
Time- and Space-efficient Error Calculation for
Multiresolution Direct Volume Rendering

Attila Gyulassy1, Lars Linsen1,2, and Bernd Hamann1

1 Institute for Data Analysis and Visualization (IDAV)
University of California, Davis
Davis, CA 95616, U.S.A.�

2 Department of Mathematics and Computer Science
Ernst-Moritz-Arndt-Universität Greifswald
Greifswald, Germany.��

Summary. Multiresolution data representations are crucial for viewing large volu-
metric datasets interactively. When data is too large to fit into texture memory,
or into main memory, a “cut” must be made through the multiresolution data
hierarchy to attain a subset of the data that satisfies the memory requirements.
Ideally, a subset is chosen such that the error made when visualizing the subset
(compared to a visualization of the full data set) is smaller than that of any other
subset of the same size. For real-time applications it is computationally too ex-
pensive to calculate the exact error during runtime. Futher, computing error in a
pre-processing step is usually not practical due to a large number of possible dif-
ferent configurations each requiring its own error computation. For example, when
coupling a multiresolution representation with a direct volume rendering technique,
screen-space error depends on the transfer function and viewing direction, making
impossible its pre-computation. We present an algorithm that stores an intermedi-
ate form of the error, which allows us to approximate screen-space error efficiently.
The input for our algorithm is any spatially subdivided multiresolution representa-
tion of grid-aligned scalar or multi-variate volume data. We focus on octree- and
wavelet-based multiresolution techniques. For each level in the multiresolution hi-
erarchy, the algorithm estimates screen-space error “on the fly,” with respect to
the current transfer function and viewing direction. The error is approximated by
means of a two-dimensional histogram of error pairs. We have extended previous
methods by presenting an approach that balances computational and memory costs
with approximation quality of the error estimate.

1 Introduction

Visualization of volumetric datasets is a common task used in many fields,
including medicine, physics, and other sciences. Complexity is introduced in

�aggyulassy@ucdavis.edu, hamann@cs.ucdavis.edu
��linsen@uni-greifswald.de



2 Attila Gyulassy, Lars Linsen, and Bernd Hamann

this task by the fact that datasets sometimes are too large to fit into texture
memory, or main memory. Therefore, data reduction schemes are required
to enable interactive exploration and visualization. We refer to the subset
that is selected as a “cut” of the data structure. Three steps summarize the
main tasks involved in the visualization of large data using multiresolution
approximation methods: (i) Compress the original data to a more manageable
size; (ii) select the optimal cut such that it minimizes screen-space error while
maintaining interactive exploration; and (iii) render the cut in an efficient way.
For interactive visualization, frame-rates of at least ten frames per second are
desirable. Therefore, the algorithm that selects the cut must be efficient. Also,
the algorithm must not have a large memory overhead, since the primary goal
is to use available memory to attain as high-quality a representation of the
original data as possible. Furthermore, interactive modification of the transfer
function is desirable.

Several studies have shown that it is possible to compress large datasets
and thereby reduce the I/O and memory footprint. Nguyen and Saupe [8]
showed that it is possible to attain quality compression of volumetric datasets
using blockwise wavelet representations. Guthe and Straßer [2] demonstrated
that using such compression methods and graphics hardware, it is possible to
render large datasets at interactive frame rates. Unlike these methods, how-
ever, our algorithm can be applied to any data representation, including com-
pressed representations, as long as the representation is hierarchical/nested,
i. e., it maintains the property that high-resolution levels are spatially con-
tained in low-resolution levels. Such representations include tree- and wavelet-
based structures.

Selection of the cut is important when using multiresolution representa-
tions, since different cuts yield different screen-space errors when applying
visualization methods. If the error associated with a node in the representa-
tion is known, then it is possible to make a decision about the importance
of refining the resolution of that node. We present an algorithm that esti-
mates screen-space error efficiently and supports interactive modification of
the transfer function. The key observation motivating the algorithm presented
in this paper is that there exists an intermediate form of the error that can
be exploited to make possible lazy evaluation of the actual screen-space error.
The intermediate form of the error can be computed independently of the
chosen transfer function and viewing direction. Specifically, instead of storing
the actual error (in color space) associated with each node in the data hier-
archy, we store a pre-calculated histogram of values and deviations, such that
the error can be reconstructed for any transfer function and viewing direction
without processing the entire dataset again.

We show that with our algorithm one can attain substantially higher fram-
erates for a guaranteed error bound by minimizing the size of the cut required
for that error. Alternately, given a fixed amount of memory, we show that our
algorithm selects a near-optimal cut for minimizing screen-space error.



Error Calculation for Volume Rendering 3

2 Previous Work

The algorithm presented here combines techniques described by Guthe and
Straßer [2] and LaMar et al. [6]. LaMar et al. presented an algorithm that
makes use of the fact that there are fewer unique error pairs in a large data
set than occurrences of such pairs. An error pair (a, b) is a pair of values out
of the range of the considered data field. (An error pair (a, b) occurs when
value a is used instead of the correct value b). Their algorithm considers byte
datasets that have the property that there exist only 256 distinct values and
2562 = 216 possible error pairs, whereas in a data set over a uniform rectilinear
grid, e. g., of size 5123, there are already 5123 = 227 entries of data values.
Therefore, storing a 2D table for each non-leaf node in the representation,
where the table contains for each error pair (a, b) entries

“Q(a, b) = number of times error pair (a, b) occurs,′′

makes calculation of the actual error at runtime faster. Several optimizations
were introduced to reduce the size of this table, including halving the size of
the table by reflecting with respect to the table’s diagonal, and run-length
encoding. Even though this method provides a fast method for recalculating
error, it introduces large storage overhead, as each non-leaf node in the hierar-
chy has to contain a large data structure representing this table. In addition,
there is a high cost of calculating the error at each node, since the entire table
must be traversed. Also, this method is restricted to byte datasets. Previous
studies [5, 4] developed the error metrics necessary for error calculation.

Guthe and Straßer [2] took a different approach to calculating the error
for each node in the hierarchy. In their algorithm, each node in the data
hierarchy stores only a small histogram of the maximum deviation for each
value in that node. Furthermore, the method bins values into eight groups.
Therefore, instead of dealing with a 2562 table, a single eight-entry array is
used. In reconstructing the error, however, all possible combinations of the
values must be considered to find a conservative estimate of the error. In
practice, the n2 complexity of this operation can be avoided by storing another
small table of the “maximum” and “minimum colors” and opacities for each
bin. While this approach is computationally inexpensive and memory-efficient,
it creates an overly conservative estimation of error. Indeed, the maximum
color is compared with the minimum color of every other element, and then
scaled by the number of items binned, which greatly overshoots the actual
error. Therefore, this method overestimates the error associated with a node
in such a way that it could produce an inferior cut of the multiresolution
representation.

We present a new, hybrid approach, which uses a histogram similar to the
one used by LaMar et al. [6], but also applies a binning procedure, such as
described by Guthe and Straßer [2], see Figure 1. In this way, we obtain a
closer approximation of the actual error, while keeping the data structure and



4 Attila Gyulassy, Lars Linsen, and Bernd Hamann

Fig. 1. For each node in the data hierarchy, (a) shows the table generated by LaMar
et al. [6], (c) shows the binning method of Guthe and Straßer [2], and (b) shows how
our algorithm combines the two methods.

computation overheads small. Furthermore, our binning approach enables us
to work on any multi-variate dataset, not only on byte data.

Other methods [1, 3, 11] can be used to calculate the error associated with
levels in a hierarchy. However, these methods rely on a fixed transfer func-
tion. Therefore, whenever the transfer function is modified, the entire dataset
must be traversed. This characteristic prohibits interactive modification of the
transfer function.

3 Error Estimation

Our algorithm presented here utilizes a conservative error estimation to select
the cut through the multiresolution representation of a dataset. The cut con-
sists of the nodes that are kept in memory for the purpose of rendering. The
error can be measured by the root-mean-square (RMS) difference between the
images generated by rendering the actual and approximating data, called the
screen-space error. The error in a single pixel is defined as

errorcolor(x) =

∣∣∣∣∣
∫ d

0

Opacityh(x) ∗ Color(V alueh(x)) dx

−
∫ d

0

Opacityl(x) ∗ Color(V aluel(x)) dx

∣∣∣∣∣ .

The function Opacityh refers to the function that defines the progressive vis-
ibility along the ray, parameterized by x for the high-resolution data repre-
sentation; V alueh refers to the value returned by interpolation of the high-
resolution data. Similarly, Opacityl and V aluel refer to the corresponding
functions for the low-resolution data. The integral is evaluated over the inter-
val (0, d), where d is the far cut plane.



Error Calculation for Volume Rendering 5

In our conservative estimate, we approximate this value by the integral of
the errors along the ray projected from that pixel convolved with the progres-
sive opacity function, i.e.,

errorapprox(x) =
∫ d

0 |Opacityh(x) ∗ Color(V alueh(x))
−Opacityl(x) ∗ Color(V aluel(x))| dx .

Considering the triangle inequality, errorcolor(x) ≤ errorapprox(x).
We further simplify this equation by using the opacity in each node instead

of the progressive opacity, so that the error contributed by each node is view-
independent. Therefore, a conservative estimate of the error contributed by
each node is sufficient to compute a conservative estimate of the final screen-
space error of the image. The error of a particular node in the cut is also
useful for determining whether or not to refine the cut at that node.

3.1 View-independent Error at a Node

For simplicity, we first only consider a piecewise-constant interpolation of the
data. Also, we consider only one color channel at a time so that the transfer
function is scalar-valued. We combine the error contributions of each channel
after they have been computed independently. As is done by LaMar et al. [6],
we can use two different error norms for calculating the absolute error at
a node in the data representation. The L∞-error defines the error as the
maximum of the errors under that node, i.e.,

errorL∞ = max
p∈B

{|Color(V alueh(p)) − Color(V aluel(p))|} , (1)

where p refers to points of the original data that reside inside node B of the
hierarchy. This error calculates the largest deviation in color that can occur
inside a node. The RMS error averages the errors under that node, i.e.,

errorRMS =
√

1
n

∑
p∈B

(Color(V alueh(p)) − Color(V aluel(p)))2 , (2)

where n is the total number of points p ∈ B. For simplicity, we limit our
discussion to errorRMS . To calculate this error, however, we need to use the
entire data structure. We can rewrite this error as

errorRMS =

√
1
n

∑
i

(Color(ai) − Color(bi))2 ∗ Q(ai, bi) , (3)

where {(ai, bi)} = {(V alueh(pi), V aluel(pi))|pi ∈ B} and Q(ai, bi) is the num-
ber of times that the error pair (ai, bi) appears inside node B. In the case of
byte data, it is possible to represent Q explicitly as a table that is significantly
smaller than n for blocked data, and we can efficiently compute the error at a



6 Attila Gyulassy, Lars Linsen, and Bernd Hamann

node using this histogram. However, for real-valued data, no guarantees can
be made concerning the number of unique error pairs (ai, bj). Therefore, the
size of Q is only bounded by n. Straightforward storage of the table Q would
be inefficient. Instead, we fix a histogram size for Q, binning error pairs. Q
represents a table of bins, each bin (ai, bj) counting the number of occurrences
of error pairs in its range. We reconstruct a conservative error efficiently from
this histogram.

At each node in the hierarchy, we store such a table Q of error pairs. We
define the table Q at node B as Q(ai, bj) = m, where m is the number of
points p ∈ B such that V aluel(p) ∈ [ai, ai+1) and V alueh(p) ∈ [bj , bj+1).
Each bin in the histogram stores the number of occurrences of error pairs
whose values fall within a range of values. Figure 2 shows how this table is
created for the lowest non-leaf node in the multiresolution hierarchy.

0.0
0.0

2.0

4.0

6.0

4.02.0 6.0
1.50.0

0.6

1.0 2.1 2.0

3.9

5.8

3.4

0

1

0 1

21

3

0

1

1.0 1.5 2.0

4.02.250.5

3.00.0 5.8

Fig. 2. Two levels in a quad-tree hierarchy. Data points (left) display low-resolution
V aluel(p) on top, and high-resolution V alueh(p) on the bottom, and the two values
together form an error pair. A 3 × 3 histogram (right) associated with the low-
resolution node stores the number of ocurrences of error pairs. We assume piecewise-
constant interpolation, with the data ranging in value in the interval [0.0, 6.0].

To compute the error at a given node B, we reference the table Q of
error pairs associated with that node. We use the form of the error given by
Equation 3 to generate our error formula as

errorRMS =
√

1
n

∑
i,j

(MaxError([ai, ai+1), [bj , bj+1)))2 ∗ Q(ai, bj) , (4)

where MaxError([ai, ai+1), [bj , bj+1)) is the largest possible error in color
that can occur in the intervals [ai, ai+1) and [bj , bj+1). We apply the transfer
function to compute the maximum and minimum colors for each interval. We
define MaxError as

MaxError([a, b), [c, d)) = max(Color([a, b)) ∪ Color([c, d))) (5)
−min(Color([a, b)) ∪ Color([c, d))) .

The variables a, b, c, and d represent values in the domain of the transfer
function. Here, Color([a, b)) returns a range of color values in the interval



Error Calculation for Volume Rendering 7

[a, b). Figure 3 illustrates MaxError. The transfer function is piecewise-linear.
Therefore, all extrema occur either at the endpoints of the intervals, or at data
points of the transfer function. We extract extreme values by sweeping through
the transfer function inside the intervals [ai, ai+1) and [bj, bj+1). The maximal
error is computed as the difference between the maximum color value and the
minimum color value. We scale the maximum error in a node by the maximum
distance inside the node to obtain a conservative estimate of the error. The
maximum distance in a node in a standard rectilinear grid is the diagonal
length

√
3.

0.0 2.0 4.0 6.0

256

128

0

192
156

110
122

70C
ol

or
(y

)

1.5

0.0
0.0

2.0

4.0

6.0

2.0 4.0 6.0

5.4

1

0 0

0

0

00

0

0

Fig. 3. Error pairs (left) are used to populate the histogram (middle). To reconstruct
the error associated with bin [0.0, 2.0) × [4.0, 6.0) we determine the maximally pos-
sible difference in those ranges in the transfer function (right), MaxError() = 122.
We assume piecewise-constant interpolation of the data.

The error formulation in Equation 6 is defined for piecewise-constant inter-
polation applied to a dataset. To maintain a conservative error estimate when
using trilinear interpolation, the histogram Q of a node B must be modified.
Q(ai, bj) represents the number of nodes Bi contained in B, where the mini-
mum function value is in the range ai, and the maximum function value is in
the range bj. To reconstruct the error, MaxError now returns the maximum
color difference in the range [min(ai, bj), max(ai, bj)]. When the dimension of
Q is N × 1, this method reduces to the one presented in [2]. For our results,
we have used this formulation of error.

The calculation of the maximum error of a bin is an expensive operation.
However, a major improvement can be made when each table Q has the same
range and size at every node. In this case, a single 2D table can be calculated
representing the maximum difference between colors for each bin in the his-
togram Q. Therefore, the (i, j)-th element holds the maximum color difference
for a bin (ai, bj) in table Q. This drastically reduces the amount of calculation
necessary for each node, since this only needs to be calculated once whenever
the transfer function is modified. The result is stored in a table for subsequent
look-ups.

Increasing histogram size improves the accuracy of the error estimation, as
it reduces the range of each bin, and therefore the maximum error associated
with that bin. Table 1 shows the space overhead associated with different his-



8 Attila Gyulassy, Lars Linsen, and Bernd Hamann

Histogram size 22 82 642 2562

323 0.012% 0.195% 12.500% 200.000%
643 0.002% 0.024% 1.560% 25.000%
1283 <0.001% 0.003% 0.195% 3.120%
2563 <0.001% <0.001% 0.024% 0.391%

Table 1. Increasing histogram size leads to larger memory overhead associated with
multiple block sizes. The numbers are the percentages of the total memory used to
store histograms.

togram sizes. The maximum acceptable histogram size at each node depends
on the size of the blocks, and also on data size. A large histogram can lead
to severe storage overhead. Indeed, for efficient estimation of the error, it is
important to keep the error estimation structure in memory. Therefore, the
size of the histogram must be balanced with performance considerations.

3.2 View-dependent Error

Another consideration in calculating error is visibility of a node. Two factors
contribute to visibility: projected solid angle and opacity.

Projected solid angle refers to the amount of screen space that a node and
its sub-hierarchy occupy when projected. When a node occupies less than a
pixel of screen space, its screen-space error is very small. Conversely, when
the screen space of a node is large, even smaller errors are noticed. Therefore,
a new view-dependent error function can be defined as

errornode = errorRMS · φ ,

where φ is the projected solid angle of the node. Since the actual value of the
projected solid angle is expensive to calculate, we approximate it by using the
distance d from the camera to the node, i.e.,

errornode = errorRMS · α · r2

d2
,

where r is the maximum radius of the node and α is a constant.
Opacity is difficult to calculate efficiently, especially since it relies on the

transfer function and on the viewing direction. The error methods discussed
so far are used to select the nodes that in the working set, needed for ren-
dering. To calculate opacity, a front-to-back calculation must take place to
eliminate nodes that are occluded. One possible way to perform this task,
without calculating the entire working set, is to process nodes front-to-back
and subdivide them in that order. Therefore, a node is only considered for
subdivision according to the previously defined error metric once all nodes in
front of it satisfy a particular error condition.



Error Calculation for Volume Rendering 9

Following this approach, only the nodes in the final working set are con-
sidered. Unfortunately, the size of this set is no longer bounded, as there is
no limit on the number of subdivision levels of nodes in the front. As a result,
the memory bound for the working set may be exceeded with a sub-optimal
selection of nodes. Due to the complexity involved in calculating opacity while
selecting a cut of the multiresolution representation, occlusion culling is usu-
ally employed only during rendering, once the cut has been selected. Guthe
and Straßer [2] used such a method to avoid rendering occluded blocks.

3.3 Cut Selection

Assuming that the error for each node is known, the overall procedure for
selecting nodes and rendering performs these steps:
Pre-processing:

1. Initialize multiresolution data structure.
2. Calculate histograms in bottom-up manner.

Runtime:

1. Initialize the cut with the top level node.
2. While space left in memory:

• Find node with largest error.
• Subdivide this node and add children to the cut.

3. Render the cut.

The greedy algorithm selects the node with the largest error, and subdi-
vides it. As a termination condition we either use the amount of free memory
left or a particular error threshold not to be exceeded. In either case, the al-
gorithm terminates, since space consumption increases and error decreases as
we refine the cut.

4 Multiresolution Representation

Our algorithm can be applied to any nested multiresolution representation,
i. e., a representation that satisfies the multiresolution analysis criteria pre-
sented by Rodler [10]. In particular, the multiresolution representation must
subdivide the entire data space, with nodes at each higher level in the rep-
resentation spatially bounding their child nodes. Furthermore, the accuracy
of the representation must not decrease as the cut is refined. Therefore, the
error of each child of a node must be smaller than or equal to the error at
that node.

There are many representations that satisfy these requirements. Some com-
monly used ones are octrees and wavelet-based representations. For simplicity,
our algorithm was implemented using an octree representation.While octrees



10 Attila Gyulassy, Lars Linsen, and Bernd Hamann

are attractive due to their simplicity, several studies have shown that wavelet-
based representations are efficient as well. In particular, when using wavelets,
it is possible to compress the original data, to alleviate some of the difficul-
ties in large dataset rendering. Haar wavelets are the most commonly used
wavelets. Park and Ihm [9] attained both compression and increased perfor-
mance by using that representation. Indeed, Rodler [10] presented several
more complicated wavelet transforms. However, the Haar wavelet transform
is the most appropriate method for most multiresolution techniques, due to
its simplicity and efficiency.

5 Rendering

Rendering of volumetric data is a well studied topic. Very large datasets, how-
ever, pose additional challenges. Levoy [7] implemented a scheme for interac-
tive raycasting. However, his method involves massively parallel rendering.
Still, the optimal performance for raycasting a 5123 dataset with 96 proces-
sors was less than two frames per second. Although CPU performance has
increased dramatically over recent years, straightforward raycasting of large
datasets is not practical for interactive visualization on PCs.

Some of the fastest techniques for rendering volumetric data on a stan-
dard PC utilize 3D texture hardware. LaMar et al. [5] showed how to improve
image quality by using object-aligned slices. Westermann [11] showed that it
is possible to use texture hardware for multiresolution representations. Guthe
and Straßer [2] attained about ten-frames-per-second performance for a 40GB
dataset, using their error estimation technique combined with texture hard-
ware. Therefore, once errors are calculated and a cut is determined, any of
the previous techniques could be used to render the data.

6 Results and Discussion

Our algorithm provides an improved method for estimating screen-space error
associated with levels in a multiresolution data representation. Our method
balances storage overhead, processing time, and quality of estimation. Using
this improved selection strategy, we pick a better cut through the multireso-
lution representation, meaning that the same-sized cut yields lower error.

In Section 3, we showed that the storage overhead for this method is
dependent on the size of the histograms used and the size of the dataset.
Therefore, we can balance speed of the algorithm with the memory footprint.

Figure 4 shows that, given an error threshold, increasing the histogram size
estimates the error of a cut with higher accuracy. In this case, we wish to find
the smallest cut such that the error threshold is satisfied. For a “nice” dataset,
i.e., a data set with smoothly changing function values, the error approxima-
tion improves with size of the histogram in a reasonable manner. However,



Error Calculation for Volume Rendering 11

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

Error %

#
 o

f 
N

o
d

e
s 256x256

64x64

8x8

8x1 (deviation)

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

Error %

#
 o

f 
N

o
d

e
s 256x256

64x64

8x8

8x1 (deviation)

Fig. 4. Increasing error tolerance decreases the size of the cut needed to satisfy
the error condition. Error is measured as percentage of the maximum error, which
is the error associated with the coarsest resolution. “8x1(deviation)” refers to the
algorithm presented by Guthe and Straßer [2]. Left: Application to “nice” artificial
dataset consisting of distances to points distributed in the domain. Right: Applica-
tion to same dataset with some sparse noise inserted.



12 Attila Gyulassy, Lars Linsen, and Bernd Hamann

with sparse noise inserted into the dataset, we see a substantial improvement
with increased histogram size. One advantage of our method is that small
perturbations in the dataset do not significantly increase the estimated error,
in contrast to the algorithm presented in Guthe and Straßer [2].

We performed our analysis for the human skull dataset, which has size
2563 and integer data values in the range [0, 255]. This dataset has both high-
frequency and low-frequency regions, and therefore is suitable for analysis pur-
poses. Results were generated with a 2GHz Pentium 4 processor with 512Mb
of main memory. The dataset was divided into 323 blocks and rendered using a
straightforward raycasting method. Recalculation of the error when changing
the transfer function required less than one milli-second. The recalculation of
the error does not scale with dataset size, it scales only only with the size of
the blocks and the size of the cut. Therefore, interactive modification of the
transfer function is possible.

As expected, increasing the size of the cut improves the accuracy of the
final image. As more data is used, the error decreases. However, the real benefit
of this selection strategy is this: When the cut size is held constant, using a
larger histogram reduces the final error by selecting a better cut. Figure 5
shows the inverse relationship between histogram size and screen-space error.

7 Conclusions and Future Work

We have presented a cut selection strategy for multiresolution direct volume
rendering of large data that supports interactive modification of a trans-
fer function. We have improved previous methods [2, 6], since our method
can deal with any scalar-valued dataset, using an improved error estimation
scheme. Our histogram approach is memory-efficient and can be used in any
multiresolution direct volume rendering method. An important property of
our approach is that the size of a histogram determines accuracy of rendering
results. Therefore, we can balance computational and memory costs with qual-
ity. Although the histograms we showed in the previous section are square, it
is possible to attain good results with non-square histograms. Our results sug-
gest that it is possible to tune the histogram size automatically for a particular
architecture and dataset size.

We plan to extend this algorithm to calculate errors for time-varying vol-
umetric data. Another possible future research area is error calculation for
vector fields.

Acknowledgments

This work was supported by the National Science Foundation under con-
tract ACI 9624034 (CAREER Award), through the Large Scientific and Soft-
ware Data Set Visualization (LSSDSV) program under contract ACI 9982251,



Error Calculation for Volume Rendering 13

through the National Partnership for Advanced Computational Infrastructure
(NPACI) and a large Information Technology Research (ITR) grant; and the
National Institutes of Health under contract P20 MH60975-06A2, funded by
the National Institute of Mental Health and the National Science Founda-
tion. We thank the members of the Visualization and Computer Graphics
Research Group at the Institute for Data Analysis and Visualization (IDAV)
at the University of California, Davis.

References

1. Imma Boada, Isabel Navazo, and Roberto Scopigno. Multiresolution volume
visualization with a texture-based octree. The Visual Computer, 17(3):185–197,
2001.

2. Stefan Guthe and Wolfgang Straßer. Advanced Techniques for High-Quality
Multi-Resolution Volume Rendering. Computers & Graphics, 28(1):51–58,
February 2004.

3. Stefan Guthe, Michael Wand, Julius Gonser, and Wolfgang Straßer. Interac-
tive rendering of large volume data sets. In Proceedings of the conference on
Visualization ’02, pages 53–60. IEEE Computer Society, 2002.

4. Eric LaMar, Bernd Hamann, and Kenneth I. Joy. Multiresolution techniques for
interactive texture-based volume visualization. In VIS ’99: Proceedings of the
conference on Visualization ’99, pages 355–361, Los Alamitos, CA, USA, 1999.
IEEE Computer Society Press.

5. Eric C. LaMar, Mark A. Duchaineau, Bernd Hamann, and Kenneth I. Joy. Mul-
tiresolution techniques for interactive texturing-based rendering of arbitrarily
oriented cutting-planes. In W.C. de Leeuw and R. Van Liere, editors, Proceed-
ings of VisSym 00 The Joint Eurographics and IEEE TCVG Conference on
Visualization, pages 105–114. Springer-Verlag, 2000.

6. Eric C. LaMar, Bernd Hamann, and Kenneth I. Joy. Efficient error calculation
for multiresolution texture-based volume visualization. In Gerald Farin, Bernd
Hamann, and Hans Hagen, editors, Hierachical and Geometrical Methods in Sci-
entific Visualization, pages 51–62, Heidelberg, Germany, 2003. Springer-Verlag.

7. Marc Levoy. Display of surfaces from volume data. IEEE Comput. Graph. Appl.,
8(3):29–37, 1988.

8. Ky Giang Nguyen and Dietmar Saupe. Rapid high quality compression of vol-
ume data for visualization. Computer Graphics Forum, 20(3):C49–C56, Sept
2001.

9. Sanghun Park and Insung Ihm. Wavelet-based 3d compression scheme for in-
teractive visualization of very large volume data. Computer Graphics Forum,
18(1), March 1999.

10. Flemming Friche Rodler. Wavelet based 3d compression with fast random access
for very large volume data. In Proceedings of the 7th Pacific Conference on
Computer Graphics and Applications, page 108. IEEE Computer Society, 1999.

11. Rüdiger Westermann. A multiresolution framework for volume rendering. In
Arie Kaufman and Wolfgang Krüger, editors, 1994 Symposium on Volume Vi-
sualization, pages 51–58, 1994.



14 Attila Gyulassy, Lars Linsen, and Bernd Hamann

(a) (b)

(c) (d)

Fig. 5. (a) Dataset at full resolution. Images (b), (c) and (d) show a cut of 63 nodes
selected by our strategy using histogram sizes of 642, 162, and 42, respectively.

Histogram size 42 162 642 Guthe and Straßer [2]

RMS error 6.20 5.71 4.68 6.29

Table 2. RMS errors associated with image generated by our algorithm for each
histogram size. The last column is the RMS error of the image generated by Guthe
and Straßer [2] using eight bins.


