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Abstract
We present a method for hierarchical data approximation using curved quadratic simplicial ele-
ments for domain decomposition. Scientific data defined over two- or three-dimensional domains
typically contain boundaries and discontinuities that are to be preserved and approximated well
for data analysis and visualization. Curved simplicial elements make possible a better represen-
tation of curved geometry, domain boundaries, and discontinuities than simplicial elements with
non-curved edges and faces. We use quadratic basis functions and compute best quadratic simpli-
cial spline approximations that are C0-continuous everywhere except where field discontinuities
occur whose locations we assume to be given. We adaptively refine a simplicial approximation
by identifying and bisecting simplicial elements with largest errors. It is possible to store mul-
tiple approximation levels of increasing quality. Our method can be used for hierarchical data
processing and visualization.
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1 Introduction

Scalar and vector field data often contain discontinuities that should be preserved for data
approximation and analysis purposes. It is important to represent domain boundaries—
including geometry such as a car body, an aircraft, or a ship hull—and the locations of field
discontinuities, represented by curves and surfaces. To better approximate these curves and
surfaces we investigate the use of curved quadratic simplicial elements. We do not address
the problem of extracting discontinuities from a given scalar or vector field data set; we
assume that this information is known. We consider data defined over two-dimensional (2D)
and three-dimensional (3D) domains.

We utilize only curved simplicial elements that are quadratic. In the 2D case, we use curved
triangles whose edges may be straight line segments or parabolae; in the 3D case, we use curved
tetrahedral elements whose edges/faces may be straight line segments/planar triangles or
curved. Generally, we refer to both non-curved and curved simplicial elements as just simplicial
elements. We use a quadratic polynomial transformation to map the so-called standard simplex
to the corresponding simplicial region in 2D/3D space. Furthermore, we use a quadratic
polynomial defined over each simplicial element to locally approximate the dependent
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variable(s). We use curved elements with curved edges/faces to better approximate domain
boundaries and discontinuities. All simplicial elements that do not “touch” geometry, domain
boundaries, or discontinuities are non-deformed elements. Nevertheless, the polynomials we
use over all simplicial elements are all quadratic.

Our overall goal is the construction of a hierarchical data over 2D or 3D domains using
a best approximation approach based on curved quadratic finite elements and quadratic
polynomials defined over these elements. We start with a coarse decomposition of the
domain, using a relatively small number of simplicial elements and placing curved simplices
in areas where boundaries and discontinuities occur. We then compute a (globally) best
least squares approximation, a quadratic spline approximation for the dependent variable(s)
that is C0-continuous. (Due to the C0 continuity requirement we can place simplices with
curved edges/faces only along boundaries and where discontinuities occur, i.e., in areas
where the curved edges/faces are not shared by other elements. The physical locations
of discontinuities play the same roles as domain boundaries: Two simplicial elements may
share the—geometrically—same edge/face defining the locus of a discontinuity, but the field
function defined over the two elements is discontinuous along/on the shared edge/face.) Based
on local errors that we compute for each simplicial element, we bisect a certain percentage of
the elements with largest errors, update the simplicial domain decomposition accordingly,
and compute a new best quadratic spline approximation. We iterate this process until a
specified error condition is met or the number of simplicial elements exceeds some threshold.

Our approach belongs to the class of refinement methods. These methods are based on
the principle of refining intermediate data approximations by inserting additional points or
elements until a certain termination criterion is satisfied. We have developed our method
with a focus on the needs of massive scientific data analysis and visualization, see [22, 39, 45].
To enable interactive frame rates for massive data visualization, for example, it is possible
to use low-resolution best approximations everywhere or adaptively insert high-resolution
approximations locally into an otherwise relatively coarse approximation. The overall
approximation algorithm is based on these steps:

Initial simplicial domain decomposition. Assuming that either a polygonal/poly-
hedral or an analytical definition is known for all boundaries and discontinuities in the
2D/3D domain of interest, we construct a coarse simplicial decomposition of this domain.
We use curved edges/faces only in areas where they are needed to better approximate
curved boundaries and/or discontinuities. (The quadratic transformations, mapping the
standard simplex defined in so-called parameter space to deformed simplices in so-called
physical space, are defined by specifying corresponding point pairs in the two spaces
such that one obtains a one-to-one, bijective mapping.) Figure 1 shows a possible initial
simplicial decomposition, including curved elements, of space around a wing cross section.
Best approximation. In the 2D case, each simplicial element has six associated knots,
one knot per corner and one knot per edge. Six knots in parameter space are associated
with six points in physical space, and this defines the needed quadratic mapping for a
simplex. (Accordingly, the number of knots is ten in the 3D case.) For simplicity, we
consider only knots that are uniformly distributed along the edges of the standard simplex,
see Appendix A. We associate a quadratic polynomial with each simplicial element, which
approximates the dependent variable(s) over the corresponding region in space. We
represent each quadratic basis polynomial in so-called Bernstein-Bézier form, see [12, 41].
Assuming that the function to be approximated, a scalar- or vector-valued function, is
known in analytical form, it is possible to compute the unique best quadratic spline
approximation defined as a linear combination of the set of quadratic basis functions.
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Figure 1 Decomposition of space around wing using curved 2D simplices (geometry, domain
boundary, and discontinuity shown in bold).

The best approximation, understood in a least squares sense, is the result of solving the
normal equations, see [9].
Adaptive bisection. We compute a local error value for each simplicial element once
a best approximation is known. We use the L2 norm to compute simplex-specific error
values. The set of simplices is ordered according to the simplex-specific, local error values.
To compute a next-level best quadratic approximation we determine a certain percentage
of simplices with largest error values and bisect them by splitting them at the mid point
of their longest edge. If a simplex’ longest edge is not unique, we choose the edge to be
split randomly. In the case of curved edges we use arc length to determine the longest
edge to be bisected. Splitting a specific simplex into two simplices induces additional
splits for all those simplices that share the split edge. We update a simplicial domain
decomposition by considering all edge bisections and compute a new best approximation.
We repeat the process of identifying simplices with largest errors, bisecting these simplices,
and computing a new best approximation until we obtain an approximation for which
the maximal simplex-specific error is below a certain error threshold or until a maximal
number of simplices is reached.
Hierarchical data representation. To support hierarchical data processing and
visualization, for example, we can store multiple best approximations of different simplicial
resolutions. For each best approximation, we need to store the polynomial coefficients of
each simplicial element—for its shape and the polynomial defined over it. Considering a
non-curved simplicial element, we only need to store its three (four) corner points and the
coefficients of the quadratic polynomial defined over the element. Considering a curved
element, we need to store all polynomial coefficients defining the shape of the element
in addition to the coefficients of the quadratic polynomial defined over the element. We
store a fixed number of best approximations such that either the number of simplices
increases in a specified fashion or the maximal simplex-specific error decreases in a certain
way from one resolution to the next.

We discuss these steps in more detail in the sections to follow.
Related work in the areas of hierarchical data representation and approximation is

discussed in [1, 4, 5, 6, 7, 11, 16, 17, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 38, 48,
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Figure 2 Mapping standard triangle to arbitrary curved triangle (iso-parametric lines shown in
parameter and physical space).

51, 52, 59]. Best-approximation methods are described in [53, 55], and effective processing
and visualization approaches for data approximated by higher-order elements are covered in
[19, 55, 56, 57]. So-called data-dependent triangulation schemes, i.e., schemes concerned with
the construction of piecewise linear approximations using near-optimal simplicial elements,
are described in [10, 36, 43]. In [46, 47] various data structures are covered in-depth that can
be used for efficient storage of hierarchical data approximations. From a broader perspective,
our work is related to grid generation, and references for this area are [14, 32, 49, 50]. Finite
element methods, which also are closely related to our work, are discussed in detail in [60].

2 Mapping the Standard Simplex

In the 2D case, the standard simplex in parameter space is the triangle with corners (0, 0),
(1, 0), and (0, 1). The triangle with these three corners is mapped to a curved triangular
region in physical space by mapping the six knots ui = (ui,j , vi,j) =

(
i
2 , j

2

)
, i, j ≥ 0, i+ j ≤ 2

(abbreviated in multi-index notation as |i| = 2), in parameter space to six corresponding
points xi = (xi,j , yi,j) in physical space, using a quadratic mapping. The quadratic mapping
in the 2D case, using Bernstein-Bézier polynomials B2

i (u) as basis functions, see [12, 41] and
Appendix A, is given by

x(u) =
(

x(u, v)
y(u, v)

)
=
∑
|i|=2

bi B2
i (u) =


∑
|i|=2

ci,j B2
i,j(u, v)∑

|i|=2
di,j B2

i,j(u, v)

 . (1)

The mapping between parameter and physical space must be one-to-one. Figure 2 depicts
the general mapping of the standard triangle in parameter space to a curved triangle in
physical space.

In the same way, we define the mapping of the standard tetrahedron with corners
(0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) to a curved tetrahedron in physical space, mapping
the ten knots ui = (ui,j,k, vi,j,k, wi,j,k) =

(
i
2 , j

2 , k
2

)
, |i| = 2, to ten corresponding points

xi = (xi,j,k, yi,j,k, zi,j,k) in physical space. Thus, the quadratic mapping in the 3D case is
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Figure 3 Mapping standard tetrahedron to arbitrary curved tetrahedron.

given by

x(u) =

 x(u, v, w)
y(u, v, w)
z(u, v, w)

 =
∑
|i|=2

bi B2
i (u) =


∑
|i|=2

ci,j,k B2
i,j,k(u, v, w)∑

|i|=2
di,j,k B2

i,j,k(u, v, w)∑
|i|=2

ei,j,k B2
i,j,k(u, v, w)

 . (2)

Figure 3 depicts the general mapping of the standard tetrahedron to a curved tetrahedron.
We use quadratic Bernstein-Bézier polynomials as basis functions for the approximation of

a field function defined over non-curved simplicial elements as well. We denote these quadratic
basis functions as B2

i (x) = B2
i,j(x, y) (= B2

i,j,k(x, y, z) in the 3D case). A generalization of
the standard Bernstein-Bézier polynomials is necessary for curved simplicial elements. We
define the needed generalized quadratic basis polynomials for curved elements in Appendix
A. Figure 4 shows the graph of a quadratic polynomial defined over its associated curved
triangular domain.

3 Initial Simplicial Domain Decomposition

The main objective driving the development of our method is the hierarchical representation of
very large scientific data sets enabling real-time and adaptive data processing and visualization.
Data sets resulting from computational simulations are typically defined on a grid, and the
dependent variables are associated with either the vertices, also called nodes in the finite
element literature, or the elements defining the grid. We assume that a data set is provided
on a high-resolution grid. The original grid, its boundaries, and possibly known locations of
field discontinuities (in the dependent variables) influence how we define an initial simplicial
decomposition of the relevant 2D/3D domain.

The objective is to initially represent the 2D/3D domain with a relatively small number of
curved simplicial elements, using curved elements only where they help to better approximate
domain boundaries and known field discontinuities. In the 2D case, the grid points discretizing
the domain boundary represent curves, while they represent surfaces in the 3D setting. For
practical purposes we proceed as follows: First, we compute the bounding box of the original
set of grid points and decompose this box into two (five) non-curved triangles (tetrahedra).

Chapte r 4
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Figure 4 Graph of quadratic polynomial over its curved simplicial domain (Bernstein-Bézier
control net shown for curved domain simplex).

Second, we clip these non-curved simplices against the curves (surfaces) defining the domain
boundaries. Third, we identify the portion of the initial two (five) simplices that lies inside
the domain over which the dependent variable(s) must be approximated; we represent this
portion by using initially non-curved simplices only.

We consider perpendicular distance values to determine the quality of a simplicial domain
decomposition. We compute the distances of the original grid boundary points from the
boundary edges (faces) of the initially non-curved (boundary) simplices. If these distance
values are larger than a certain threshold, we must solve a local optimization problem, i.e.,
we deform an edge/face of a non-curved simplex in a quadratic fashion such that the original
grid points in the affected areas are (nearly) optimally approximated by quadratic curves
(surfaces). We can solve this problem locally as a univariate (bivariate) approximation
problem by considering the distances of original grid points in normal direction of the
associated edges/faces of the simplicial boundary elements. We note that the construction
of a globally optimal boundary curve/surface approximation is a subject in its own right,
but it is not the focus of this paper. We continue our discussion by assuming that boundary
approximation schemes suitable for incorporation into our overall scheme are available.

Geometry and domain boundaries can be identified easily from an originally supplied grid.
One simply needs to identify elements with edges/faces that are not shared by other elements.
It is much harder to identify the locations in 2D/3D space where field discontinuities, i.e.,
discontinuities of the functions describing the dependent variables, occur. Such discontinuities
should be preserved in a simplicial approximation as much as possible. Such discontinuities,
once there locations are known, can be treated by curved simplicial elements just like domain
boundaries.
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Figure 5 Shared face of two simplicial elements in 3D space is planar but may have curved edges.

The detection of discontinuities of scalar-valued functions over 2D/3D domains has
been an active research area in several disciplines, including digital image analysis, pattern
recognition/feature extraction from satellite imagery, and scientific data visualization. We
refer to the methods described in [2, 40] for more detail. For our purposes, we assume that
discontinuities can effectively be extracted from a given data set and that curves/surfaces are
used to represent them in the 2D/3D domain. Topologically, we treat these curves (surfaces)
in the same way as we treat boundary curves (surfaces) by using simplices with curved
edges/faces where they touch these discontinuities. Thus, every discontinuity is approached
from two sides, and the simplicial elements touching a discontinuity do not share vertices.
(The geometrical information of vertices of these elements is shared by vertices along/on
field discontinuities, but the coefficients used for field function approximation are different.)
Once an initial decomposition of the domain is constructed, we compute the implied best
quadratic spline approximation, which we describe in the next section.

In the 3D case, we ensure that each face that is shared by two simplices is planar.
Nevertheless, certain edges of a shared planar face may be curved whenever these edges
belong to a simplex face that approximates the domain boundary geometry (surface) or a
discontinuity in the 3D domain. This situation is illustrated in Figure 5.

4 Best Approximation

We assume that the field/function to be approximated over a 2D/3D domain is known
analytically. Should this not be the case, e.g., in the case of scattered data (randomly
distributed points with associated function values but without connectivity information),
it is always possible to construct an analytical representation by performing a prior data
interpolation or approximation step, see [13, 37]. In the case that a data set is defined
on a grid, the required analytical definition is given by a piecewise linear function for a
simplicial (triangular, tetrahedral) grid and a piecewise bilinear/trilinear function in the case
of quadrilateral/hexahedral grid cells. (We assume that function values are associated with
grid vertices.) We denote the analytical function to be approximated over the domain by
F (x). Based on an initial simplicial domain decomposition, we compute the corresponding
best piecewise quadratic approximation of F (x) by solving the normal equations, see [9].
The normal equations determine the set of coefficients for the desired quadratic spline
representation, a best approximation in the least squares sense.

Corner vertices of simplicial elements may be shared by any number of simplices, and we

Chapte r 4



52 On Curved Simplicial Elements ...

u

1

1/41/4

v

vu

1/2

= (1−u−v)2

= 2(1−u−v)u

B
2 (u,v)
1,0

B 2 (u,v)
0,0

Figure 6 Types of basis functions. Basis function associated with shared corner (left) and shared
edge (right).

denote the basis function that we associate with a corner vertex vi by fi(x). An edge of a
simplicial element may be shared by no more than two simplices in the 2D case and by an
arbitrary number of simplices in the 3D case. We denote a basis function that we associate
with a simplex edge ej by gj(x). We refer to the set of simplices sharing a common corner
vertex as the platelet of this corner, and we call the set of simplices sharing a common edge
edge neighbors. Thus, a set of platelet simplices defines the region in space over which a
basis function associated with the corresponding corner vertex is non-zero. Edge neighbors,
associated with a particular edge, define the region in space over which a basis function
associated with this edge is non-zero. Instead of providing a formal definition for these two
types of basis functions, we refer to Figure 6 that depicts the types for the bivariate case.

We denote a best approximation as a(x), and we write it as a linear combination of the
basis functions associated with all distinct simplex corners and simplex edges. Assuming
that there are m distinct corners and n distinct edges, we can write a best approximation as

a(x) =
m∑

i=1
ci fi(x) +

n∑
j=1

dj gj(x). (3)

We must solve the normal equations to obtain the unknown coefficients ci and dj . In matrix
form, the normal equations are

〈f1, f1〉 . . . 〈f1, fm〉 〈f1, g1〉 . . . 〈f1, gn〉
...

...
〈fm, f1〉 . . . 〈fm, fm〉 〈fm, g1〉 . . . 〈fm, gn〉
〈g1, f1〉 . . . 〈g1, fm〉 〈g1, g1〉 . . . 〈g1, gn〉

...
...

〈gn, f1〉 . . . 〈gn, fm〉 〈gn, g1〉 . . . 〈gn, gn〉





c1
...

cm

d1
...

dn


=



〈F, f1〉
...

〈F, fm〉
〈F, g1〉

...
〈F, gn〉


, (4)

where 〈G, H〉 denotes the inner product of the two functions G and H, i.e.,

〈G, H〉 =
∫

common domain of G and H

G(x) H(x) dx. (5)

We must compute inner products involving curved and non-curved simplices. Since all
simplicial elements in physical space are defined as quadratic (or linear) mappings of the
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standard simplex, we can simplify integration by making use of the change-of-variables
theorem, see [34], which relates integration in physical space to integration in parameter
space for parametrically defined regions. In the 2D case, integrals are computed according to
the formula∫

curved simplex

G(x, y) dx dy =
∫

standard simplex

G
(

x(u, v), y(u, v)
)

J(u, v) du dv, (6)

where J(u, v) denotes the Jacobian associated with the mapping of the standard simplex to
the corresponding simplex in physical space. The Jacobian is the determinant

J(u, v) = |xu| =
∣∣∣∣ xu xv

yu yv

∣∣∣∣ =

∣∣∣∣∣∣
∂

∂u x(u, v) ∂
∂v x(u, v)

∂
∂u y(u, v) ∂

∂v y(u, v)

∣∣∣∣∣∣ . (7)

(The 3D case is a straightforward extension.) When using a simple linear transformation to
map the parameter space knots ui to associated physical space points xi, the Jacobian has a
constant value C. This constant value is given by the determinant

C =
∣∣ d2,0 d0,2

∣∣ (8)

in the 2D case and

C =
∣∣ d2,0,0 d0,2,0 d0,0,2

∣∣ (9)

in the 3D case, where the column vectors di are given by di = xi − x0.
The matrices resulting for the best approximation problems for different levels of simplicial

resolution are sparse, and several methods exist for bandwidth reduction, efficient factorization,
and inversion of such sparse matrices, see [8, 15, 18, 42, 44]. Matrix bandwidth is related
to the indexing scheme used for the set of basis functions, i.e., the indexing used for
simplex corners and simplex edges. We apply a bandwidth reduction step prior to matrix
factorization/inversion.

The computation of the inner products appearing in the normal equations requires
multi-dimensional integration over non-curved and curved simplicial elements. While the
change-of-variables theorem reduces this integration to integration over the standard simplex,
we still need to perform numerical integration for the calculation of the inner products
appearing on the right-hand side of the normal equations, i.e., integrals of the types 〈F, fi〉
and 〈F, gj〉, since F (x) can be any integrable function. We use Romberg integration for the
computation of these right-hand-side inner products, see [3, 27]. Appendix B lists some of
the needed inner product values for quadratic Bernstein-Bézier polynomials.

Once we have computed a best approximation for a particular simplicial domain decom-
position, we analyze the local approximation quality to identify those simplices that should
be refined (bisected) to further improve approximation quality. In the following section, we
discuss the general principles used for adaptive bisection.

5 Adaptive Bisection

For each simplicial element in a particular domain decomposition, we compute a local
approximation error. We define this error as

E(Si) =
∫

curved simplex Si

(
F (x)− a(x)

)2
dx. (10)

Chapte r 4
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Figure 7 Bisection of simplices in bivariate and trivariate cases.

We order the set {Si} of simplicial elements in decreasing order of their associated error
values E(Si). To construct a new, refined best approximation we specify a percentage of
simplices to be bisected and choose the simplices with largest approximation errors.

We bisect a simplicial element marked for refinement by identifying an edge of maximal
length, using arc length in the case of curved edges, and split this element by using the
midpoint of the split edge as a new simplicial corner vertex. The bisection step is shown in
Figure 7. All simplices sharing the split edge are bisected as well to avoid so-called hanging
nodes and thus preserve a conforming mesh. The bisection steps lead to a new simplicial
domain decomposition, and we must compute a new best quadratic spline approximation.

We continue to bisect a certain percentage of simplices in the resulting intermediate
simplicial domain decompositions until either the number of simplices in a decomposition
exceeds some threshold or an approximation is obtained whose maximal simplex-specific
error value is smaller than some tolerance. In principle, it is possible to store all intermediate
best quadratic spline approximations in addition to the originally supplied data, possibly
including a grid. For practical purposes, this might not always be possible due to storage
limitations. Therefore, the number of different best approximations that one stores usually
depends on the original resolution of a given data set and its underlying grid, the “complexity”
of a given analytical field function, the amount of storage available, and the criterion used
to terminate adaptive bisection. The final result of our method is a set of independent
best quadratic spline approximations to be used for the purposes of real-time, adaptive, or
hierarchical analysis and visualization.

6 Data Visualization Issues

Our data approximation method based on curved simplicial elements must also be considered
in the context of visualization techniques applied to data sets defined over 2D and 3D domains.
In the case of scalar-valued data sets, the particularly relevant visualization approaches to
be considered are (i) extraction and visualization of isocurves/isosurfaces or contours; (ii)
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slicing the data domain with lines/planes (slicing lines/planes); and (iii) ray casting, see
[19, 55, 56]. Applying these types of visualization techniques to curved simplicial elements
over which the dependent variable varies in a quadratic fashion requires us to generalize
standard visualization methods that often can deal only with elements with planar faces and
linearly or trilinearly varying dependent scalar value.

It is reasonable to view an approximation consisting of curved quadratic simplicial
elements to be competitive with a representation consisting of only non-curved, linear
simplicial elements when the higher-degree polynomial representation can be rendered nearly
as efficiently as the linear one. To study the competitiveness of the piecewise quadratic
approximation scheme one must compare rendering efficiency and simplicity for two types
of approximation: a piecewise quadratic approximation based on a combination of non-
curved and curved simplices and a piecewise linear approximation based on only non-curved
simplices. In order to compare two approximation schemes properly, one must require that
their respective overall approximation errors are nearly the same.

The application of slicing methods, contouring techniques, and ray casting to non-curved
quadratic elements is done routinely. As discussed in [58], for example, the intersection of
a ray with an isosurface inside a non-curved 3D simplicial quadratic element, for example,
reduces to solving a univariate quadratic equation. The volume rendering integral along a
ray segment, see [35], is generally too complex to be integrated in closed form, and it is
therefore computed numerically. A cut plane intersects a non-curved simplicial element in a
polygon on which the scalar field is a quadratic function. Quadratic texture coordinates can
be computed in software, or in hardware by taking advantage of texture look-up tables.

Visualization of curved simplicial elements is much more difficult. A quadratic mapping
from parameter to physical space must be inverted prior to evaluating a scalar field function
at a point in physical space. In the case of curved tetrahedral elements, this requires one to
solve three quadratic equations in three variables simultaneously, which can be done with
numerical techniques. One could require that a tetrahedral face shared by two tetrahedra
is planar, and thus it would be possible to define the field function directly in terms of
physical space. The construction of the necessary basis functions for this case is described in
Appendix A. Similar problems arise when intersecting a ray with an isosurface or a curved
simplex face. We intend to investigate in the future how to render curved simplices directly
by solving the involved algebraic equations most elegantly and most efficiently.

A simple solution is to subdivide a curved simplex adaptively, depending on a view, and
approximate a curved simplex by non-curved simplices resulting from a properly chosen
subdivision scheme. One can replace edge endpoints with the respective edge midpoints. A
reasonable criterion to use when deciding when to terminate the subdivision process could
be based on the image-space projected maximal deviation of the (union of) the non-curved
simplices from their curved “parent” simplex, to allude to just one possibility. Since we
represent curved simplicial elements in Bernstein-Bézier form, one could also apply subdivision
techniques used in computer-aided geometric design, see [12]. An algorithm like the one
described in in [58] could then be applied to the set of non-curved simplices, having quadratic
variation only in scalar value.

7 Conclusions

We have described a method for the construction of hierarchical approximations of functions
over 2D and 3D domains. The method uses curved simplicial elements to represent the
finite domain of a function to be approximated and constructs a best piecewise quadratic
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approximation in the least squares sense. Curved simplicial elements are promising in the
context of approximating complicated 2D or 3D domains and the dependent functions defined
over these domains. Such higher-order elements allow one to construct approximations with
relatively smaller error when compared to lower-order and non-curved elements.
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A Quadratic Basis Polynomials

Our method requires quadratic basis polynomials for non-curved and curved simplicial
elements. We review the definition of the standard Bernstein-Bézier polynomials used for
non-curved elements before generalizing these polynomials for curved elements.

The quadratic Bernstein-Bézier polynomial basis functions, defined for the standard
simplex in parameter space, are

B2
i (u) = 2!

(2− i− j)! i! j! (1− u− v)2−i−j ui vj (11)

in the bivariate case and

B2
i (u) = 2!

(2− i− j − k)! i! j! k! (1− u− v − w)2−i−j−k ui vj wk (12)

in the trivariate case. Through a linear parameter transformation we can evaluate these
quadratic polynomials over all non-curved simplices in physical space. Figure 8 illustrates
the graphs of two quadratic Bernstein-Bézier basis functions in the 2D case over the standard
triangle.

We must define quadratic basis polynomials for field function approximation over curved
simplices in a different way. These more general polynomials are not the result of applying a
simple linear parameter transformation. We define quadratic basis polynomials for curved
simplices in a way such that they are a generalization of the standard Bernstein-Bézier
polynomials for non-curved simplices and guarantee continuity in function value along/on the
shared edges/faces of all simplices. We define these generalized quadratic basis polynomials in
physical space: In the 2D case, it is possible to think of a set of six simplex-specific quadratic
basis polynomials, denoted as {Qi,j(x, y)}, as a set of six quadratic polynomials satisfying
certain interpolation conditions. We specify interpolation conditions at points (xk,l, yk,l)
that are distributed uniformly with respect to arc length along the edges of a curved simplex.
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Figure 8 Graphs of quadratic Bernstein-Bézier basis polynomials.

Using the short-hand notation Qk,l
i,j for Qi,j(xk,l, yk,l), the interpolation conditions, when

written in matrix form, are given by



Q0,0
0,0 Q1,0

0,0 Q2,0
0,0 Q0,1

0,0 Q1,1
0,0 Q0,2

0,0
Q0,0

1,0 Q1,0
1,0 Q2,0

1,0 Q0,1
1,0 Q1,1

1,0 Q0,2
1,0

Q0,0
2,0 Q1,0

2,0 Q2,0
2,0 Q0,1

2,0 Q1,1
2,0 Q0,2

2,0
Q0,0

0,1 Q1,0
0,1 Q2,0

0,1 Q0,1
0,1 Q1,1

0,1 Q0,2
0,1

Q0,0
1,1 Q1,0

1,1 Q2,0
1,1 Q0,1

1,1 Q1,1
1,1 Q0,2

1,1
Q0,0

0,2 Q1,0
0,2 Q2,0

0,2 Q0,1
0,2 Q1,1

0,2 Q0,2
0,2


= 1

4



4 1 0 1 0 0
0 2 0 0 0 0
0 1 4 0 1 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 1 1 4


. (13)

These interpolation conditions lead to the standard Bernstein-Bézier polynomials when
applied to a non-curved simplex. The construction of the basis polynomials in the 3D case is
based on the same principle.

Each generalized quadratic basis polynomial is zero outside the particular simplex for which
it is defined. The quadratic basis polynomials associated with curved simplices are not as
easily constructed and evaluated as those associated with non-curved simplices. Nevertheless,
once the generalized quadratic basis polynomials are determined for all curved simplices, we
can still compute inner products involving them by applying the change-of-variables theorem.

B Inner Products of Basis Polynomials

In the following, we define some of the required values of inner products of quadratic
polynomials. We only consider the case of these polynomials being defined over the standard
simplex in parameter space. For the quadratic Bernstein-Bézier basis polynomials B2

i (u)
defined for knots spaced uniformly along the edges of the standard simplex one obtains these
values for inner products Ik,l

i,j = 〈Bi,j , Bk,l〉 in the 2D case:



I0,0
0,0 I1,0

0,0 I2,0
0,0 I0,1

0,0 I1,1
0,0 I0,2

0,0
I0,0

1,0 I1,0
1,0 I2,0

1,0 I0,1
1,0 I1,1

1,0 I0,2
1,0

I0,0
2,0 I1,0

2,0 I2,0
2,0 I0,1

2,0 I1,1
2,0 I0,2

2,0
I0,0

0,1 I1,0
0,1 I2,0

0,1 I0,1
0,1 I1,1

0,1 I0,2
0,1

I0,0
1,1 I1,0

1,1 I2,0
1,1 I0,1

1,1 I1,1
1,1 I0,2

1,1
I0,0

0,2 I1,0
0,2 I2,0

0,2 I0,1
0,2 I1,1

0,2 I0,2
0,2


= 1

180



6 3 1 3 1 1
3 4 3 2 2 1
1 3 6 1 3 1
3 2 1 4 2 3
1 2 3 2 4 3
1 1 1 3 3 6


. (14)
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In the 3D case, the needed values of inner products I l,m,n
i,j,k = 〈Bi,j,k, Bl,m,n〉 are

I0,0,0
0,0,0 I1,0,0

0,0,0 I2,0,0
0,0,0 I0,1,0

0,0,0 I1,1,0
0,0,0 I0,2,0

0,0,0 I0,0,1
0,0,0 I1,0,1

0,0,0 I0,1,1
0,0,0 I0,0,2

0,0,0
I0,0,0

1,0,0 I1,0,0
1,0,0 I2,0,0

1,0,0 I0,1,0
1,0,0 I1,1,0

1,0,0 I0,2,0
1,0,0 I0,0,1

1,0,0 I1,0,1
1,0,0 I0,1,1

1,0,0 I0,0,2
1,0,0

I0,0,0
2,0,0 I1,0,0

2,0,0 I2,0,0
2,0,0 I0,1,0

2,0,0 I1,1,0
2,0,0 I0,2,0

2,0,0 I0,0,1
2,0,0 I1,0,1

2,0,0 I0,1,1
2,0,0 I0,0,2

2,0,0
I0,0,0

0,1,0 I1,0,0
0,1,0 I2,0,0

0,1,0 I0,1,0
0,1,0 I1,1,0

0,1,0 I0,2,0
0,1,0 I0,0,1

0,1,0 I1,0,1
0,1,0 I0,1,1

0,1,0 I0,0,2
0,1,0

I0,0,0
1,1,0 I1,0,0

1,1,0 I2,0,0
1,1,0 I0,1,0

1,1,0 I1,1,0
1,1,0 I0,2,0

1,1,0 I0,0,1
1,1,0 I1,0,1

1,1,0 I0,1,1
1,1,0 I0,0,2

1,1,0
I0,0,0

0,2,0 I1,0,0
0,2,0 I2,0,0

0,2,0 I0,1,0
0,2,0 I1,1,0

0,2,0 I0,2,0
0,2,0 I0,0,1

0,2,0 I1,0,1
0,2,0 I0,1,1

0,2,0 I0,0,2
0,2,0

I0,0,0
0,0,1 I1,0,0

0,0,1 I2,0,0
0,0,1 I0,1,0

0,0,1 I1,1,0
0,0,1 I0,2,0

0,0,1 I0,0,1
0,0,1 I1,0,1

0,0,1 I0,1,1
0,0,1 I0,0,2

0,0,1
I0,0,0

1,0,1 I1,0,0
1,0,1 I2,0,0

1,0,1 I0,1,0
1,0,1 I1,1,0

1,0,1 I0,2,0
1,0,1 I0,0,1

1,0,1 I1,0,1
1,0,1 I0,1,1

1,0,1 I0,0,2
1,0,1

I0,0,0
0,1,1 I1,0,0

0,1,1 I2,0,0
0,1,1 I0,1,0

0,1,1 I1,1,0
0,1,1 I0,2,0

0,1,1 I0,0,1
0,1,1 I1,0,1

0,1,1 I0,1,1
0,1,1 I0,0,2

0,1,1
I0,0,0

0,0,2 I1,0,0
0,0,2 I2,0,0

0,0,2 I0,1,0
0,0,2 I1,1,0

0,0,2 I0,2,0
0,0,2 I0,0,1

0,0,2 I1,0,1
0,0,2 I0,1,1

0,0,2 I0,0,2
0,0,2



= 1
1260



6 3 1 3 1 1 3 1 1 1
3 4 3 2 2 1 2 2 1 1
1 3 6 1 3 1 1 3 1 1
3 2 1 4 2 3 2 1 2 1
1 2 3 2 4 3 1 2 2 1
1 1 1 3 3 6 1 1 3 1
3 2 1 2 1 1 4 2 2 3
1 2 3 1 2 1 2 4 2 3
1 1 1 2 2 3 2 2 4 3
1 1 1 1 1 1 3 3 3 6


. (15)

We use Romberg integration to compute inner products of quadratic basis polynomials fi(x)
and gj(x) and the function F (x) to be approximated.
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