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Abstract

A method for the approximation of the three principal curvatures at points on a discretized,
triangulated 3D manifold in 4D space (referred to as 3-surface) is presented. The approximation
scheme is based on the fact that a parametric 3-surface can locally be approximated by the graph
of a trivariate function. Using a local coordinate system, a least square polynomial approximation
is constructed for the estimation of the principal curvatures at each 3-surface point. Curvature is
extremely useful for the analysis of qualitative characteristics of surfaces. The technique presented
is an example of extending existing surface interrogation methods to multivariate data. Such a
generalization is valuable for scientific visualization.

Keywords: Approximation; Curvature; Differentiable manifold; Gauss—Weingarten map; Least square
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1. Introduction

The theory of parametric surfaces can be generalized to parametric 3D manifolds
(3-manifolds) in 4D space, which are referred to as 3-surfaces in the following. The
notation

x(u) = (x(u,v,w), y(u,v,w), z(u,v,w),a(u,v,w)) (1)

is used for 3-surfaces. The graph of a trivariate function f is a special 3-surface, since
its parametrization is given by

x(u) = (u,v,w, f(u,v,w)). (2)
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A 3-surface can locally be approximated by the graph of a trivariate function. This fact
is used for the approximation of the three principal curvatures at points (x;, yi, Zi, ;)
on a discretized, triangulated 3-surface.

Curvature is essential for understanding qualitative properties of curves, surfaces, and
3-surfaces (see (Farin, 1992)). Quality interrogation of parametric surfaces used in car
body and ship hull design makes extensive use of curvature plots. The curvature of a
3-surface is rendered in its 3D parameter space by slicing in u-, v-, and w-directions and
coloring the slicing planes according to curvature. Other visualization techniques for 3D
data are discussed in (Hagen et al., 1993) and (Nielson and Hamann, 1990). Curvature
plots are also used for the analysis of bivariate/trivariate scattered data interpolants (see
(Nielson et al., 1991)).

This paper presents a method for the approximation of principal curvatures at 3-surface
points. Normal vectors must be known at each 3-surface point for the approximation.
Based on the triangulation and the normal vectors, local least square approximants are
constructed. These are differentiated, and their graphs’ curvatures are used as curvature
estimates at the 3-surface points. The estimation of a normal vector at a point on a
triangulated 3-surface is based on averaging the normals of tetrahedra sharing that point.
This is analogous to the approximation of a normal at a point in a triangular surface
mesh by averaging the normals of triangles surrounding the point. Normal vectors at
points on the graph of a trivariate function f are given by the function’s gradient. The
gradient approximation schemes discussed in (Stead, 1984) for bivariate data can be
generalized to trivariate data. A gradient estimation scheme that works particularly well
for structured, rectilinear data is described in (Zucker and Hummel, 1981).

The method presented in this paper can be used for the analysis of multivariate data.
Analysis tools for multivariate data are becoming increasingly important, in particular
in computational fluid dynamics (CFD) and the finite element method (FEM). Sophis-
ticated analysis and visualization techniques for vector and tensor fields have recently
been developed (see (Helman and Hesselink, 1990) and (Delmarcelle and Hesselink,
1992)). Another application for curvature estimation is the area of scattered data in-
terpolation. Future interpolation methods might utilize curvature input following the
trend in geometric modeling of curves and surfaces (“geometric continuity,” see (Farin,
1992)).

The concepts of differential geometry and vector calculus used in this paper can be
found in (Auslander and MacKenzie, 1977; Chuang and Hoffmann, 1990; do Carmo,
1976; Farin, 1992; Marsden and Tromba, 1988; O’Neill, 1969). A comprehensive work
on differential geometry is (Spivak, 1970). Data reduction schemes, which relate the
significance of data points to curvature, are described in (Hamann, 1994) and (Hamann
and Chen, 1994a,b).

2. Curvature of graphs of trivariate functions
As mentioned in the introduction, a parametric 3-surface can locally be approximated

by the graph of a trivariate function. Therefore, the curvature properties of a 3-surface
can be investigated by analyzing graphs of local trivariate approximants. The curvature
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properties of such graphs are reviewed in this section.

The graph of a trivariate function f(u,v,w), f in class C™, m > 2, mapping an
open set S C R? into R can be viewed as a regular parametric 3-surface using the
parametrization

x(uw) = (u,v,w, f(u,o,w)), (u,v,w) €SC R3. (3)

The partial derivatives of this 3-surface are

xu xU xw (I,O,vau) (Ovlyo’fu) (O’Oylsfw)
xuu xuv xuw - (0’ O’ 0» fuu) (0’ 0’ 09 fuu) (09 0, O; fuw) (4)
xUU xUW (0a09 09 fl)l)) (Os O! 09 fuw) ’
xww (OaOsO’fWW)

and the 3-surface normal n(u) at x(u) is given by

cross product (X, X,, ¥y) _ (=fus=fos =fws 1) (5)

n(u) = ||cross product (x,, X, %,)|| VIt 2+ 2+ 2

Remark. The components of the normal vector n = (n*,n”,n*,n*) of a 3-surface are
defined by the determinant of the 4 X 4 matrix containing its first derivative vectors.
Thus, the normal vector of the graph of a trivariate function is given by

1 0 0 I
o 1 0 J

X y z ar _

nl+nJ+nK+n"L= o o0 1 K| (6)
fu fo fu L

Definition 1. The tangent space at a point xo = x(ug) on a regular 3-surface x(u) is
the set of all points y in R* satisfying the equation

y=xo + ax,(uo) + bx,(ug) +cx,(uo), a,b,c€R. (7)

The Gauss-Weingarten map (see (do Carmo, 1976)) for the graph of a trivariate
function is given by

aj; a2 a3
—A=— | a2 a2 a3
a3, asp a33

fu fw  fow\ [V S5 fufo  fufw
qu fUU fUW fufU 1+f3 foW ’ (8)
fuw fow o) \ fufw  fofw 1+f2

where [ = \/1+ f2+ f2+ f2.

Definition 2. The three (real) eigenvalues ki, x2, and k3 of —A in (8) are called
principal curvatures of the graph of the trivariate function f(u,v,w). They are the
roots of the characteristic polynomial of —A, the cubic polynomial
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det(—A — KI)=K3 + (a1 + a2+ a3,3)K2
+ (a11a22 + a1,1833 + a2203 3 — a1 22,1 — @13a31 — A23032) K
+a1,1a22033 + a1 2023031 + a1 302,103 2
— 1,142,303 — A1202,143 3 — A1 302,203,] . 9)

The average H of the principal curvatures is called mean curvature, and the product K
is called Gaussian curvature,

H=%(K1+K2+K3)a K = k1 KyK3. (10)

3. Curvature approximation of triangulated 3-surfaces

This section describes the curvature approximation scheme for 3-surfaces. The scheme
is based on the construction of a local polynomial approximation to the given data. This
approximation requires a triangulation of the data points and normal vector estimates at
the 3-surface points. At each 3-surface point, a least square quadratic polynomial is com-
puted, and the principal curvatures of the graph of this approximant are used as curvature
estimates at that point. The following theorems are needed for the approximation.

Theorem 1. Each regular parametric 3-surface x(u) of class m, m > 2, can locally be
represented in explicit form f = f(%,9,%), where f is at least C* continuous. Choosing
a 3-surface point xo as origin of a local coordinate system and the f-axis in the same
direction as the surface normal ny at x, the Taylor series of f, considering terms up
to degree two, is

£(2,9,2)=5(c200%" + 211,089 + 21 0,182

+ 02.09* + 2¢0.1.19Z + co0222). (11)

Any three unit vectors in the tangent space at x, determining a right-handed orthonormal
coordinate system can be chosen. Changing the orientation of the three unit vectors
appropriately yields the osculating paraboloid at x,

f(2,9,2) = 3(220,0% + C02.09” + To0,222). (12)

The principal curvatures at xq are the coefficients of the osculating paraboloid, i.e.,
K1 =C2,0,0, K2 =C0,2,0, and k3 = C 2.

Proof. See (Spivak, 1970). O

Remark. In Theorems 1 and 2, the independent variables are denoted by £, §, and £
in order to indicate their relation to the local coordinate system at x,.

Theorem 2. Let f be the trivariate polynomial

(@,0,W) =Y cijull'Wr, i+j+k<n, i,j,k>0, (13)
sJr
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where a point in 3D space has coordinates i, 0, and W it with respect to a coordinate
system given by an origin o and three orthonormal basis vectors by, by, and bs.
Changing the orientation of the orthonormal basis vectors changes the representation
of the trivariate polynomial, but not its graph {(i,0,W, f(@,0,Ww))}.

Proof. See surface case treated in (Hamann, 1993). [

At each 3-surface point, the curvature approximation scheme considers a certain
neighborhood of data in the triangulation, which is called platelet. This allows the
localization of the approximation process.

Definition 3. Given a triangulation of a set of 3-surface points, the platelet P; associated
with the point x; is the set of all tetrahedra (determined by their index-quadruples
(J15J2J3,Ja)) sharing x; as a common vertex,

Pi=(HGidajsn) li=ji Vi=jy Vi=js Vi=ji}. (14)

The vertices of P; are called platelet points.

These are the steps required for the approximation of the three principal curvatures
at a 3-surface point x;:
(i) Determine the platelet points associated with x;.
(i1) Approximate the outward normal n; at x;.
(ii1) Compute the tangent space 7 passing through x; having normal n;.
(iv) Define a local coordinate system for 7" with x; as origin and three orthonormal
basis vectors in 7.
(v) Compute the distances of the platelet points from 7.
(vi) Project the platelet points onto the tangent space 7 .
(vii) Represent the projections obtained in (vi) with respect to the local coordinate
system constructed in (iv).
(viii) Interpret the projections of the platelet points in 7 as independent variables
and their distances from 7 as function values.
(ix) Construct a polynomial f approximating the data derived in (viii).
(x) Compute the three principal curvatures of f’s graph at x;.

Some of these steps are explained in further detail. Let {yj = (xj,¥j,2j,aj) | j =
0,...,n;} be the set of platelet points associated with x;. All 3-surface tetrahedra in x;’s
platelet must have the same orientation for the approximation of an outward (!) normal.
Since the associated platelet in parameter space is given by the triples (u;,v;,w;),
Jj=0,...,n;, implying a set of 3D domain tetrahedra, the boundary of the union of
these domain tetrahedra is a set of triangles. If the vertices of all these triangles are
ordered consistently (all clockwise/all counter-clockwise), the 3-surface platelet points
on the 3-surface are ordered consistently as well (see (Edelsbrunner, 1987)).

An outward normal vector is computed for each 3-surface tetrahedron in x;’s platelet.
Such an outward normal vector is defined by the cross product of the three vectors

(v, 08) =xi =y, e €40, m}\ {i}, k=1,2,3, (15)
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where k implies the order of the three 3-surface points of a boundary face in x;’s platelet.
The components of the 3-surface tetrahedron’s outward normal vector (#*,#Y, A%, A%)
are given by the determinant

vi vy vy I
S
I+ I+ K+aL=|) "2 73 . (16)
vp vy vy K
vf vy vy L

Eventually, the outward unit normal vector n; = (n*,n”,n*,n*) at x; is estimated by
averaging the outward normal vectors of all 3-surface tetrahedra in x;’s platelet and
normalizing the result.

The implicit linear equation for the tangent space 7 at x; is

ni-(x—x)=n"x+n’y+n‘z+n"a— (n*x; +n’y; + n*z; + n"“a;)

=Ax+ By +Cz +Da+ E=0. (17)
The four vectors
a (1,0,0,0)
o (0,1,0,0)
a |~ (0,0,1,0) (18)

n; (_fu»—fv"fw’l)/\/l‘i'ﬁ-}'ﬁ-*'f?v

are linearly independent and define a basis for R*. Obviously, a;, as, and a3 are not
necessarily perpendicular to n;.

Gram-Schmidt orthogonalization is used for the construction of an orthonormal basis
for R* consisting of the basis vectors n;, b;, by, and b3, where b, by, and b; are
computed sequentially as

b= a; — (a;-n)n;

a1 — (@ - ni)mi’
a — ((ay-m)n; + (ay - by) by)
llaz — ((a2-mi)n; + (az - by) by) ||’
as — ((a3-n))n; + (a3 - b)) by + (a3 - by) by)
las — ((as - n)n; + (a3 - by) by + (a3 - b)) by) ||

b= and (19)

by=

(“|l |I” denoting the Euclidean norm).
The perpendicular, signed distances d;, j = 0,...,n;, of the platelet points y; from
the tangent space 7 are

dj=ij+Byj+Czj+Daj+E. (20)
Projecting the platelet points y; onto 7 yields the points y;‘r, where

yl =y, —dm. (21)
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Each point ij in 7 is expressed with respect to the coordinate system given by the
origin x; and the basis vectors by, by, and b3. Computing the difference vectors

di=yl —x;, j=0,....n;, (22)

and expressing d; as linear combinations of the basis vectors b, by, and b3 in 7, one
obtains the required representation

dj=(d; b)by + (d; b)) by + (d; - b3) bs. (23)
Thus, the local coordinates of y7 are
(uj,Uj,Wj)=(dj‘b1,dj‘b2,dj'b3). (24)

The local coordinates u;, v;, and w; are viewed as independent variables, and the
signed distances d; are viewed as function values (in direction of n;) of a polynomial
f(u,v,w) of degree two (see Theorem 1). The function f is defined by the interpolation
conditions

1 2
f(uj,vj,wj) = dj = §(C2,0,()uj + 201,1,0141'0]' + 261,0,1ujw_,'

+ 02,007 + 2¢€0,1,105Wj + C002W7) (25)
J =1,...,n;. Alternatively, the interpolation conditions can be written in matrix form
as
€2,0,0
u% 2uivy 2ugwy vlz 201wy w% €1,1,0 di
c
. 0 _pye=d=1 :
-2 . . .2 -2 c0’2,0 .
Up, 2UpUn, 2UpWn, Uy 205,Wn, W co.1.1 dp,
€0,0,2
(26)
The normal equations of the implied least square approximation problem are
U'Uc=U"d. (27)

This 6 x 6 system is solved using Gaussian elimination. If the determinant of UTU
vanishes the set of platelet points is expanded by using additional points in the platelet’s
neighborhood.

A theorem from multidimensional differential geometry ensures that the three principal
curvatures at a point on the graph of a trivariate function are always real.

Theorem 3. The principal curvatures k,, k3, and k3 at any point on the graph {(u,v,w,
f(u,v,w))} of a trivariate function f of class m, m > 2, are real. They are the

eigenvalues of the Gauss—Weingarten map associated with the graph.

Proof. See (Spivak, 1970). U
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Theorem 4. The principal curvatures ki, 2, and k3 of the graph {(u,v,w, f(u,v,w))}
of the trivariate polynomial

f(u,v,w) =%(Cz,o,ou2 + 2c¢1,1,0uv + 2¢1 0, 1uwW

+ 00,2,01)2 + 2¢o,1,10w + C0,0,2W2) (28)

at the 3-surface point (0,0,0, f(0,0,0)) are given by the three roots of the cubic
polynomial

K — (€200 €020 + €002) K

+ (€2,0,0€0,2,0 + €2,0,0€0,0.2 + €0,2,0€00.2 = €1.1.0 = €101 — Co.1.1) K

2 2 2
— (€2,0,0€0,2,0€0,0,2 + 2€1,1,0€1,0,1€0,1,1 = €2,0,0C0,1,1 — €0,2,0€1 0.1 — €0,02.1.0) -
(29)

Proof. According to Definition 2, the principal curvatures of f’s graph are the eigen-
values of the matrix
-1
| [fu fw fw\ (Y fi fufo fufw
—A=- fuu fvu fuw fufu 1+f3 fufw s (30)
fllW fUW fWW fllfW foW 1+fP21’

where [ = \/1 + f2 + f2 + f2. Evaluating —A for (u,v,w) = (0,0,0), one obtains the
symmetric matrix

€200 C1,10 €10,
—A=|c110 €020 Col,1 (31)
€101 C€o,1,1 €002

having the characteristic polynomial (29). [

The roots of the characteristic polynomial (29) are used as approximations of the
three principal curvatures at x;.

Remark. It is known in linear algebra that all eigenvalues of a symmetric matrix are
real. Therefore, the roots of the cubic characteristic polynomial (29) are real. The first
root of (29) is computed using Newton’s method, the other two roots are calculated
after factorization.

4. Examples

The principal curvature approximation method has been tested for graphs of trivariate
functions. In this case, the outward normal vectors are defined by the gradient, since the
outward normal vector of the graph of a trivariate function is n = (= f, —f,,—f;,1).
The exact gradients are used for all test functions.
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Table 1
RMS errors of curvature approximation of graphs of trivariate functions; x,y,z € [—1,1]

Curvature type

Function Mean curvature Gaussian curvature

1. Quadratic polynomial:

0.4(x%+y*+2%) 0.0030 0.0026
2. Quadratic polynomial:

0.4(x% — y* = z%) 0.0011 0.0022
3. Cubic polynomial:

0.15(x3 + 2x%y — xz2 + 2y%) 0.0025 0.0012
4. Exponential function:

=05ty 2t 0.0063 0.0028
5. Trigonometric function:

0.1(cos(mx) + cos(ary) + cos(mz)) 0.0033 0.0091

The exact mean curvature H** = (k§* + «§* + «5*) /3 is compared with the average
of the approximated principal curvatures H® = («{" + &5 + 37") /3, and the exact
Gaussian curvature K = k{*«5*«§* is compared with the product of the approximated
principal curvatures KP = kPP k5P k3P,

All test functions f(x,y,z), x,y,z € [—1,1], are evaluated on a 26 x 26 x 26 grid
(n =25) with equidistant spacing, i.e.,

2i—n 2j—n 2k—n
(xi,yj,2k) = ( s ,

), i,j,k=0,...,n, (32)
n n

defining the set of points on their graphs, which is

{(xi,}’j,Zk,f(xiy)’j,Zk)) | i’j’k=0’- .. 9n}' (33)

The triangulation of the domain is constructed by splitting each domain cuboid C; ;4 with
vertices Xiirjisksk = (Xitljrshsks Yirl j+dk+Ks Zitlj+ikrk)» I, s K € {0,1}, into six
tetrahedra yielding a Delaunay triangulation. Table 1 lists the root-mean-square (RMS)
errors for the approximation of mean and Gaussian curvature.

The curvature of a trivariate function’s graph is rendered by slicing the function’s
domain with planes and representing curvature by color (see (Nielson and Hamann,
1990) ). Exact and approximated curvatures are shown for the functions 2, 3, and 5 in
Figs. 1-3. The exact mean curvature is shown in the upper-left corner of each figure, the
exact Gaussian curvature in the upper-right corner, the approximated mean curvature in
the lower-left corner, and the approximated Gaussian curvature in the lower-right corner.

5. Conclusions

A technique for approximating the three principal curvatures at points on a discretized,
triangulated 3-surface has been developed. The test results confirm the quality of the



630

B. Hamann/Computer Aided Geometric Design 11 (1994) 621-632




B. Hamann/Computer Aided Geometric Design 11 (1994) 621-632 631

Fig. 1 (opposite, top). Exact and approximated mean and Gaussian curvature,
f(x,3,2) =04(x2 = y2 —z2), x,y,z € [-1,1].

Fig. 2 (opposite, bottom). Exact and approximated mean and Gaussian curvature,
[0 y,2) =0.15(x3% + 2x%y — xz2 + 2y%), x, v,z € [-1,1].

Fig. 3 (above). Exact and approximated mean and Gaussian curvature,
f(x,y,z) =0.1(cos(mx) + cos(my) + cos(7z)),x,y,z € [—1,1].

approximation for graphs of trivariate functions. The curvature approximation technique
is useful for the analysis of the “smoothness” of discrete 3-surfaces arising in CFD/FEM
applications. The concept can be extended to n-manifolds (n-surfaces) in (n+1)D space.
Future scattered data approximation methods for 3-surface data using curvature input
will benefit from this scheme.
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