CHAPTER

A Parametric Triangular Patch
Based on Generalized Conics

Bernd Hamann, Gerald Farin, and Gregory M. Nielson

6.1. Introduction

In graphics and computer aided design (CAD) applications, one is very often
concerned with the question of how to generate a smooth surface (a surface that
is G'-continuous between adjacent triangular patches) when only point and
normal (tangent plane) data are given in three-dimensional space. Examples
are the methods described in Nielson [14] and Piper [16].

The surface scheme described in this paper is based on a simple curve
scheme of degree-elevated conic sections. Using the concept of degree-elevated
conics allows both modeling conics and rational cubic curves with inflection
points. Generalized conics were introduced by Ball [1]-[3]; they are rational
cubic curves with standard conics as a subset (see also Boehm [7]). Our
principle of combining curves with and without inflection points is similar
to Ball’s idea. In a first step, boundary curves (degree-elevated conics) for all
triangle edges are constructed in rational Bézier representation. In a second
step, three different surface building blocks are obtained from calculating
generalized conics emanating from a triangle vertex and ending at a point
belonging to an opposite boundary curve. The three surface building blocks
are finally blended together in a convex combination to obtain a triangular
patch.

The construction of all patches is the same. Therefore, only the generation
of a single building block patch will be described. A surface patch s(u) can be
seen as a point-valued mapping from IR (triples of barycentric coordinates)
into IR3 (three-dimensional points on the patch). The (intrinsic) domain for
each triangular patch will be the set of all triples (u1,u2,us) of barycentric
coordinates for which > u; = 1 and u; > 0, « = 1,2,3. Each point on a
patch will then be the image of (u1,u2,u3) using the concept of the projectors
described below.

The patch s(u) with vertices vy, v, and v will be a convex combination of
three different building blocks, called sq(u), sz(u), and s3(u). The barycentric
coordinates uy, ug, and ugz for a point in the domain triangle are represented
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by u. The resulting surface patch can be written as

(6.1) s(u) = Ewi(u)si(u).

In this sum, s;(u) is the building block of the patch (emanating from vertex
v;) that interpolates to the positional data along all three triangle edges and
to the normal information along the opposite edge e;, i = 1,2,3. The weight
functions w;(u) are chosen as in Nielson [14]. The final patch will interpolate
to the positional and normal information prescribed along all three edges.

In the following, an interpolation theorem will be given for the discrete case
(three vertices and three normals given only). The concept of using degree-
elevated conics will be presented to obtain the single patch building blocks
using a planar curve scheme.

6.2. An Interpolation Theorem for Discrete Data

The weight functions w;(u) and the patch building blocks s;(u), ¢ = 1,2,3,
occurring in (6.1) must have certain properties in order to obtain a triangular
patch that interpolates to both positional and normal information prescribed
along its three edges. Here, the following weight functions will be used:

B(21,1,1)—e.-(u)
B(20,1,1)(u) + B(21,o,1)(“) + B(21,1,0)(u) ’
where ¢ = 1,2,3. Here, e; = (1,0,0), e2 = (0,1,0), and e3 = (0,0,1). The
functions B(2i,j,k)’ t+ j+ k = 2, are the Bernstein polynomials (in terms of
barycentric coordinates) of degree 2, defined as

wi(u) =

2

.. = — k
(5.3:6) 151!

U,
where " u; =1 and u; > 0, ¢ = 1,2,3. The relevant properties of these weight
functions are

3
(i) Z wi(u) =1,

1=1
(11) wi(ek) = 6i,k, i,k € {192’3}a
(ili)) Dgq(wi(e;)) =0, 1€{1,2,3}.

Here, > u; =1, u; > 0,1 =1,2,3. Edge e; is characterized by barycentric
coordinates (0,ug,u3), edge ey by (u1,0,us), and edge e3 by (uj,us,0). The
symbol 6; ;. is the Kronecker delta and Dg is a directional derivative in any
direction d, where d is a vector expressed in terms of barycentric coordinates
(dy,d3,d3) and Y~ d; = 0 (see Farin [8], [9]).

The individual patch building blocks will each interpolate to all three
boundary curves of the triangular patch and to the normals along one edge,
formalized as

(iv) si[pl(e) = p(?),
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and
(v) nsi[p]l(e;) = n[p](e), i=1,2,3.

The single patch building blocks s;(u) and the normal n take the form
of operators; p represents positional information, € represents the union of
all three edges, and each argument e; is expressed in terms of barycentric
coordinates for the corresponding edge. .

Using the properties (i)—(v), it is possible to derive the following interpo-
lation theorem for discrete data (see also Nielson [14]).

THEOREM 6.2.1. The convez combination s(u) = Y3, w;(u) * s;(u)
interpolates to all three boundary curves and the patch normal on the whole
boundary provided the conditions (i) - (v) are satisfied.

Proof. (a) Positional Interpolation. s;[p](¢) = p(e) and Y3, w;(e) = 1;
therefore s[p](¢) = p(€).

(b) Normal Interpolation. To show interpolation of the boundary normals,
one calculates two nonparallel tangent vectors in an arbitrary boundary point,
calculates the cross product of those (determines normal at that point), and
shows that this cross product (vector) is parallel to the prescribed patch
normal. Let the directions in which tangent vectors are computed be d; =
(-1,1,0), d; = (0,-1,1), and d3 = (1,0,—1).

Dy, is the vector-valued derivative operator to calculate tangent vectors in
direction d;. Boldface letters will denote vector-valued operators. Using the
product rule one obtains, considering the properties (ii) and (iv):

Dg;s[pl(e;) = wi(e:)* Dg,s1[p](e:) + Dg,wi(e;) * s1[p](e;)
+wa(e;) * Dg,s2[pl(e:) + Dg,wa(e;) * s2[p](e;)
+ws(e;) * Dg;s3[p](e:) + Dg,wa(e;) * s3[p](e;)
= Dg;si[p](ei) + p(ei) * (Dg,(w1(ei) + wa(e;) + wa(e;)))
= Dg;si[p](e:)

Using the result from (a), the tangent vector along a boundary curve is
given by

Dg,,,silp](e;) = Dg,,,s[p](e:)

t=1,2,3and d4 = d;. The patch normal along a boundary is then determined
by the following cross product (using property (v)) choosing the arbitrary
directions d; and d;4; (without loss of generality) :

n[p](e;) = n[s;[p]](e:)

Dg;si[p](ei) X Dg,,,si[p](e;)
Dg;s[p](e:) x Dg,,, s[p(e:)
n[s[p]](e;)

which proves normal interpolation along the boundaries.

Il



78 NURBS for Curve and Surface Design

Fic. 6.1. Obtaining a plane for a conzc.

6.3. The Planar Conic Curve Scheme

We will now describe how to make use of a planar curve scheme when two points
and two unit outward normal vectors associated with those points are given
in three-dimensional space (denoted as bg, bz, ng, and n3). For simplicity,
we assume that points and normals are obtained from a convex surface. This
constraint will be removed later. Generally, it is not possible to use a planar
curve scheme for this situation, because two points and one normal vector
determine a plane for the curve already. Therefore, one has to derive a plane
for the curve and unit tangent vectors for its end points in a first step.
Referring to Fig. 6.1, our construction proceeds as follows:

1. Define a plane P through by and bz that will contain the desired curve.
This plane is specified by the requirement that the vector (%no + %ng) lies in
it (special care must be given to the case ng = —n3).

2. Construct the intersection of the conic plane P with the tangent plane Po
at by and of P with the tangent plane P3 at bs. Each of the straight lines thus
obtained defines the tangent of the desired curve at bo and bz, respectively.
The cross product between the normal to P and the two given normal vectors
at the end points of the curve define (unit) tangent vectors for the end points,
denoted by t; and ts.

3. Assuming the data imply a convex curve, we describe the resulting conic in
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terms of a degree-elevated rational Bézier curve of degree 3:

_ Z?zowibiB?(t)
(6.2) ey T2 ywiB3(t)

where ¢t € [0,1], wo = w3 = 1, w; = wp = w and B¥}t) = ()(1 - t)*>~*tf,
i =0---3. Referring to Fig. 6.3 the interior Bézier points lie on a line parallel
to the line given by bg and bz. Using the law of sines we have

sin 3

sin 7y

D.

Dy =

Degree elevation requires the following ratio to hold:

dy
Di-d
Therefore, S sl
sin
1= 12w sin'yD'
We obtain
b] = bg + dltl.

The same construction is carried out for bs.

4. The weight w should be chosen automatically such that (i) dy is finite for v
approaching 0 (parallel tangents at end points) and (ii) a circular arc (see [9])
is obtained for the case o = 3. The second goal is easily achieved by setting

.
w =sm§ = cosa.

This choice also guarantees

2 . l . 21 .
lim dy = lim iy Enf, g g By o Deing,
y—

7—014 2sin 7 siny _wl—r»r%)l-}-?% ¥y

Therefore, d, is always finite.

In addition to the point and normal information, three wetights associated
with the edges e;, e;, and e; of a triangle can also be prescribed. In
order to avoid consistency problems between triangles and to reduce input
information, all weights associated with interior Bézier points should be chosen
automatically as proposed above. Figure 6.2 illustrates the degree elevation
process for curves.

6.4. Generating the Patch Building Blocks

Nielson [14] suggests computing a point s;(u), ¢ = 1,2, 3, for given parameter
values uj, ug, and uz on a particular building block by generating two separate
cubic curves in Hermite form. The first cubic curve is associated with the edge
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D

Fic. 6.2. Generatling conic along edge e;.

e; of the domain triangle; it interpolates the vertices associated with this edge
and the prescribed tangent vectors at those vertices. In a first step, this cubic
is evaluated to obtain a point on the boundary curve along edge e;. The second
cubic to be constructed is the result of blending from the vertex v; to the point
on the cubic along e; just obtained. This curve then interpolates the vertex
Vi, the point on the cubic along e;, and the two tangent vectors prescribed for
these points. In a second step, this cubic is evaluated to finally get the point
on this building block of the surface patch.

In the new method presented here, degree-elevated conics will be used
instead of cubic Hermite polynomials. The use of Hermite polynomials for
constructing planar parametric curves can lead to undesired inflection points
or even loops in the curve depending on the length of the prescribed tangent
vectors at the two end points. This can no longer happen when degree-elevated
conics are used instead. We will no show how to use the planar curve scheme
from the last section in order to calculate points on the building blocks s;(u).

(i) Curve scheme for the boundary curves along triangle edges. Using the
planar curve scheme based on degree elevated conics, it is easy to generate the
three boundary curves ¢;(t), c2(t), and c3(t). When concerned with evaluating
the patch building block s;(u) at u = (u1,u2,u3), one has to construct the
curve c;(t) with the parameter ¢ = u3/(1—1u;) € [0,1] along edge e; first. The
input for the conic scheme are the vertices v, and vs, the normals n, and ns,
and the parameter t. The use of the conic scheme then yields a point on the
patch boundary. The process for determining boundary points for the three
patch building blocks always follows this general principle.

(ii) Surface scheme for a point on s;(u). Having computed a point ci(t)
(¢ = 1,2,3) on a boundary curve, the next question is how to estimate the
surface normal of the final patch at a particular point on the curve ci(t). It is
clear that the surface normal n?(t) along the boundary curve ci(t) must also
be perpendicular to this curve itself. This can be written as

S,
nici—o,
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¢t = 1,2,3, where ¢; = ¢;(t) denotes the tangent vector of the conic at the
parameter value t. If we further require that

(6.3) ninf = (1),

where n{ denotes the unit normal vector to the conic in its plane at the
parameter value ¢, then n{ is determined. We choose to select ¥(t) according
to the following geometric interpretation: at ¢t = 0,

n7(0)nf (0) = 7(0)

denotes the cosine of the angle formed by the (given) surface normal ny(0)
and the conic normal n¢(0). At ¢t = 1, (1) has the analogous interpretation.
If we set

7(t) = (1 = t)v(0) + ty(1),

then (6.3) assures that the cosine of the angle formed by n? and n{ varies
linearly along an edge.

This process guarantees that the surface normals derived by this method
agree with the given ones at the vertices. Moreover, the surface normals along
this edge will be the same for this triangular surface patch as for a potential
neighbor sharing edge e;. Together with the fact that the choice of n?(t) solely
depends on given information along edge e; and the special weight functions
w;(u), tangent plane continuity between the actual patch and a neighbor along
e; is assured. We emphasize that our choice of boundary surface normals does
consider the boundary curve — it is not simple linear interpolation of the given
normal vectors at the two vertices. The process for determining the surface
normal along a boundary conic ¢;(t) is illustrated in Fig. 6.3.

Using the idea of radial projectors as introduced in Nielson [14], we next
blend from a vertex v; to the edge e; with its corresponding point on the
curve c¢1(t). The generation of a point on a curve emanating from vertex v,
and ending at the previously computed point ¢;(t) follows the same rules as
the generation of the boundary conic ¢4(t), t = us/(1—u;) € [0,1]. Therefore,
only the input information for the planar conic scheme for calculating a point
on building block s;(u) will be given.

To obtain a point of the patch building block si(u) at u = (uq,uz,us),
one has to construct a curve ¢(?) with £ = (1 — u;) € [0,1]. The input data
for the curve scheme are the vertices vy and c;(t), the normals n;, and the
constructed surface normal n{(t) along edge e;. Again, the use of the conic
scheme with the parameter ¢ yields a point of this building block of the whole
patch. The final evaluation of a point s;(u) is shown in Fig. 6.4.

Repeating this process for all three building blocks s1(u), s2(u), and s3(u),
one finally obtains a point s(u) on the surface. The weights for the middle
Bézier point of each conic may be interpreted as a tension parameter.
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Fic. 6.3. Generating surface normal along edge e;.

Z

Fic. 6.4. Ewvaluating surface building block s;(u).
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6.5. Curve Scheme for Nonconvex Data

So far, only convex data configurations have been considered so that it is
possible to make use of (degree-elevated) conics. Ball [1]-[3] introduced
generalized conics as rational curves of degree 3. His scheme deals with data
that do or do not imply curves with an inflection point. First, a criterion has
to be presented that allows us to determine whether a conic scheme can be
used for a planar data configuration (two vertices and two tangent vectors) or
not.

The line through two vertices vi; and vy subdivides the curve plane
(specified by these two vertices and the normal vector of the plane) into two
half spaces. If the two tangent vectors t; and t; do not point into the same
half space, we have a convez configuration; otherwise we have a nonconvez
configuration. If the data are convex, the planar scheme for degree-elevated
conics can be used as described above. In the case of a nonconvex configuration,
the two interior Bézier points for our curve scheme must be constructed in a
way that a rational curve of degree three with an inflection point is obtained.

Assuming the tangent vectors t; and t, are directed into the left half space
(with respect to the axis from v; to vy), the tangent line given by t, is reflected,
the reflection being against the axis given by the end points. The construction
for both interior Bézier points is then performed in the left half space as if
dealing with a convex data configuration. Having computed both interior
Bézier points in the regular fashion, by has to be reflected back in order to
obtain the correct tangent direction at v,. The analogous construction has to
be carried out in the case where both given tangent vectors are pointing into
the right half space. The four different possibilities for generating the interior
Bézier points are illustrated in Fig. 6.5.

Using the concept of degree-elevated conics allows us to handle both
convex and nonconvex data. Continuity inside a single patch building block
is guaranteed since the construction of the interior Bézier points is continuous
with respect to the involved angles. If a given data set consists of a high
percentage of convex data on certain triangles, the cost for determining a
rational curve of degree 3 for nonconvex data is not very important. In the
case that all given data belong to a convex surface, the scheme for degree-
elevated conics can be used everywhere and the more complicated scheme for
reflection of end tangents does not have to be considered.

6.6. Conclusions and Examples

A parametric triangular patch has been presented that makes use of given
convex data, but is easily extended to nonconvex data by using Ball’s idea of
reflecting tangents and using rational curves of degree 3. For each triangle
several degrees of freedom still remain — the weights for the middle Bézier
points for all three boundary conics and for all the conics used in the radial
blending from a vertex to the opposite boundary curve. The smaller these
weights become, the closer the patch gets to its corresponding domain triangle
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Vi Va

Fic. 6.5. Construction of interior Bézier points for all data configurations.

given by its three vertices. Choosing these weights automatically as proposed
above yields circular arcs when the data configuration implies them. In this
case the resulting surface will approximate the desired sphere-like surface quite
well. However, the presented scheme does not have spherical precision even
if the given data come from a sphere. This is a consequence of the used
convex combination: each building block has spherical precision, but generates
a different point on the sphere; therefore, when these points (all on a sphere!)
are combined in a convex combination, the resulting point lies in the plane
determined by the three points on the building blocks but no longer on the
sphere.

Using degree-elevated conics instead of parametric cubic curves in a plane
guarantees that one does not obtain inflection points or loops unless the
prescribed normals at the two end points of a curve imply an inflection point.
In Fig. 6.6 three different surfaces are shown for the case where four points
and four unit normal vectors from a unit sphere are given. The first surface is
obtained by choosing the weights for the interior Bézier points automatically
(maximal distance to unit sphere approximately 0.01); the other two surfaces
have successively lower weights associated with the interior Bézier points:
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Fic. 6.6. Surfaces obtained from spherical data.
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