. In typical approaches,
the error metrics and refinement oracles used for view-
dependent rendering are based on viewing parameters only.
The approach presented in this paper considers viewing pa-
rameters and parameters for data exploration such as iso-
values, velocity field magnitude, gradient magnitude, curl,
or divergence. Error metrics are described for scalar fields,
vector fields, and more general multi-valued combinations
of scalar and vector field data. The number of data be-
ing considered in these combinations is not limited by the
error metric but the ability to use them to create mean-
ingful visualizations. Our framework supports the appli-
cation of visualization methods such as isosurface extrac-
tion to adaptively refined meshes. For multi-valued data
exploration purposes, we combine extracted mapping with
color information and/or streamlines mapped onto an iso-
surface. Such a combined visualization seems advanta-
geous, as scalar and vector field quantities can be combined
visually in a highly expressive manner.
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1 Introduction

Data-intensive applications produce data sets consisting
of up to several terabytes. Such large data sets can re-
sult from simulating physical phenomena, from digitization
with high-resolution scanning devices, or from measuring
environments with distributed sensor networks. The gen-
erated data sets are typically scalar fields, vector fields, or
even multi-valued fields consisting of several scalar and/or
vector values per sample point. When a simulated or mea-
sured process is changing over time, each time step can
consist of terabytes of data.

Multiresolution methods provide a means to deal with
large data within acceptable time delays. Data exploration
and visualization becomes feasible when a data set is down-
sampled to an appropriate level of resolution. Typically,
certain regions in a data set are of particular interest to sci-
entists. This fact can be exploited by applying multireso-
lution methods in an adaptive manner such that regions of
interest are represented at higher resolutions. Higher reso-
lution leads to higher precision in terms of approximation
error.

For visualization purposes, adaptive settings are com-
mon for view-dependent visualization when navigating
through data sets in a 3D fly-through-like manner. In view-
dependent visualization, regions close to the viewpoint and
/ or line of sight are represented at relatively higher reso-
lution, while resolution is decreasing when moving away
from the viewpoint and / or line of sight. We describe a
view-dependent visualization approach in Section 3.

Decisions concerning what regions are to be repre-
sented at what level of resolution can automatically be
made by applying appropriate resolution oracles and error
metrics. Oracles and error metrics used for view-dependent
rendering of volume data are currently based on viewing
parameters only. We present an approach based on both
viewing parameters and parameters for data exploration.
Typical parameters for data exploration are isovalues for
scalar fields and velocity magnitude, gradient, curl, and di-
vergence for vector fields. For example, when exploring a
scalar field with respect to a certain isovalue, only regions
with values close to the isovalue are refined. This approach
significantly reduces the amount of data to be processed
during visualization. We discuss an error metric for scalar
fields in Section 4, an error metric for vector fields in Sec-
tion 5, and an error metric for multi-valued combinations
of scalar and vector field data in Section 6.

The multi-valued error metric framework applies to
an arbitrarily high number of combined scalar and vector



values. Thus, the number of combinations is not limited by
the error metric but the ability to create meaningful visu-
alizations. For multi-valued data visualization, we com-
bine extracted isosurfaces with color information and/or
streamlines projected onto isosurfaces. Such a combined
visualization is meaningful and effective, as the individual
scalar and vector fields are usually correlated. Multi-valued
data visualization techniques are described in more detail in
Section 7.

2 Related work

Adaptive refinement of meshes and view-dependent visual-
ization techniques were developed when intensive research
on terrain rendering started, over a decade ago. To date,
many view-dependent approaches exist for heightfield-like
surfaces [1, 2, 3, 4, 5] and also for more general polygo-
nal surfaces [6, 7, 8, 9, 10]. For scalar-valued volume data,
one can extract multiresolution hierarchies of isosurfaces
[11, 12]. However, these approaches are not suitable for
large-scale volume visualization, since storing all the hi-
erarchies of all possibly important isosurfaces requires too
much storage.

Current techniques use multiresolution volume rep-
resentation and extract view-dependent isosurfaces from
adaptively refined volume data [13, 14, 15, 16, 17, 18].
Most of these approaches are based on structured grids and
regular refinement schemes [19, 20, 21, 22, 23, 24, 25] for
establishing a multiresolution hierarchy, since vertex posi-
tions and mesh connectivity are implicitly defined for struc-
tured grids, leading to faster data access and loading, which
is crucial for interactivity. Regular data structures can be
implemented for hexahedral or tetrahedral meshes. Irregu-
lar data structures [26, 27, 28, 29] use non-uniform subdi-
vision steps, which makes them highly adaptive.

Our methods are independent of the type of under-
lying grid. Any (regular or irregular) type can be used,
as long as the mesh hierarchy supports adaptive refine-
ment, i. e., it does not generate mesh inconsistencies such
as hanging nodes. We implemented our method using tetra-
hedral meshes.

Error metrics currently used for view-dependent vol-
ume visualization [13, 14, 15, 16, 17, 18] are all data-
independent and focus on scalar data sets only. We present
an approach using data-dependent error metrics for view-
dependent visualization of scalar, vector, and multi-valued
volume data.

3 View-dependent volume visualization

The motivation for view-dependent visualization is that
features far from the viewpoint are mapped to few pix-
els only when projected onto the screen. Small details of
such far-away features are often not visible. Thus, using a
low-resolution representation of the feature does not impact
rendering quality. In view-dependent visualization, regions
close to the viewpoint and the line of sight are represented
at highest resolution, while resolution is decreasing when
moving away from the viewpoint or the line of sight.

For multiresolution data representation, we use a hier-
archy of tetrahedra created via longest-edge bisection. The
presented method works for regular and irregular tetrahe-
dral meshes. Moreover, it can be adapted to other mul-

tiresolution data representations and is independent of the
(tetrahedral) subdivision method.

Let E(T ) be an approximation error for an arbitrary
tetrahedron T , based on the error metrics described in the
following sections. Then, following the approach described
in [30], T needs to be subdivided when its error E(T ) is
beyond a certain threshold, where the threshold increases
with increasing distance from the viewpoint. Let d(T ) be
the distance from T to the viewpoint, dmax the maximum
distance from the viewpoint (or the range of sight), and
Emax the maximum approximation error. Then, T must
be subdivided when

E(T ) >

(

d(T )

dmax

)α

Emax .

The parameter α determines how quickly the resolution
decreases with increasing distance. Typically, linear or
quadratic decline is used. The parameters dmax and
Emax are application-specific and user-controlled. For fly-
through exploration of a data set, one can restrict subdivi-
sion steps to regions within a view frustum, which is de-
fined by the range of sight (dmax) and a maximum devia-
tion angle from the line of sight.

4 Error metric for scalar fields

For the definition of the approximation error over a scalar
field, various error metrics can be considered. A typical one
is the mean-square error that compares the original scalar
field to a downsampled approximation of the scalar field
by summing squared difference values at all original sam-
ple points. Given the original trivariate scalar function F
sampled at discrete locations, the mean-square error for a
tetrahedron T is defined as

EMS(T ) =
1

|T |

∑

x∈T

(

F (x) − f(x)
)2

,

where |T | denotes the volume spanned by T and f(x) the
value at x linearly interpolated from the values at the ver-
tices of T . The approximation error is summed over all
sample values of F at vertices x that lie in T . If the use
of a root-mean-square error is preferred, this can be ac-
complished by using the mean-square error and doubling
the parameter α of the previous section. One can obtain a
screen-space error by projecting EMS(T ) onto the screen.

Figures 1(a) and (b) show a view-dependent visual-
ization using the mean-square error metric. It is applied to
a data set representing a distance field induced by a sphere.
We recognize that the adaptively refined meshes in Fig. 1(a)
and (b) show the same characteristics in terms of adaptiv-
ity, even though we focused on different features when ex-
ploring the data set. In Fig. 1(a), we explored the data set
with respect to the isovalue 63, whereas in Fig. 1(b), we
used the isovalue three. In Fig. 1(b), the isosurface extrac-
tion algorithm had to traverse many tetrahedra close to the
viewpoint, although the isosurface is not present in that re-
gion. Thus, it is possible to save a significant amount of
computation time by refining the mesh only in regions with
values close to the chosen isovalue.

This observation leads to a data-dependent definition
for an error metric: Let viso be an isovalue, [vmin, vmax]
be the range of values of the scalar field, and vδ = |vmax −
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Figure 1. View-dependent visualizations using mean-square (top) and our data-dependent error metric (bottom), using isovalue
63 (left) and isovalue three (right).

vmin|. Then, we define the error for a scalar field over a
tetrahedron T with respect to the isovalue viso as

Es(T ) =
1

|T |

∑

x∈T

(

g
(

viso − F (x)
)

− g
(

viso − f(x)
))2

,

where the function g : IR → IR has to satisfy the following
conditions within [−vδ, vδ]:

• g is continuous,

• g is non-negative (g ≥ 0),

• g is strictly monotonic decreasing (g′ < 0), and

• g has no inflexion point (g′′ > 0).

The simplest functions satisfying these conditions are func-
tions of the form g(x) = (vδ − x)β , where β ∈ IN, β ≥ 2.
More complicated functions could be used instead, but we
observed that these simple functions suffice to produce the
desired results. Figures 1(c) and (d) show how the tetra-
hedral subdivision steps adapt to the chosen isovalue when
using our data-dependent error metric.

To make a visualization process more interactive, er-
ror values are usually precomputed for every tetrahedron
and loaded during runtime. It is not practical to precom-
pute the error values for all possibly interesting isovalues
viso. However, the expression Es(T ) can be converted to
an expression that allows one to perform most of the com-
putation during preprocessing.

For example, when using a quadratic function g(x) =
(vδ − x)2, the error Es(T ) can be rewritten as

Es(T ) = γ0 + γ1viso + γ2v
2
iso ,

where

γ0 =
1

|T |

∑

x∈T

((

vδ + F (x)
)2

−
(

vδ + f(x)
)2)2

,

γ1 = −
4

|T |

∑

x∈T

((

vδ+F (x)
)2
−

(

vδ+f(x)
)2)(

F (x)−f(x)
)

,

and

γ2 =
4

|T |

∑

x∈T

(

F (x) − f(x)
)2

.

The values of γ0, γ1, and γ2 are independent of viso and
can be precomputed. From these precomputed terms, the
data-dependent error Es(T ) can be computed efficiently.

5 Error metric for vector fields

For vector fields, a single meaningful parameter for data ex-
ploration, such as isovalue for scalar fields, does not exist.
Thus, when exploring a vector field data set usually several
parameters, such as vector magnitude, gradient, curl, and
divergence are used. We define an individual error metric
for each of these parameters. The overall error metric is
defined by a weighted sum of the individual error metrics.



Let F = (F1, F2, F3) be a trivariate function defining
a vector field at sample points x, and vl be a specific vector
magnitude chosen by a user. Then, we define an error with
respect to the vectors’ magnitude for a tetrahedron T as

El(T ) =
1

|T |

∑

x∈T

(

g
(

vl − ‖F(x)‖
)

− g
(

vl − ‖f(x)‖
))2

,

where f(x) denotes the vector at x, linearly interpolated
from the vector values at the vertices of T .

From the vector field, we can also derive a gradient
field, a curl field, and a divergence field. We use the fol-
lowing definitions from [31]:

∇F =

(

∂F

∂x
,
∂F

∂y
,
∂F

∂z

)

,

curl F =

(

∂F3

∂y
−

∂F2

∂z
,
∂F1

∂z
−

∂F3

∂x
,
∂F2

∂x
−

∂F1

∂y

)

,

div F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

The curl measures the vorticity or “swirliness” of a vector
field. The divergence measures the rate of expansion per
volume unit, i. e., the difference in inflow and outflow per
unit. Divergence is positive for expanding and negative for
compressing vector/flow fields.

The gradient and the curl are represented by a tensor
and a vector field, respectively. When using their magni-
tudes, we can define the error metrics E∇(T ) and Ecurl(T )
for a tetrahedron T analogously to the error metric El(T ).
The divergence is represented by a scalar field, and we can
define the error metric Ediv(T ) analogously to Es(T ). The
overall error for a vector field over a tetrahedron T is de-
fined as

Ev(T ) = a1 El(T )+a2 E∇(T )+a3 Ecurl(T )+a4 Ediv(T ) ,

where a1, . . . , a4 are user-defined weights.

6 Error metric for multi-valued volume data

In many simulated or measured data sets, several variables
are of interest leading to a multi-valued volume data set,
where several scalar and/or vector values are stored for
each vertex of a mesh. These values are often correlated.
More insight can be gained by exploring several values si-
multaneously. Thus, a single error metric Em needs to be
defined, on which the decisions for view-dependent visual-
ization are based.

Let Fs,1, . . . , Fs,k be trivariate scalar functions and
Fv,1, . . . ,Fv,l be trivariate vector functions defining a
multi-valued volume data set. We can derive errors
Es,1, . . . , Es,k for the individual scalar fields according to
Section 4 and errors Ev,1, . . . , Ev,l for the individual vector
fields according to Section 5. We define the error Em(T )
for a multi-valued volume field over a tetrahedron T as

Em(T ) =
k

∑

i=1

bi Es,i(T ) +
l

∑

i=1

bk+i Ev,i(T ) ,

where the coefficients bi, i = 1, . . . , k+ l, are used for nor-
malization. To make the influence of all scalar and vector

fields equal, we can set

bi =
1

v
2β
δ,i

, i = 1, . . . , k + l ,

where vδ,i = |vmax,i − vmin,i| with [vmin,i, vmax,i] being
the range of the values of the i-th error component and β is
the power used in function g.

7 Visualization techniques

Various volume visualization techniques for scalar fields
exist. Two common ones are volume rendering and iso-
surface extraction. We focus on the latter, since it can be
combined with other visualization methods.

The most popular algorithm for extracting isosurfaces
is the marching-cubes algorithm [32], which was originally
developed for structured rectilinear hexahedral grids. We
use a similar algorithm, marching tetrahedra [33], which
has the advantage of not producing cracks. The marching-
tetrahedra algorithm is also more general, since it is appli-
cable to regular and irregular tetrahedral meshes.

To visualize two scalar fields simultaneously, one can,
for example, extract an isosurface of one scalar field and
color the isosurface with respect to the other scalar field.
One could use an RGB-color mapping from the range
[vmin, vmax] of the values of the second scalar field to RGB
values. Since lighting can affect color saturation and value,
we use an HSV color model instead and map scalar values
to hue only. Saturation and value are kept constant for color
mapping and can be used for lighting effects. If the hue is
uniquely defined by a one-to-one mapping, the mapping is
invertible, even when lighting is applied.

A simple linear function can be used for the color
mapping from function value range [vmin, vmax] to range
[Hmin, Hmax] of hue, shown in Fig. 2(a). If we want to
emphasize a certain value vd ∈ [vmin, vmax], we provide
a wider color spectrum for an interval close to value vd.
An example for such an “emphasizing” color mapping is
shown in Fig. 2(b).

(a) (b)

Figure 2. Mapping scalar function value to hue: (a) Linear
color mapping. (b) “Emphasizing” color mapping to focus
on a specific value vd.

In vector field visualization, the commonly used tech-
niques are streamlines [34] and streamribbons [35]. We
make use of streamlines. Streamlines (in the case of a
steady flow field) are tangential curves of the given field
and correspond to the paths of massless particles. Stream-
lines are generated by tracing particles using numerical
integration techniques, such as the Runge-Kutta or Euler
methods.

To facilitate the analysis of relationships between
multiple values of a data set combining scalar and vector



fields, we extract and display isosurfaces with respect to
a scalar field and streamlines (restricted to that isosurface)
associated with a vector field. Thus, the flow of a vector
field on an isosurface can be examined. When streamlines
are projected onto a surface, information about the flow
motion relative to the surface (displacement) can be en-
coded in the coloring of the streamline. Values are mapped
to hues based on direction (inflow or outflow) and magni-
tude.

For the computation of streamlines on an isosurface,
we construct a triangle mesh from the collection of trian-
gles generated by the marching-tetrahedra algorithm. Sur-
face streamlines are generated using a fourth-order Runge-
Kutta method: For the velocity vectors used by the Runge-
Kutta method, we determine the vectors at the requested
locations and project them onto the isosurface. The stream-
line advances to a new location using the projected veloc-
ity vectors. After each iteration step of the Runge-Kutta
method, we project the new location orthogonally onto the
surface. All streamlines are represented by polygons whose
vertices all lie on the extracted isosurface. The seed points
for the streamline generation are selected interactively by
clicking on points on the isosurface.

Other visualization techniques (like texturing) could
be combined with the ones we are using, but, depending on
the characteristics of the multi-valued data set, the gener-
ated images can become extremely complex when display-
ing too much information.

8 Results

Fig. 3 compares a view-dependent visualization of a scalar
field using our data-dependent error metric and a scalar-
field visualization using the mean-square error. The data
set is a CT scan of a Bonsai tree.1 The size of the data set is
2563, and the range of the values is [0, 255]. Fig. 3(a) shows
an isosurface (isovalue 85) extracted from an adaptively re-
fined mesh, where the refinement decisions were made with
respect to the mean-square error EMS . Fig. 3(b) shows the
same isosurface based on our data-dependent error metric
Es for scalar fields. Although both visualizations produce
images of about equal quality, the adaptively refined mesh
in Fig. 3(b) consists of significantly less tetrahedra. Since
the computation time for the isosurface extraction is linear
in the number of tetrahedra to be traversed (with negligible
overhead), the extraction time is reduced to about 54%.

Table 1 lists the numbers of tetrahedra and triangles
used for the generation of the geometry shown in Figures 1
and 3. It also lists the approximation errors EHausdorff be-
tween the shown isosurfaces and the isosurfaces extracted
at highest resolution. We computed the root-mean-square
errors between the surfaces with respect to the symmet-
ric Hausdorff distance using the MESH toolkit [36]. We
generated surfaces of equal visual quality using error met-
rics EMS and Es. The extracted surfaces are represented at
about the same level of resolution (indicated by the number
of generated triangles) with about the same approximation
quality (indicated by EHausdorff): In Figures 1(b) and (d),
the extracted surfaces are identical (with their Hausdorff
distance being zero); in Figures 1(a) and (c) and in Fig. 3,

1Data set courtesy of S. Roettger, Abteilung Visualisierung und Inter-
aktive Systeme, University of Stuttgart, Germany.

the differences between the extracted surfaces are not no-
ticeable. In general, we observed that for isosurfaces being
of nearly the same quality, the error metric Es leads to sig-
nificantly less tetrahedra; when extracting isosurfaces from
the same amount of tetrahedra, the quality of the isosur-
faces was significantly higher when using Es. How much
benefit is gained depends on the data set and, even more so,
the viewpoint chosen for view-dependent refinement.

The number of tetrahedra can further be reduced, if
we store for each tetrahedron T in a multiresolution mesh
hierarchy the range [vT,min, vT,max] of the function values
that appear at vertices lying in the interior or on the bound-
ary of T . Using this information, we can determine for the
isovalue viso whether it falls into that range, i. e., whether
viso ∈ [vT,min, vT,max] holds. If it does not fall into that
range, we can skip the subdivision of the tetrahedron T re-
gardless of error. This additional check requires us to store
two additional values per tetrahedron, but it typically re-
duces the number of tetrahedra that need to be traversed
for visualization purposes by up to 50%. The rate, again,
heavily depends on the data set and the viewpoint.

In Fig. 4, we have applied error metric Ev to a vec-
tor field representing a tornado-like data set. The data set
was generated by Crawfis and Max [37] to illustrate flow
patterns in 3D flow fields. We set the weights a2 and a4

to zero, such that gradient and divergence had no impact.
The weights a1 and a3 were used to balance the impact of
vector magnitude and curl. The vector magnitudes lie be-
tween 0.02 and 0.32; and the curl magnitudes lie between
zero and 0.24. For the computation of the error Ev , we con-
sidered the value 0.15 of vector magnitude and the value
0.15 of curl magnitude. To visualize vector magnitude and
curl, we extracted an isosurface of the (scalar) field repre-
senting vector magnitude and used hue mapping on the iso-
surface for visualizing curl magnitude. The isosurface was
extracted for the isovalue 0.15; the used color map blends
from red to green.

Figure 4. View-dependent refinement for a vector field us-
ing error metric Ev . Visualization of vector magnitude and
curl magnitude with isosurfacing and color mapping.

For the generation of Fig. 3(c), we combined two
scalar fields and applied the multi-valued error metric Em.
The two scalar fields represent two brain data sets, a human



(a) (b) (c)

Figure 3. View-dependent visualization of scalar fields: (a) Mean-square error metric EMS leading to 4,515,148 tetrahedra. (b)
Data-dependent error metric Es leading to 2,452,956 tetrahedra. (c) View-dependent refinement of two scalar fields using error
metric Em. Visualization of two scalar quantities with isosurfacing and color mapping.

Table 1. Results for EMS and Es - numbers of generated tetrahedra and triangles.
sphere (isovalue 63) sphere (isovalue 3) Bonsai tree

error metric tetrahedra triangles EHausdorff tetrahedra triangles EHausdorff tetrahedra triangles EHausdorff
EMS 137,048 17,296 0.09048 198,086 768 0.00116 4,515,148 534,298 2.06516
Es 109,970 17,034 0.09165 132,098 768 0.00116 2,452,956 535,044 2.04929

and a monkey brain.2 The original data sets were obtained
from cryosections and have dimensions 1050 × 970 × 753
(human) and 3008 × 1960 × 1501 (monkey). We resam-
pled them to superimpose the meshes such that two scalar
values were stored at each vertex of the underlying (resam-
pled) mesh. Moreover, the data sets contained RGB-color
information, which we converted to an HSV-color repre-
sentation in order to generate scalar fields using the value
V. The scalar field representing the human brain was used
to extract an isosurface, and the scalar field representing
the monkey brain was used for color-mapping to hues from
green to red. The isovalues we considered for data explo-
ration and used for the data-dependent error metrics were
78 for both human and monkey brain. The colors indicate
where and how much the brains differ. We did not perform
any pre-alignment of the data sets. When the brains are
aligned, this framework can be used to compare and find
differences in brains of certain species or to gain insight
into mental diseases (when comparing a diseased brain and
a healthy brain).

Considering Fig. 5, we applied the multi-valued error
metric Em to a combination of scalar and vector fields. The
data set represents the evolution of an Argon bubble dis-
turbed by a shock wave.3 We used one time step with spa-
tial resolution 640×256×256. For each vertex, scalar val-
ues (between 1.34 and 3.93) for density, scalar values (be-
tween zero and 3.66) for percentage of argon inside a cell,
and vector values for momentum are stored. The scalar and
vector errors Es and Ev were combined in the error Em we
used for view-dependent refinement. For Fig. 5(a), we used
density and momentum, and for Fig. 5(b), we used density,

2Data sets courtesy of E.G. Jones, Center for Neuroscience, University
of California, Davis, and A. Toga, Ahmanson-Lovelace Brain Mapping
Center, University of California, Los Angeles.

3Data set courtesy of The Center for Computational Sciences
and Engineering, Lawrence Berkeley National Laboratory, see
http://seesar.lbl.gov/ccse.

percentage of argon inside a cell, and momentum.
Fig. 5(a) shows a density isosurface (isovalue 1.596)

and streamlines on the isosurface using momentum. For
the coloring of the streamlines, we mapped the flow rela-
tive to the isosurface (displacement) to hues from blue to
orange. Blue indicates that the flow velocity vector is di-
rected toward the inside of the isosurface, and orange indi-
cates that it is directed toward the outside. For the vector
field, we considered the values 0.05 of vector magnitude,
0.05 of gradient magnitude, 0.05 of curl magnitude, and
0.05 of divergence, which were used in the error Ev . The
weights a1, . . . , a4 were all 0.25.

For Fig. 5(b), we added percentage of argon inside a
cell as a second scalar field. It is visualized by color map-
ping the isosurface with values from green to blue. For the
streamlines we used colors from red to yellow. For den-
sity and momentum, we considered the same parameters
as in Fig. 5(a); for percentage of argon inside a cell, we
considered the isovalue 0.2. All examples provided in this
paper are based on quadratic decrease of resolution with in-
creasing distance from the viewpoint (α = 2) and a cubic
function g (β = 3).

9 Conclusions and future work

We have presented a data-dependent error metric for scalar,
vector, and multi-valued volume data. Besides viewing
parameters, our approach takes parameters for data explo-
ration into account. As parameters for data exploration, our
method considers isovalues for scalar fields and magnitude,
gradient, curl, and divergence for vector fields. We devel-
oped a multi-valued error metric applicable to any combi-
nation of scalar and vector fields. Even though our method
considers the data exploration parameters, most of the error
computations can be done in a preprocessing step.



(a) (b)

Figure 5. View-dependent refinement of one scalar field and one vector field (a) and two scalar and one vector field (b) using
multi-valued error Em. The visualization combines isosurfacing, color mapping, and colored surface streamlines.

We have demonstrated the benefits of data-dependent
error metrics for view-dependent visualization. For im-
plementation purposes, we used tetrahedral meshes and
constructed a tetrahedral mesh hierarchy using longest-
edge bisection. However, our methods are independent
of grid structure and subdivision scheme. For a constant
number of tetrahedra, data-dependent error metrics pro-
duce higher-quality images. For a constant image qual-
ity, data-dependent error metrics require less subdivision
steps and thus less tetrahedra. We conclude that using data-
dependent error metrics can lead to a significant speed-up
when visualizing volume data with respect to given error
bounds and/or time constraints.

For visualizing multi-valued data sets consisting of
multiple scalar and vector fields, our approach combines
isosurfaces, hue mapping to isosurfaces, and (colored)
streamlines restricted to isosurfaces. We plan to extend our
method to include also tensor fields.
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