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ABSTRACT
This paper investigates the topology of piecewise linear scalar
functions, such as the interpolation function over a tetrahedralized
volumetric grid. An algorithm is presented that creates a
hierarchical representation of a Morse-Smale complex based on
persistence. We show the correctness of our approach and discuss
the applications. 1

1. INTRODUCTION
Traditional methods for exploring volumetric data involve the
extraction of isosurfaces, or the visualization of some surface
property based on a transfer function. An alternative to
visualizing level set information is to visualize topological
information. The Morse-Smale complex is a structure that
partitions a dataset into topologically distinct regions based on
gradient flow. Such a complex has many uses: a visualization of
the complex can represent effectively the topology of a dataset; a
hierarchical view of the topology is useful in topological
smoothing, which can be applied in several areas, including
medical imaging.
One of the problems with the construction of a Morse-Smale
complex is the complexity inherent in dealing with the geometry
of a 3-manifold. The Morse-Smale complex is well-defined over
Morse functions as the intersection of stable and unstable
manifolds. A Morse function is a smooth function where all the
critical points are non-degenerate. However, a scalar dataset does
not necessarily conform to the requirements of Morse functions.
Therefore, for the desired properties of Morse theory to hold, such
as error guarantees, the complex must be constructed from a given
discrete scalar dataset in such a way that it implies a smooth
Morse function.
We show how to construct a multi-resolution hierarchy given a
valid Morse-Smale complex. This hierarchy helps us to resolve
many of the questions regarding the validity of a derived
complex, and therefore aids in the construction of the complex.
By understanding how a complex can be simplified, we can
perceive what a minimal configuration is as well as observe the
valid connectivity of the complex. We present an algorithm for
creating a multi-resolution hierarchy from a valid Morse-Smale
complex, and discuss the applications of this hierarchy.

2. BACKGROUND
Some relevant terminology is introduced very briefly here.
A Morse function  is a smooth mapping from an N-manifold to R,
the set of real numbers.
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Critical Points of a Morse function are points where the gradient
is zero. These include maxima, minima, and saddle points, see
Figure 1.
Integral Lines are lines that start at a regular point, and follow the
gradient vector field to a maximum or minimum. Integral lines
starting at saddle points trace out some of the edges of the Morse-
Smale complex.
Stable/Unstable Manifolds are the regions surrounding extrema,
such that all integral lines starting inside the region end at the
extrema. The stable manifold refers to the region associated with
a minimum, and the unstable manifold refers to the region
associated with a maximum. The surfaces created by the
intersection of these manifolds partition the dataset into
topologically distinct regions. Figure 2 illustrates these for a
simple dataset.

Figure 1 The types of critical points in a 3-manifold setting.
The darker regions indicate lower function value compared to
the value at the point in the middle, and the clear regions
indicate higher function value. From left to right we have
regular, maximum, minimum, 1-saddle, and 2-saddle.

Figure 2 A simple dataset of
distances to points arranged in
a cube.
Top left shows the isosurface.
Top right shows the boundaries
of the manifolds. The yellow
sheets show the boudary of the
stable manifolds.
Left the corresponding Morse-
Smale complex. A single cell is
highlighted.
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Certain cancellations are not allowed. The manifold structure of
the function must be maintained, and the resulting complex must
still be a Morse-Smale complex. Also, certain rules apply when

Figure 4 An abstract view of the space occupied by a
complex. Node A represents the simplest complex. Each
bubble corresponds to the region affected by a cancellation.
Therefore, C, D, and E are independent cancellations, since
their areas of influence do not overlap. On the right, the
corresponding hierarchy is shown. In practice, the complex
can be reconstructed at a desired resolution by traversing this
hierarchy across a cut. Each node must store information on
how to reconstruct the complex.
he Morse-Smale Complex is a structure that partitions th

Figure 3 The top figure shows a 2-saddle - maximum
contraction. Two cells are merged into one.
The bottom figure shows a 1-saddle - 2-saddle cancellation.
An entire face of the cell is removed.
ataset into topologically distinct regions. A cell of the complex
 defined as the intersection of the stable and unstable manifolds
ssociated with a minimum and maximum. Therefore, each point
side the volume defined by the cell has the property that the
tegral line following the positive gradient ends at the maximum

f the cell, and the integral line following the negative gradient
nds at the minimum of the cell. The complex is stored as a set of
ells. Each cell is composed of one minimum, a maximum, and a
ng of alternating 1-saddles and 2-saddles.

.  PREVIOUS WORK
remer et al [1] implemented a Morse-Smale complex in the two-
imensional case, and used it to create a topological segmentation
f datasets. Furthermore, they used the complex to create a
ultiresolution data structure for interactive viewing.
delsbrunner et. al. [2] described an algorithm for constructing
orse-Smale complexes on three-dimensional tetrahedralized

omains, based on finding the boundary surfaces between cells by
rowing them from saddles. The problem with these approaches is
at they attempt to find implicit structures directly, and therefore
n into combinatorial and numerical problems.

.  CANCELLATIONS
iven a valid Morse-Smale complex, it is possible to perform

ancellation of critical point pairs such that the implied function is
ill smooth over a 3-manifold. The construction of a hierarchical
presentation relies on the ability to simplify the Morse-Smale

omplex. A cancellation of critical points involves “merging”
em together spatially and in function value. One erases “bumps”
 the function values by eliminating the critical points that define
ose bumps. Figure 3 shows how to perform cancellations.

 cancellation can also be seen as the contraction of an edge of
e complex. There are two types of cancellations that lead to a

alid complex. An edge contraction can occur either between a
ddle and an extremum, or between two saddle points. The first

ase intuitively corresponds to removing a bump from the
nction. The extremum is removed, and the resulting function is
oothed. The second type of cancellation also smoothes the

nction, but in a different way. It corresponds to removing a face
om a Morse cell, thereby simplifying the shape of the bump.

determining how to reconnect the complex after a cancellation.
Discussion of each case and test is beyond the scope of this short
paper.

5.  TOPOLOGICAL HIERARCHY
Applying successive cancellations leads to a topological
hierarchy. The algorithm that simplifies a Morse-Smale complex
sorts all pairs of critical points based on persistence, which is the
absolute value of the difference of function value, and proceeds to
simplify the complex in that order. This simplification order is
important because it corresponds to removing the small features
of the data before the large features; therefore, it is effective in
removing noise. Furthermore, this order is important to maintain
numerical correctness while making combinatorial decisions in
cancellations. Failure to adhere to this order can lead to an
ascending edge pointing from lower function value to higher
function value.

Even though the ordering based on persistence is important, there
is a set of independent cancellations at each point in the
simplification process, each cancellation does affect the other
cancellations in that set. Figure 4 illustrates the notion of
independence and how a hierarchy is constructed.

6. RESULTS AND CONCLUSIONS
We developed a set of rules and an algorithm for performing
simplification on a Morse-Smale complex.  We have utilized the
simplification process to construct a multi-resolution hierarchy for
the complex.
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