
Reconstruction of B-spline Surfaces From Scattered Data Points

Benjamin F. Gregorski, Bernd Hamann, and Kenneth I. Joy

Center for Image Processing and Integrated Computing (CIPIC), Department of
Computer Science, University of California, Davis, CA 95616-8562, USA�

gregorsk,hamann,joy � @cs.ucdavis.edu
http://graphics.cs.ucdavis.edu

Abstract

We present a new approach for reconstructing a smooth
surface from a set of scattered points in three-dimensional
(3D) space. Our algorithm first decomposes a given point
set into a quadtree-like data structure known as a strip tree.
The strip tree is used to fit a set of least squares quadratic
surfaces to the data points. These quadratic surfaces are
then degree-elevated to bi-cubic surfaces and blended to-
gether to form a set of B-spline surfaces that approximates
the given point set.

1. Introduction

Digitization devices and scanners generate very large
point sets representing complicated geometric models. Data
sets typically result from multiple scans and frequently
multiple viewpoints. Unfortunately, the resulting mas-
sive scattered point sets are not suitable for integration
into computer-aided design (CAD) systems. We discuss a
method that constructs a set of B-spline surfaces from scat-
tered data points that is usable for further processing in a
CAD system.

The basis for our reconstruction is the decomposition of
a scattered point set into a 3D strip tree. Our tree structure is
an extension of the original strip tree presented by Samet in
[10] and [11], and it is similar to the BOXTREE structure of
Barequet et al. in [1] Our structure is similar to a quadtree,
except that each node in our tree represents a bounding box
whose orientation is defined by the best-fit plane approxi-
mating the data points inside a bounding box. After each
decomposition step, the new tree structure defines a better
appoximation to the underlying data points. Decomposition
consists of the following steps:

1. A bounding box for all given data points is computed.

(The three box axes are parallel to the global coordi-
nate system axes).

2. This bounding box is re-oriented so that its three axes
are parallel to the three axes defined by the princi-
pal directions of the underlying point set, obtained by
principal component analysis (PCA) . A similar ap-
proach for clustering data is used in [4], [5] to generate
hierarchies of triangulations for scattered data. This
step defines the best-fit (least-squares) plane approxi-
mating the data points.

3. The root bounding box is recursively subdivided un-
til the resulting set of bounding boxes, all re-oriented
according to their principal directions, approximates
the data points by least squares planes, within a user-
defined error tolerance.

4. The resulting tree of bounding boxes, the strip tree,
is used to fit a set of surfaces approximating the data
points inside each box.

Once the scattered points have been decomposed into
subsets using the strip tree, we use a bottom-up fitting al-
gorithm to fit a set of surfaces to the points. The tree is
used to approximate the data points in each box. Additional
points on the boundary faces of the boxes must be used to
create the surfaces. The approximation process starts by fit-
ting surfaces to the next-to-last level in the tree. These sur-
faces are then blended together to form a set of continuous
surfaces.

The decomposition method produces a hierarchy of ori-
ented bounding boxes that we can use to construct a set
of B-spline surfaces that approximates the scattered points.
The construction process utilizes the bounding boxes in
place of the scattered point set.

Our paper is structured as follows: In Section 2, we
review previously published methods that are related to
smooth surface reconstruction. In Section 3, we discuss the

1

construction of the oriented bounding boxes for a scattered
point set. In Section 4, we describe the characteristics of the
generalized strip tree. This tree is utilized to progressively
fit B-spline surfaces to the scattered point set, which is de-
scribed in Section 5. Results of our algorithm are provided
in Section 6. Conclusions and future work are discussed in
Section 7.

2. Related Work

Many different methods exist for reconstructing surfaces
from scattered points. Some methods attempt to approxi-
mate the surface using a surface based on subdivision or an
implicit function. In [9], Hoppe et al. represent the surface
to be reconstructed as the zero set of a signed distance func-
tion. A contouring algorithm is then used to extract the zero
set of the signed distance function that approximates the
surface. In [6], Hoppe first constructs an optimized triangu-
lar mesh of the data points. The optimized mesh is then used
to fit a piecewise smooth subdivision surface that approxi-
mates the data. This method can represent sharp ”creases”
and ”darts” in a data set.

Other methods reconstruct one or more B-spline surfaces
from the data points. Eck et al. [2] reconstruct a network of
B-spline surfaces from given data points. The surface is ini-
tially approximated by a dense triangular mesh that is then
mapped from a triangular to a quadrilateral mesh topology.
A surface spline construction is then used to generate a set
of G

�
-continuous B-Spline surfaces. Levoy and Krishna-

murthy [8] apply an interactive approach to the reconstruc-
tion process by having a user interactively specify patch
boundaries over an initial dense polygonal mesh. Each of
the resulting sections is then parameterized by laying a grid
of springs across the polygon mesh. A tensor product B-
spline surface is finally fitted to the grid. Greiner and Hor-
mann [3] use hierarchical B-splines to interpolate and ap-
proximate scattered data. They first parameterize the data
points and then optimize the output surface with respect to
a fairness functional.

Our algorithm is of the second type and constructs a set
of B-Spline surfaces. We introduce a 3D strip tree for de-
composing a given point set. The strip tree decomposes the
set of points into a quadtree-like structure that is used to fit
B-spline surfaces to the data.

3. Oriented Bounding Boxes

Given a set of points (x � ,y � ,z �), a bounding box is defined
as a box that contains all the points. Typically, a bounding
box is a parallelpiped and is oriented with respect to the axes
of the global coordinate system. To obtain a tighter bound-
ing box, i.e., one with smaller volume, the bounding box

can be oriented by using the three principal directions of
the underlying point set. The coordinate system defined by
these three principal directions allows us to obtain a bound-
ing box that reflects the orientation of the data points. The
orientation process consists of the following steps:

1. Given a set of points (x � ,y � ,z �), compute the best-fit
plane for the point set. The local coordinate frame in
3D space consists of three basis vectors and an origin.
We use PCA to determine the basis vectors of the local
frame [7].

2. The normal vector of the best-fit plane defines the ordi-
nate direction in the local frame. We measure distances
of points to the best-fit plane in ordinate direction. We
express all points associated with a box in terms of its
local coordinate frame, using the average of the points
as local origin.

Figure 2 shows a set of points and its oriented bounding
box. The error associated with an oriented bounding box is
directly related to the size of the box in normal direction.
Considering an oriented bounding box B whose side length
in normal direction is L, all points within B are guaranteed
to be within distance

�
� of the associated best-fit plane. This

follows from the fact that the best fit plane associated with
an oriented box is defined by the mean of the data points,
and the worst-fit vector is determined by PCA.

This orientation algorithm does not work for data sets
that do not contain enough points to determine a normal
vector, e.g., data sets with one or two points. It also has
problems with collinear or nearly collinear point sets one
method for addressing this problem is to use the local frame
from the node’s parent to orient the local frame for the point
set.

4. The Generalized Strip Tree

Our strip tree is a quadtree in 3D space whose nodes
are oriented bounding boxes. Given a set of points, the
root of the tree is a single, properly oriented bounding box
that contains all points. A node in the tree is subdivided
by first dividing its bounding box into four sub-boxes and
then re-orienting these sub-boxes relative to the points in-
side them. As the strip tree is refined, the bounding boxes
of the leaf nodes provide better approximations to the un-
derlying points.1

Each node in the strip tree has four children, except the
leaves. The children are referred to as the NorthWest (NW),
NorthEast (NE), SouthWest (SW), and SouthEast (SE) chil-
dren. Each node has at most one West, East, North, and

1We note that the resulting tree is similar to the BOXTREE of Barequet
et al. However, we generate this tree in a top-down fashion, using principal
directions of point subsets.

Figure 1. Arrangement of nodes used for
patch blending.

South neighbor. In our implementation, the strip tree is a
threaded tree, which allows us to easily draw different lev-
els of the tree and move between them. The arrangement of
a node’s children is shown in Figure 1. The decomposition
of a box consists of four steps:

1. First, we determine a ”subdivision point” within the
bounding box around which to form the four sub-
boxes. This subdivision point is defined as a given
data point closest to the center of the bounding box.
This point is used to divide the bounding box into four
sub-boxes, all having parallel faces.

2. Once the four sub-boxes are determined, the data
points contained in the original box are distributed
among the four sub-boxes.

3. The four sub-boxes are re-oriented using the procedure
outlined in Section 2.

4. The box points for the new, re-oriented sub-boxes are
computed. (Box points are points that are not neces-
sarily part of the given data set, but are required for
later surface fitting.) The box points are either the four
midpoints of the four box edges parallel to the normal
vector of the best-fit plane or four original points clos-
est to the midpoints of these edges. (Provided these
are close enough to a box edge in normal direction).
Figure 4 shows the box points of the leaf nodes for the
strip tree shown in Figure 3. (The box points are drawn
in black.)

The subdivision process is illustrated in Figures 2-5.
Figure 2 shows the root bounding box, and Figure 3

shows the strip tree after the root node has been subdivided

Figure 2. Root bounding box for scattered
point set.

and the bounding boxes have been re-oriented. Figure 4
shows the box points along with the bounding boxes for the
four nodes of the strip tree. In this example, the box points
are the four original points, considering each sub-node, that
are closest to the edges of the bounding boxes in the direc-
tion of the best-fit normal vectors. (The normal vectors in
these pictures are shown in blue.) Figure 5 shows the strip
tree after four subdivision steps.

A bounding box is decomposed only when all of its four
children can be successfully re-oriented. In cases where one
or more of the new child nodes contain a degenerate set of
points, as discussed in Section 4, the decomposition process
fails and the bounding box is not subdivided.

5. Fitting Surfaces

Once the strip tree is decomposed so that the leaf nodes
of the tree all have an error below a prespecified error
threshold, the strip tree approximation is used to construct
surfaces that approximate the data points in each box. To
construct a least-squares B-spline surface to the points as-
sociated with a node, the node must first be subdivided. The
approximation process for a node in the next-to-last level
begins with a single bi-quadratic B-spline patch fitted to the
box points of the node’s children. The 3x3 control points
required for a bi-quadratic B-spline patch are obtained from
the four corner box points and averages of interior points.
As an example, Figure 4 shows four leaf nodes and their 16
box points. This set of 4x4 points is reduced to a set of 3x3
points by keeping the four corner points, averaging pairs
of control points in the middle of the outside edges, and

Figure 3. Strip tree after one subdivision step.

Figure 4. Box points for strip tree shown in
Figure 3.

Figure 5. Strip tree after four subdivision
steps consisting of 16x16 boxes.

averaging the four control points in the interior. A least-
squares bi-quadratic B-spline patch is fitted through the set
of 3x3 control points. This surface is then degree-elevated
to a bi-cubic B-spline patch. After the fitting process, the
resulting surfaces are blended together to form a new set of
C

�
-continuous B-spline surfaces. The input to the blending

process consists of four bi-cubic B-spline patches, follow-
ing the arrangement of patches shown in Figure 1.

The blending process consists of three steps:

1. We force two surfaces to become C
�

-continuous by re-
quiring the last row/column of control points of the
first surface and the first row/column of control points
of the second surface to be equal. This is done averag-
ing the corresponding points from each patch. At the
point where four surfaces meet, the average of the four
corner points is used.

2. The boundary curves of the surfaces are then made C
�
-

continuous by using the box points of the strip tree
nodes to approximate the derivative of the data in the
North/South and East/West directions. (These corre-
spond to the u and v parametric directions of the B-
spline surfaces.) The derivatives are approximated us-
ing central differences wherever possible and forward
differences along the boundaries. The boundary con-
trol points of the surfaces are then adjusted acordingly.

3. Finally, the cross boundary derivatives or twist-vectors
are made C

�
-continuous by first computing the aver-

age of the twist vectors for the surfaces to be blended.
The interior control points are then adjusted so that the
twist of the surface is equal to this average.

Figure 6. Initial surfaces for strip tree shown
in Figure 5.

6. Error Calculations

The error in the resulting network of surfaces is a func-
tion of the size of the oriented bounding boxes in the direc-
tion normal to the surface and the error introduced by the
blending process. It is given by the formula:

���������
	�����������������������
�� "!$#
�
�"�&%('

�
�*),+.-0/��213��45!6�&)7	

�
)98�:

Given a single node in the strip tree with an oriented
bounding box and an associated approximation surface, the
error is the sum of the size of the bounding box in the
normal direction and the error introduced by the blending
process. The normal direction is the normal vector of the
best-fit plane used to form the oriented bounding box as dis-
cussed in Section 3. The error introduced by the blending
process is computed as the distance by which the new con-
trol points deviate from their original positions. The maxi-
mum over all of these values is used. The overall error for
the approximation is the maximum error over all of the strip
tree nodes that have a valid approximation surface.

7. Results

Figure 6 shows the inital set of independent surfaces cre-
ated for the strip tree shown in Figure 5. Figure 7 shows
the final B-Spline surface (Gouraud shaded) obtained by
blending. The dataset used in these pictures is a skidoo
dataset obtained from the web site of Hugues Hoppe (
http://www.research.microsoft.com/˜hoppe). The final ap-
proximation error for this model using 64 surfaces is about
2.7. Where the original x, y, and z coordinates of the data

Figure 7. Final surfaces for strip tree shown
in Figure 5

.

Figure 8. A wireframe rendering of Figure7.

Figure 9. The data points for Crater Lake.

Figure 10. Strip Tree with 16x16 nodes.

points vary in the intervals [-8.1 8.35], [-12.5 10.6], [
-4.9 3.3] respectively. This means that the original data
points are no more than 2.7 units away from the approxima-
tion. The majority of the error in the approximation is de-
rived from the error in the blending process. This is because
the blending process currently does not deal effectively with
highly curves boundaries.

Figures 9-12 show the datapoints, strip tree, and final
renderings for the crater lake dataset from the USGS. The
final approximation error for this model using 64 surfaces is
about 15. Where the original x, y, and z coordinates of the
data points vary in the intervals [-51.7 , 51.6666], [-69.9 ,
69.9], [-11.9 , 18.8] respectively. Figures 13-15 show the
crater lake data set approximated with a (32x32) striptree
resulting in 256 surfaces. The final approximation error is
about 8.4.

Figure 11. Final Surfaces for Figure 10.

Figure 12. Wireframe rendering of Figure 11.

Figure 13. Strip Tree with 32x32 nodes.

Figure 14. Final Surfaces for Figure 13.

Figure 15. Wireframe rendering for strip tree
in Figure 14.

8. Conclusions and Future work

We have presented a new method for reconstructing sur-
faces from scattered points. Our algorithm is based on
a generalization of the strip tree used to approximate the
given points initially. This initial approximation is used
to construct a set of surfaces that approximates the given
data points. Our algorithm works well on scattered data
that represent smooth surfaces, and where smooth surfaces
are desired as output. It does not work well for surfaces that
are self-intersecting, or “twisting surfaces” The limitation
is given by the structure of the oriented bounding boxes.
When the oriented bounding boxes do not correspond to a
single sheet of the underlying surface, the algorithm may
produce erroneous results for the leaves of the tree.

At present, our algorithm subdivides a given point set
in a uniform manner. The strip tree needs to be enhanced
to allow for a non-uniform subdivision of the data in re-
gions with more data points or more complicated, highly
curved behavior. This will allow us to use more surfaces in
areas with a higher sampling rate or higher curvature vari-
ation, and to approximate subtle features more adaptively.
Furthermore the fitting and blending processes need to be
improved for regions with higher curvature. The fitting pro-
cess can be improved by using a weighted fitting process to
better approximate sharper features. The blending process
can be improved by finding better ways to approximate the
derivatives of the data and to determine the final twist vec-
tors. Sharper features could also be better approximated by
relaxing the continuity constraints in certain regions. For
example, regions with sharp creases, darts, or cliffs could
be made C

�

-continuous but not C
�
-continuous. This would

decrease the error of the approximation and at the same time
lead to a better representation of the data.

Lastly the blending process needs to be improved to deal
with holes in the dataset and datasets with highly curved
boundaries. Holes in the dataset could be distinguished
by letting the user specify a ”hole size” that determines
whether two data points lie across a hole. In these situa-
tion, patches that lie across a hole would not be be blended
together. Curved boundaries could be dealt with by only
blending patches whose edges are within a certain distance
of each other.

9. Acknowledgements

This work was supported by the National Science Foun-
dation under contract ACI 9624034 (CAREER Award),
through the Large Scientific and Software Data Set Visu-
alization (LSSDSV) program under contract ACI 9982251,
and through the National Partnership for Advanced Com-
putational Infrastructure (NPACI); the Office of Naval Re-
search under contract N00014-97-1-0222; the Army Re-

search Office under contract ARO 36598-MA-RIP; the
NASA Ames Research Center through an NRA award un-
der contract NAG2-1216; the Lawrence Livermore Na-
tional Laboratory under ASCI ASAP Level-2 Memoran-
dum Agreement B347878 and under Memorandum Agree-
ment B503159; and the North Atlantic Treaty Organiza-
tion (NATO) under contract CRG.971628 awarded to the
University of California, Davis. We also acknowledge the
support of ALSTOM Schilling Robotics, Chevron, Silicon
Graphics, Inc. and ST Microelectronics, Inc. We thank the
members of the Visualization Thrust at the Center for Image
Processing and Integrated Computing (CIPIC) at the Uni-
versity of California, Davis.

References

[1] G. Barequet, B. Chazelle, L. J. Guibas, J. S. B. Mitchell,
and A. Tal. BOXTREE: A hierarchical representation for
surfaces in 3D. Computer Graphics Forum, 15(3):387–396,
1996.

[2] M. Eck and H. Hoppe. Automatic reconstruction of b-spline
surfaces of arbitrary topological type. In SIGGRAPH 96
Conference Proceedings, Annual Conference Series, pages
325–334. ACM SIGGRAPH, Addison Wesley, 1996.

[3] G. Greiner and K. Hormann. Interpolating and approxi-
mating scattered 3D-data with hierarchical tensor product
splines. In A. L. Mehaute, C. Rabut, and L. L. Schu-
maker, editors, Surface Fitting and Multiresolutional Meth-
ods, pages 163–172. Vanderbilt University Press, 1996.

[4] B. Heckel, A. E. Uva, and B. Hamann. Clustering-based
generation of hierarchical surface models. In Proceedings
IEEE Visualization ’98 – Late Breaking Hot Topics, 1998.

[5] B. Heckel, A. E. Uva, B. Hamann, and K. Joy. Sur-
face reconstruction using adaptive clustering methods. In
IEEE Transactions on Visualization and Computer Graph-
ics, 2000.

[6] H. Hoppe. Surface reconstruction From Unorganized
Points. PhD thesis, Department of Computer Science and
Engineering, University of Washington, 1994.

[7] J. E. Jackson. A User’s Guide to Principal Components. A
Wiley-Interscience Publication, John Wiley and Sonc, Inc.,
New York, 1991.

[8] V. Krishnamurthy and M. Levoy. Fitting smooth surfaces
to dense polygon meshes. In SIGGRAPH 96 Conference
Proceedings. ACM SIGGRAPH, Addison Wesley, 1996.

[9] H. H. T. D. T. D. J. McDonald and W. Stuetzle. Surface
reconstruction from unorganized points. In SIGGRAPH 92
Conference Proceedings, Annual Conference Series, pages
71–78. ACM SIGGRAPH, Addison Wesley, 1992.

[10] H. Samet. The Design and Analysis of Spatial Data Struc-
tures. Addison-Wesley, Reading, Massachusetts, 1990.

[11] H. Samet. Introduction to Spatial Data Structures.
Computer Graphics, Image Processing, and GIS-Addison-
Wesley, Reading, Massachusetts, 1990.

