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ABSTRACT

Grid generation is concerned with discretizing surfaces and volumes in 3D
space. The original surfaces defining a geometry might be given as a finite set
of triangles/quadrilaterals (discrete form) or as parametrically defined surfaces
(analytical form). A new interactive technique is presented for computing a B-
spline approximation for geometries given in either form. The method requires
user interaction for the selection of subsets of the given surfaces to be approxi-
mated. Once all subsets of surfaces have been approximated by B-spline surfaces,
these are united yielding an overall C? continuous approximation.

1. INTRODUCTION

3

Grid generation is concernediwith discretizing surfaces and volumes for
computational field simulation (CFS). A 3D geometry might be given in dis-
crete form (e.g., triangles and/or quadrilaterals) or parametric form (e.g.,
Bézier, B-spline, and Non-Uniform Rational B-spline (NURBS) surfaces).
Grid generation methods construct grid points lying on the surfaces as well
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as in voluines surrounding the surfaces defining a geometry. Unfortunately,
the original surface description often contains anomalies, such as discon-
tinuities between surface patches (“gaps”) or intersections among surface
patches. This paper presents an interactive technique for the correction of
such anomalies. The grid generation system (“National Grid Project”) cur-
rently being developed at the NSF Engineering Research Center for CFS
at Mississippi State University uses the method presented.

The fundamental issues in grid generation are described in [1, 2]. Recent
advances in grid generation are presented in [3]. The numerical methods re-
quired for the technique presented are primarily discussed in the geometric
modeling and spline literature. References for these two areas include [4-9).
Most of the notations and algorithins used, in particular when dealing with
B-splines, can be found in (4, 6.

The overall approach for creating a B-spline approximation of an arbi-
trary 3D geometry can be divided into these steps:

) Place a block in space.
) Determine the subsct of surfaces lying partly inside the block.
(iii) Compute a surface triangulation for this subset.

) Clip the triangulation against the six faces of the block.

) Derive approximation conditions by intersecting the triangulation

with a family of lines.
(vi) Map these intersections onto the parametric surfaces if the parametric
definition is known.

(vii) If intersections can not be found for some lines, compute “artifi-
cial” conditions.

(viii) Use the points derived in (v), (vi), and (vii) to compute a local ap-
proximant.

(ix) Compute the error of the approximation.

(x) If the error is too large, increase the number of lines and go to (v).
(xi) If multiple surfaces must be approximated, repeat the steps (i)-(x).
(xii) Adjust all B-spline approximants in order to achieve an overall B

approximation.

These steps are described in detail in the following scctions.

2. SURFACE SELECTION

The selection of subsets of all given surfaces is based on interactively
placing blocks (hexahedra with “curved faces”) around parts of a given ge-
ometry. These hexahedra are constructed as follows: First, the user spec-
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ifies four points on the geometry. These four points define a quadrilateral
in space. Second, two offset quadrilaterals are computed, one above and
one below the user-defined quadrilateral. The offset distance is related to
the edge lengths of the user-defined quadrilateral. The two offset surfaces
define a block in space whose four side faces are obtained by connecting
corresponding point pairs on the upper and lower offset surface. Such a
block can be defined formally as follows:

DEFINITION 2.1. A block consists of eight vertices

Viik = (Zi ki sk tiabh Lk e8I} (2.1)
and twelve edges

Vokvigk ke {01}, (2.2)
Vi0.kVi 1k, i,k € {0,1}, and
Vi 0Vij L i, 1€ {(), 1}.

The six faces of the block are given by the six quadrilaterals defined by the
six ordered (indicated by “<") point sets

{v0,0,0, v0,0,1, Vo,1,1, Vo,1,0 | Vo,0,0 < Vo,0,1 < Vo,1,1 < vo,1,0}
{v100,V1,1,0,V1,1,1, V1,01 | V1,00 < V10 < Vi < vV1,01}
{v0,0,0, v1,0,0, V1,0,1» V0,0,1 | V0,00 < V1,00 < V1,01 < v0,0.1}
{Vo,l,o,V0.1.1,V1,1,1,V1,1.0 I Vo100 < Yori S ¥ < V1,1.0},
{v0,0,0,v0,1,00 V1,1,0, V1,0,0 |{v0,0,0 < Vo,1,0 < V1,10 < V1,00} and

{v0,01,V1,0,1, V11,1, Vo,1,1 |'Vo,01 < Vo1 < Vi < Vo) (2.3)

The coordinate extrema of the 3D bounding box containing the block are
denoted by Xmin = min{z; i}, Xmax = max{z;jx}, Ymin = min{v; .},
Yinax =MER{ 14 5k i Zinin = minfziza), Zmax = max{2; ;i)

The local approximation procedure is restricted to the interior of a
block. Therefore, it must be defined when a point lies in the interior of
a block. If the original surfaces are Bézier, B-spline, or NURDBS surfaces,
one can take advantage of their convex hull properties. These three surface
types can contain points lying in the interior of a block only if the bounding
box of their control nets and the bounding box of the block have a nonempty
intersection. Let {d;; = (dflj,di’_j,d{"j) b=, . o, 3=0,..,8) denote
the set of control points of a particular parametric surface satisfying the
convex hull property, and let the coordinate extrema of a 3D bounding box

containing all these control points be denoted by z,,, = min{df, j},:z:,,m,c
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= max{d{,;}, Ymin = win{dy  }, Ymax = max{dy ;}, zmin = min{d;;}, and
Zuax = max{df ,}.

A unccessary condition for a surface to lie (partly) in the interior of a
block is a nonempty intersection of the bounding box of the block and the
bounding box of the surface’s control points. This can be tested before
any clipping of surfaces against the faces of a block is performed. Having
determined the set of parametric surfaces that might lie (partly) in the in-
terior of a block, these surfaces are evaluated for the generation of a surface
triangulation. A criterion is defined next to decide whether a triangle in
this triangulation has a nonempty intersection with the interior of a block.

DEFINITION 2.2. Let x,,¢ = 1,...,4, be the (ordered) set of points
defining a block face as defined in Definition 2.1 A point g = (o, Yo, Z20)
is on the negative side of the fuce, it

(i) (pr23(zo,v0,20) O and  py34(zo,v0,20) <0) or

(ii) (p1.2,4(x0,v0,20) <0 and p2.3.4(0, Y0, 20) < 0) (2.4)

holds. The plane equation for the (oriented) plane containing the three
points x;, x;, and X is pi j k(T,,2) = aijk(z—z:)+bi ik (y—vi) +cijk(z—
z), and 0, jx = (@ijk, ik, Cijk) is the outward normal vector defined as
n; k= (xj — xi) X (xk — x;). If a point xq is on the negative sides of all
six block faces, it is called an interior block point.

THEOREM 2.1. A triangle with vertices vy, v, and v3 cannot contain
an interior block point if all its vertices are on the negative side of one
block face (all three vertices satisfying (i) or all the three vertices satisfying
(ii) in Definition 2.2) and are on the nonnegative side of the opposite block
face (all three vertices violating (i) and all three vertices violating (ii) in
Definition 2.2).

ProoF. Each point x in the interior (or on one of the edges) of a
triangle can be written as a convex combination x = Zle u, vy, where
Z?-:l u, = 1,u, > 0,7 = 1,2,3, and the intersection of the two half-spaces
implied by the pairs of plane equations is convex. Therefore, x lies on the
negative side of the same block face and on the nonnegative side of the
opposite block face. 0

‘Theorem 2.1 uses a generalization of a 3D bounding box (“cuboid”)
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to a hexahedron having quadrilaterals as its faces. This theorem is used
for the reduction of the number of triangles potentially containing interior
block points. All triangles violating the condition stated in Theorem 2.1
are kept and are used for the creation of the local surface approximation.

3. CONDITIONS FOR THE APPROXIMATION

Once the set of all surface triangles lying (partly) in the interior of a
block is known, the associated surfaces are locally approximated using a
single B-spline surface. In order to determine the control points for this
B-spline approximant, one computes a finite point set on the surfaces lying
(partly) in the interior of the block and uses these points as approximation
conditions. T'hese points are obtained by intersecting lines with the surface
triangulation in the interior of a block. The lines themselves are defined in
terms of pairs of points lying on the “bottom” and “top” face of the block.
This procedure is described next.

Two bilinearly blended surfa!ces are implied by the two sets of four block
face vertices {v; o | 1,7 € {0;1}} (“bottom”) and {v;;.|i,j € {0,1}}
(“top”). The two bilinearly blended surfaces are

sk(u,v) = (1 —u)(1 —v)voox +u(l —v)viokr + (1 —u)uvek
+uvvyx w,v € [0,1], k € {0,1}. (3.1)

Evaluating sy and s, at parameter values (uy,vy), uy = I/M,I = 0,
...,M,and vy = J/N, J =0,...,N, yields point pairs defining the lines

I, 5 = si(ur,vy) + t(so(ur,vy) —si(ur,vy)),;
tER;". a0, MS J=0..%X " 3

These lines are used to obtain approximation conditions.
The set of triangles lying (partly) in the interior of a block is denoted by

T = {(v‘l = (:l;'i,yi,z‘l),v.’_Z = (:z:lg,yé,zé),
el 820 =1. Ne} (3.3)

Each triangle is contained in a plane given by
pi(z,y,2) =a'(z —x)) + V' (y—w1) +c'(2—2) =0,  (3.4)

where n* = (a*, b*, ¢') is the plane normal vector n* = (v} —vi) x (v —vi).
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Each line 1; 4 is intersected with cach plane p'. When an intersection is
found, it is determined whether the intersection points y' is in the interior
(or on the boundary ) of some triangle (contained in plane p') by computing
the value

(axb)4 (bxc)+ (cxa) (35)
w = arccos [ ———— | + arccos | ———— arceos [ ——— |, :
llall||b]| bl lcllllall

wherea = vi—y*, b = vi—y', ¢ = v{—y', and |||| indicates the Euclidean
norm. If w = 27 the intersection point y* is a point in the interior (or on
the boundary) of this particular triangle, otherwise, it is outside. Special
care is required when the line 1 ; is parallel to or contained in a plane.

A line 1; ; might not intersect any triangle at all, might intersect several
triangles, or might be contained in the plane containing a triangle. Among
all intersections in the interior (or on the boundary) of triangles, one selects
the intersection that is closest to s;(u;,vy), closest to the “top” face of
the block. If a line is contained in the plane defined by a triangle, one
computes where the line 1 5 intersects the triangle’s edges and sclects the
point closest to s)(uy,vy). The selected intersection point is denoted by
X7y as in Figure 1.

Some lines might not intersect any triangles. In this case, “artificial”
approximation conditions are derived using the following approach: Each
intersection point x; ; that has been found can be written as a linear
combination of the two points sg(uy,vy) and sy (uy,vy), ie.

x5 = (1 =ty g)si(ur,vy) + t; yso(ur,vy), tra-€'R. (3.6)

A bivariate approximation technique can be used to compute parameter
values t; ; for lines without intersection points.

Hardy’s reciprocal multiquadric is used to solve this problem (see [10]).
The bivariate interpolation conditions are

t]'J :t('UJ,'UJ) s Z Z (.',_J(R‘*‘('U] —IL;)2+('U‘} ““Uj)Q)*'T,
j€{0,...,N} i€{0,...,M}
el ML o dai{o N, (3.7)

where one uses values ty j,uy, u;, vy, and v; for which an intersection point
x; 4 is known. For an equidistant parametrization (i.e., ;41 —u; = 6, and
Vi1 — v = 6,), the value R = 0.5(8, + 6,) generally yields good results.
Using the value v = 0.001 in Hardy's reciprocal multiquadric works well in
most practical cases tested.

The coefficients ¢, ; appearing in (3.7) are computed by solving the im-
plied linear system of equations. Additional parameter values t; ; can be
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‘top" Y11

Y0,0,0 “borrom”

I'1G. 1. Obtaining approximation conditions.

computed by simply evaluating (3.7) for (u,v) = (us,vy). The bivariate
interpolation problem can be made more efficient and localized by consid-
ering only a certain number of known tr g values “around” a line without
intersection points. The final approximation condition for a line ;5 is
obtained by evaluating (3.6) for the additionally computed values t;y. By
following this sequence for deriving approximation conditions, one guaran-
tees (M +1)(N +1) approximation conditions. They are used to determine
the B-spline approximation for all the surfaces lying (partly) in a block.

Each intersection point x; ; lying in the interior (or on the boundary)
of some triangle formed by three surface vertices is mapped onto the associ-
ated surface, provided its parametric definition is known. This is achieved
by expressing the intersection point in terms of barycentric coordinates, us-
ing these barycentric coordinates to get a parameter tuple in the surface’s
domain, and computing a point on the surface. Writing the intersection
point x; ; as

X[,J = UV + Upvy + UzVvs, (3.8)

where vy, va, and vj are the vertices of the triangle containing x;, y, one
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u X

F1G, 20 Computing point on surface using barycentric coordinates,

computes the parameter tuple

(TI,U) = ﬁl(‘lt[,'t)l) + Hg(ug, l}-_)) +- U.;i(u.;s, U-‘j), (39)

where (uk,vk), k = 1,2,3, 1s the parameter tuple of vertex vi. The surface
s containing vi,k = 1,2,3, is evaluated at (@,7), and x; s is replaced
by s(@, ) using it as the final approximation condition. This principle is
illustrated in Figure 2.

Obviously, the set of surface points generated in this process depends on
the orientation of the block. This is due to the fact that the surface points
are obtained by intersecting line segments defined by corresponding point
pairs on the “top” and “bottom” face of the block with the given geometry.
changing the orientation of the block leads to different line segments and
therefore to a different set of intersections with the geometry.

4. B-SPLINE APPROXIMATION

The approximation conditions derived in the previous steps are used
to construct a locally approximating B-spline surface. The definition of a
B-spline surface is as follows:
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DEFINITION 4.1. A B-spline surface s(u,v) is a piecewise polynomial
surface, denoted by

s(u,v) = DD di;iNik(u)N;i(v),
j=0 i=

u € [uk—laum-i-l]a v E ['Ut—hvn-i-l]) (41)
and defined by

two orders k and [,

a set of 3D control points, {doo,...,dmn},

a set of real v knots, {ug, ..., Umpr i S ujpr,0=0,..., (m+k-1)},
a set of real v knots, {vo,...,vupr fvj Sv4,i=0,...,(n+1 - 1)},
B-spline basis functions N; x(u), u € (ui, w4k}, = 0,...,m, where

e o & @ o

w— 1, Uy — U
Nix(u) = —————Nig-1(u) + ———Nig1 61 (u),
Ujphk-1 — W Uik — U]
1 if u; <u<ujq ,
Nia(u) = : e . i=000, 0, (4.2)
0, otherwise,

e and B-spline basis functions N;;(v),v € [vj,vj},J = 0,...,n, de-
fined analogously to N; x(u).

The curves co(v) = s(ux_1,v),€1(v) = $(Um+1,v),v € [V—1,Vn41), and
So(u) = s(u,v-1) and €(u) = s(u,vny1),u € [uk—1,Um+1), are called
boundary curves, and the points xg0 = $(uk-1,U=1),%1,0 = $(Um+1,Vi-1),
x0,1 = S(Uk—1,Un41), and X313 = $(Um41,Uny1) are called corner points of
the B-spline surface s(u,v).

Using this definition, one easily derives the system of linear equations
for interpolating the set of points {x; |/ =0,...,M,J =0,...,N}. The
system is given by

xrg = sy, o) =Y Y di;Nox(r)Nju(va),
j=0i=0
L. M &F=,. N (4.3)
Using a piecewise bicubic approach (k = [ = 4), and interpolating at

the knots, i.e., 4y = ug—147 = ua+r,d =0,...,M, and ¥) = Y14y =
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vsyg,J =0,..., N, the system of equations becomes

N4+2M+2
Xf,0 = S(ugyq,vay,) = d, jNia(user), Ny a(vss ),
=0 i=0
£ 0 o Je0 N (4.4)

One can use an cquidistant knot distribution, i.c., u, = /(M +6), i = 0,
o (M +6), and v = 3/ (N+6), 5 =0,...,(N +6), or a knot distribution
considering the Euclidean distances of the points to be interpolated as in
[Figure 3.

According to [6], ouc solves the (underdetermined) system (4.4) by
first interpolating (N + 1) rows of points given by the sets $Hy =
I=0,...,M}Y , using certain end conditions (.., natural, clanmped, or
Bessel). T'he results of this step are (N + 1) rows of “intermediate” control
points, denoted by {d, ;| i=0,..., (M +2)}_,. Second, one interpolates
the (M + 3) columns of “internediate” control points, given by the sets
i =d 1 =0 . N M A2 This results in the set of the desired control
points for a tensor product B-spline surface, {d, ;| i =0,... (M +2),j =

0. (N+2))

5. REPRESENTING THE TOPOLOGY OF
THE OVERALL APPROXIMATION

During the process of constructing the approximating B-spline surfaces,
one must determine their topological connectivities and store them. For all
following processing steps, it is essential to know which boundary curves of
a particular B-spline surface are shared by which other B-spline surfaces.
Since all the surfaces created are topologically four-sided entities, they
can have a maximum of four neighbors. Our application is restricted to
particular geometries, which are defined next.

DEFINITION 5.1, A connected, knot-to-knot B-spline surface geome-
try is a finite sct of at lcast two B-spline surfaces satisfying the following
conditions:

(i) Each boundary curve of a B-spline surface is shared by at most two
surfaces (no bifurcations).

(i) A corner point of a B-spline surface can be shared by any number of
surfaces.
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(iii) Each surface in the set of all B-spline surfaces has at least one point
along one of its boundary curves in common with another surface
(connectivity).

(iv) If a corner point of a B-spline surface is shared by a second B-spline
surface, this point is also a corner point of the second surface (knot-
to-knot property).

In grid "Ull(.‘!'c’ltiull, such geometries are referred to as “full-face inter-
o
face” gCOlHUt]'i(fS.

DerFINITION 5.2. Let s(u,v) be a B-spline surface in a connected,
knot-to-knot B-spline surface geometry. The left newghbor of s(u,v) is
the B-spline surface sharing the curve s(ug-y,v), the right neighbor is the
B-spline surface sharing the curve s(u,,4+,,v) the bottom neighbor is the
B-spline surface sharing the curve s(u,v;—), and the top neighbor is the
B-spline surface sharing the curve s(u, v, 41).

For each local B-spline approximant, at most four neighbors are identi-
fied and stored.

6. ERROR ESTIMATION

In order to evaluate the quality of the approximation, one needs an error
measure determining the difference between the subset of approximated
surfaces and a single approximating B-spline surface. A discrete measure
is used for the computation of the difference between surfaces. Assuming
that one knows the exact definition (order, knots, and control points) of
the subset of surfaces being approximated, one can compute their distances
to the approximating B-spline surface.

First, points on the approximating B-spline surface s*PP(u,v) are gen-
erated. More specifically, one computes a finite point set P = {x; =
s*P(uj,v;) = (z;,¥5,2;5) | 3 = 1,..., K}. Since one knows the triangula-
tion of the subset of surfaces being approximated, one can determine the
shortest distance between a point x; and the triangles in the triangulation.
The distance between x; and a triangle with vertices v}, v}, and v} is de-
fined as Zi___l lIx; — vi|l. The triangle for which this expression is minimal
is identified. Its vertices are denoted by a, b, and c¢. The plane containing
this triangle is given by

Az + By+Cz+ D =0, (6.1)
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where (A, B, C) is the unit normal vector n of the triangle,

(b-a)x (c—a)

nEtaA B = - 6.2

B = e e x (e-al =

and D = —(n-a). The (signed) perpendicular distance d; between the
plane (6.1) and the point x; is given by

dj =nxx;+D. (6.3)

Since d; is the distance of the point y; in a plane (6.1) having shortest
distance to x;, this point is given by

)lj = x; —d,n. (6.4)
The point y; is expressed in terms of barycentric coordinates,
y; =uwa+ ipb + usc, (65)

and the triple (@, @2, u3) is used to compute a point on the corresponding
parametric surface. Knowing the parameter tuples (u;,v;), (u2,v2), and
(uz,v3) associated with the vertices a, b, and ¢, one computes the tuple

(ﬁ, ’l_)) = ﬁl(ul,vl) + ft;g('itg, ’UQ) -} 'ﬂg(u;;,vg) (6.6)

and uses it for the generation of the point s; = s(%,?) lying on the same
original surface as the vertices a, b, and c¢. Therefore, the (approximate)
distance D; between the point x; and s;, is given by

(6.7)

(6.8)

and it is used as a measure for the distance between the approximating
B-spline surface and the subset of approximated surfaces.

If the error E exceeds a prescribed tolerance, the number of approxi-
mation conditions used in the approximation is increased until the error
is smaller than the tolerance. It is necessary to use the same number of
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approximation conditions for the computation of neighboring B-spline sur-
faces. It is essential that cach pair of neighbors has (M + 3)(V + 3) control
points (sce (4.4)). This is required for the adjustment of the approximating
B-spline surfaces’ control points to define an overall C? approximation.

7. UNITING B-SPLINE SURFACES

The process of approximating a subset of surfaces by a single B-spline
surface has been explained in the previous scctions.  In the context of
approximating an entire aircraft, car body, or ship hull, it is necessary
to compute several local B-spline approximants. Once computed, they
must be adjusted such that cach pair of neighbor B-spline surfaces satisfies
coutinuity conditions along the shared boundary curve. Furthermore, it
must be taken care of continuity conditions at surface corner points where
multiple B-spline surfaces come together.

Considering only connected, knot-to-knot B-spline surface geometries
(Definition 5.1), a geometry is constructed such that neighbor B-spline
surfaces satisfy certain continuity conditions along their connnon boundary
curve. In the following, it is described how to adjust the control information
(control points and knots) of piecewise bicubic B-spline surfaces (k=l=4)
in order to achieve C? continuity. The principle can casily be generalized
to higher-order continuity and surfaces of arbitrary order.

i

THEOREM 7.1, Two B-spline surfaces s(u,v) = 3 7_¢ 3 /2o d, ]YM
(W)N;a(v), u € [us, tngt], v € [v3,v041), and 5(T, ) = 3o 32120 duj
Ni4 (@)N;4(0), @ € |3, Gng1], D € [03,Un4a], are C? continuous along
U = Upnyy (@ = @3), if their control points and knots satisfy the follow-
g conditions:

dm_2+[,j = dl.j: IZ(),...,Q, '-=U,...,ll,
Bl -ds1 = O], Foilb .0, and
A‘Uj = A’Dj, s =00 ., ('J'l e 3), (71)

where Au; = w4 — u; and Avy = vj4) — V5.
PROOF. Se:z (5, 6]. 0
This theorem is the basis for adjusting the control points and knots

for pairs of B-spline surfaces that must be C* continuous along a com-
mon boundary curve. Considering connected, knot-to-knot B-spline sur-
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face geometries implies that any number of B-spline surfaces can share a
common surface corner point. It is necessary to ensure continuity at such
common surface corner points as well. It turns out that it is possible to sat-
isfy this additional condition during the process of enforcing C? continuity
along common boundary curves. It is also possible to enforce continuity
along all shared surface boundary curves in a first and continuity at all
shared surface corner points in a second processing step.

The algorithm for the adjustment of control information is straight-
forward. Each control point d; ; of each B-spline surface is assigned an
“adjustment counter” ¢;; indicating how many control points have been
averaged for its computation. Initially, these counters are set to “1” for
all control points of all B-spline surfaces. The following pseudo-code rep-
resents the algorithm used for adjusting control points and knots in order
to obtain a pair of surfaces that is C? continuous along a shared bound-
ary curve. It must be mentioned that all surfaces must be cubic B-spline
surfaces having at least six rows and six columns of control points.

ALGORITHM 1.  Adjusting control points and knots.

Input: Two cubic B-spline surfaces (control points and knots),
s(u,v) and §(a, 0)

Output: Two adjusted cubic B-spline surfaces (control points and
knots),

C? continuous along common boundary curve
c(v) = €y(0) (see Definition 4.1)

/* Adjusting control points */
dm-2+1,j = (em-241,3m-2+1j + €154 ;) /(Cm-2+1,j + €15);

(E=01,2" 530 .. 5
dIJ = dm—-‘)+1]y (.[ = 0,1,2, ]: 0,...,71)
Cm—2+41,5 = Cm-2+1,j +C4J, (120,1,2, j:O,...,n)
1,5 = Cm-2%1} (=012 3=0:...n)

/* Adjusting knots */

61 = (Aup—241 + Aly)/2; =05
Um—-241 = Upm-2 + Zi;é or; (=1, > )
ﬁ12ﬁ0+2,{—é T (]:1:"':6)
€; = (Avj + Av;)/2; (1=0,...,(n+3))
v; = (vo + Ug)/2 + ZJ_HO 7% (1=0,...,(n+4))
U; = vj; (1=0,...,(n+4))
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REMARK. In the implementation, din-241,, and (—l,r.}' represent point-
ers to the corresponding control point coordinate vectors. These pointers
must be updated throughout the algorithm to ensure C'? continuity at com-
mon surface corner points.

This algorithm averages control points along boundary curves and the
lengths of knot intervals at the ends of parameter domains. In order to
be applicable to all four boundary curves of a surface, the control points
and knots used in the adjustment must be selected in accordance with the
particular boundary curve. The scheme applies to any number of surfaces
sharing a common corner point. Figure 4, shows the case of three surfaces
sharing a common corner point. The control point of surface sy are denoted
by dﬁj.

‘The adjustment algorithm ensures C'* continuity at each surface corner
point. B-spline control points “around” a common surface corner point
are the average of the control points of all the B-spline surfaces coming
together at the common corner point.

8. EXAMPLES

Figure 5 shows an approximation for two intersecting surfaces. The
original surfaces are shaded darker than the approximating surface.

Figure 6 shows a real-world car body configuration containing both
“gaps” and intersecting surfaces. The original geometry is shown in the
top portion of the figure and the continuous approximation is shown in the
bottom portion.

9. CONCLUSIONS

An interactive technique for approximating surfaces by a set of B-spline
surfaces has been described. The approximation process is semi-automatic
in the sense that the user still has to specify subsets of surfaces by picking
four appropriate surface points. Once these subsets have been determined,
they are approximated without any further user interaction. Having cre-
ated all approximating B-spline surfaces, C* continuity is automatically
enforced along all surface boundary curves and at all surface corner points.

This approximation strategy has been designed for the particular needs
of grid generation. Given the CAD definition of a 3D geometry, the set of
surfaces defining the geometry might contain anomalies, such as discontinu-
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16, 6. Approximation of car body (top: original, bottom, approximation.)

Thanks go to all the memnbers on the National Gred Project team, in partic-
ular to the people who have vmplemented and tested the algorithm, Ming-
Laing Chen, J. Adam Guaither, Brian A. Jean, Shekhar Mahadevan, Kelly
L. Parmley, and Po-Yu Tsai. John F. Dannenhoffer 111, C. Wayne Mastin,
Bharat K. Soni, Joe F. Thompson, and Nigel P. Weatherill have con-
tributed significantly to this paper. This is gratefully acknowledged.
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I71G. 5. Approximation of two intersecting surfaces

itics along boundary curves of two patches or surface-surface intersections.
In order to create a valid 3D grid around such surfaces, it is necessary
Lo remove these anomalies from the geometry definition. The approach
discussed in this paper has been developed for this purpose.

Further rescarch will be concerned with automatically identifying the
subsects of surfaces to be approximated, ice., the user will no longer have
to interactively specify these subsets. Another issue that will be addressed
is the problem of dealing with nonconvex surfaces, which might not be
approximated properly when using the current technique. This is due to
the fact that many line-surface intersections can be found in the process of
deriving the approximation conditions (see Section 3). The approximating
B-spline surfaces are internally stored as NURBS surfaces. It will be inves-
tigated whether the weights in the NURBS representation can be used for
the reduction of the approximation error (see Section 6).

This research was supported by the National Grid Project consortium.
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