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ABSTRACT

Clustering is a powerful analysis technique used to detect structures in data sets. The output of a clustering process
can be very large. However, if presented in a textual form, the amount of information that can be understood is limited. An
alternativé approach is to display the data in a graphical way. An advantage of visualization is that a larger amount of
information can be perceived. Supporting user interaction and manipulation of the object space enables exploration of large
data sets.

We present a technique for the visualization of cluster hierarchies. The input to our technique is a finite set of
n-dimensional points. All points are initially placed in one cluster, which is recursively split, creating a hierarchy of clusters.
Principal component analysis is used to determine how to optimally bisect a cluster. After splitting a cluster, a local
reclassification scheme based on the Gabriel graph is applied to improve the quality of the classification. As a byproduct of
the generation of the cluster hierarchy, we compute and store the eigendirections, eigenvalues and local centers for each
cluster at each level of the hierarchy.

For the visualization of the cluster hierarchy, the user has to specify the three dimensions that are used for the
rendering process. The local coordinate systems (centroids, eigenvalues, and eigendirections) of each cluster induce a local
metric that can be utilized to define "density functions." These functions describe hyperellipsoids that we render in two
different ways: (1) we generate a set of (transparent) contour surfaces (each cluster would appear as a translucent surface) or
(2) we apply "ray casting” to simulate the behavior of X-rays penetrating the density fields implied by the clusters. In order
to show the different levels in the hierarchy, one can either render only those clusters belonging to the same level or,

alternatively, use transparency to be able to see through the ‘outer shell’ of a cluster and see the finer, more detailed
structures inside.

Keywords: Data Analysis, Hierarchical Classification, Clustering, Visualization, Data Exploration, Data Reduction,
Multiresolution Hierarchy, Ray Casting, Contouring.

1. INTRODUCTION

Modemn computer and imaging technology allows the generation of larger and larger amounts of data. These massive data
sets can be found in engineering applications (e.g., computational fluid dynamics), business applications (e.g., warehousing
data about consumer behavior), as well as in other fields. However, the amount of data that has to be comprehended by
humans has far surpassed our ability to "digest" and interpret this data. In order to gain some form of higher-level insight into
massive data, it is crucial to develop technology that supports various means of analyzing and visualizing different degrees of
abstraction within massive data sets.

Data analysis and visualization have a symbiotic relationship: Even in high-performance visualization environments, the
number of polygons that can be displayed and manipulated in real-time is limited [2]. In addition, the perceivable amount of

Further author information -
Email: {heckel, hamann}@cs.ucdavis.edu

Part of the IS&T/SPIE Conference on Visual Data Exploration and Analysis V @ San Jose, California, USA e January 1998
162 SPIE Vol. 3298 e 0277-786X/98/$10.00




?'mformation displayed on a screen is bounded by resolution and by the cognitive abilities of the user. Therefore, data analysis
- ;s needed to obscure details with low informational value, showing only the essence of the data. When more detailed
information is desired, data analysis can be used to generate a multiresolution hierarchy which can be explored interactively.

On the other hand, presenting the outcome of a data analysis process, normally in a textual form, allows only a limited
understanding of the information. There, an order of tens of different elements is perceivable, while visualization allows the
rendering of thousands of elements [1]. Visualization becomes very important with increasing complexity of the data.

The application of advanced visualization techniques coupled with user interaction during analysis provides a better delivery
of information. We believe that a symbiosis of statistics-based approaches and modern visualization technology will greatly
enhance our ability to comprehend quickly vast amounts of information.

2. OVERVIEW

We propose utilizing and generalizing techniques classically known in statistics and computer visualization. In particular,
clustering techniques have been used to analyze multi-dimensional data sets. However, very little work has been done on the
visualization of cluster hierarchies. A classical representation of a classification is the so-called dendogram [3]. A dendogram
is a tree which shows how related sets of objects are nested in a hierarchical classification. This representation shows only
the structure of a classification, and does not provide any information about either the domain of the objects nor about the
characteristic of each set. Cone trees [15], recently developed in information visualization, can be used to lay out such a
hierarchy in three dimensional space. However, it has similar properties as a dendogram and focuses on displaying structural
information. Instead, a representation is needed that shows how sets of objects are characterized and how such sets are
related. An initial approach is described [16] in which spheres are wrapped around groups of similar objects. Our approach
considers the geometric shape of clusters and their locations, as well as their position in the hierarchy.

Set of Objects The input to our method can be a set of data tuples of arbitrary dimension. We
perform a hierarchical clustering technique before doing any type of

Classification visualization. We determine a hierarchy of clusters, each one defined in terms

Cluster Hierarchy of a cluster center and its (scaled) principal directions. We apply visualization

techniques to user-specified three-dimensional subsets of our cluster
hierarchy. Our current visualization module requires the user to identify those
Density Functions three dimensions that are most significant for subsequent data analysis. A
g g : cluster hierarchy, when restricted to three dimensions, is used to define

v Visualization techniques

Principal component analysis

density functions which can be superpositioned -- and reflect the extent and
Display shape of the individual clusters. We apply three visualization methods for the
rendering of a cluster hierarchy:

(1) slicing the domain of the density functions and color-coding the slices
according to function value; (2) computing and rendering contours of the
density functions; and (3) generating transparent images by simulating rays penetrating the three-dimensional domain of the
density functions ("ray casting").

Figure 1: Overview of the cluster
visualization process. :

3. CLASSIFICATION

Classification is concerned with the analysis of a set of objects and their correlation. It is a classical data analysis technique
that has been studied thoroughly over the last decades [11]. Its goal is to establish a set of groups such that objects assigned
to the same group have certain similarities while they differ from objects in other groups. These groups are not known
a-priori and must be determined by examining the characteristics of the given objects. Often, one is also interested in such
data partitions at different levels of granularity. In this case, a hierarchy of nested set partitions is needed. Hierarchical
classifications are very common in all fields of science, such as biology, psychology, and chemistry.

With the rapid growth of electronically stored data, hierarchical classification becomes increasingly important for data
management and exploration. Classification has also been adopted as a standard technique in the emerging field of data
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mining, where it is used to analyze very large data sets [10]. It is applied in an enormous variety of research areas, ranging
from fields like earthquake prediction, whale monitoring, marketing, psychology, biophysics, criminology, information
retrieval, image segmentation to phenetic taxonomy [4].

Referring to Tucker's terminology [4] the type of the data we use is “two-way two-mode”: The set of objects to be examined
is described by a two-dimensional profile matrix. The rows and columns refer to disjoint sets. The columns indicate attributes
of the objects, while the rows describe the objects. M objects with n attributes are represented by an m-by-n matrix. The data
set can also be understood as a sequence of n-dimensional vectors. Currently, we restrict the domain of the attributes to real
numbers. Other domains (e.g., integer, complex, symbolic) could be mapped to real numbers by using appropriate
transformation functions. However, the characteristics of the original domain and the transformation must be considered for
measuring dissimilarities between objects and sets of similar objects, so-called clusters.

For the construction of a classification, a (dis-)similarity measure between pairs of objects and between objects and clusters
is essential. The characteristic of the measure determines the output of the classification. Often, the dissimilarities of the
objects are explicitly stored in a symmetric m-by-m matrix. In our case, we are interested in creating a cluster hierarchy for
large data sets. Therefore, the size of the dissimilarity matrix could be very large and strongly vary during the classification
process. To limit storage requirements, we consequently measure the pairwise dissimilarity implicitly as a function of the
attributes of the objects/clusters. Currently, we use Euclidian distance to measure dissimilarity of two n-dimensional vectors.
But for instance, converting the currency in a financial data set would possibly yield a different cluster hierarchy, if
Euclidean distance were used as a measure. To avoid this effect, an affine invariant norm could be used instead [7]. Other
important issues to be considered are inclusion, standardization, and weighting of the attributes describing an object I3}
Overall, choosing an appropriate dissimilarity measure requires knowledge about the nature of the data and the context of the
classification.

Our method for creating the cluster hierarchy is based on an incremental and adaptive paradigm. We are using a top-down
approach, since we are interested in finding clusters with non-trivial shapes, which therefore have a cardinality of more than
one. So, the lowest levels of a complete hierarchy are, in general, not needed. Because of the exponential growth of clusters
as a function of the depth of the hierarchy, using a bottom-up approach would result in a higher time complexity. It would be
a function of the number of objects, instead of the number of desired depth of the hierarchy.

Initially, all data objects are placed in one cluster, which is recursively split until a termination criterion is met. The
classification stops when a certain number of clusters have been created or the global error does not exceed a given limit. The
global error is defined as the sum of the distance of each object to its associated cluster's center. Recursively, the cluster with
the highest local error is split incrementally, reducing the global error of the classification. A cluster is either split in the
direction of the dimension with the highest deviation or in the direction of the eigenvector with the highest eigenvalue. To
determine the centers of the two new clusters that replace the split cluster, the direction vector is added to/subtracted from the
center of the split cluster. In order to use the eigenvector for splitting a cluster, principal component analysis (PCA) must be
conducted first. For a cluster, which consists of many associated objects, this can be very costly. Therefore, a threshold
variable Ty, is used to control when each splitting mechanism should be used. If the number of objects associated with the
cluster C; to be split exceeds the value of tyc,, the cluster C, is split in the direction of the dimension with the highest
deviation. Otherwise, the eigenvector with the highest eigenvalue is used to determine the centers of the new clusters that
result from splitting C;. From our experience, using the eigenvector yields, on average, a classification with a slightly smaller
global error. After splitting a cluster, one of three different reclassification strategies is used:

1. Global reclassification: All objects are reassigned to their closest cluster. The centers of the clusters are then updated by
averaging the attributes of the associated objects.

2. Partition of split candidate: Only the objects associated with the split cluster are considered for the reclassification.
These objects are assigned to either one of the two new clusters, which then is updated based on the assigned objects.

3. Local reclassification: The objects to be reclassified are given by the objects that are assigned to the split cluster or to the
Gabriel neighbors of that cluster. Two clusters are Gabriel neighbors, if they are connected in the Gabriel graph
constructed from the cluster centers. Two points p and q are connected in a Gabriel graph, if only p and q are contained
in the hypersphere, which has the midpoint of p and q as the center and the distance from p to q as the diameter. The
Gabriel graph of a point set is a subset of its Delaunay graph and a superset of its relative neighborhood graph [13][14].
After the reclassification, the neighbor list of affected cluster is updated.
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"Aﬁer the classification is established, the cluster hierarchy must be created. If partitioning is used as a reclassification

Fscheme, the cluster hierarchy follows directly from the construction of the classification. For global and local classification,

the hierarchy must be explicitly created, since the inclusion property is not necessarily valid, for a spit cluster and its two
children; due to the reclassification, an object assigned to a cluster might not be a member of its child clusters. Therefore, the
hierarchy is created in a bottom-up fashion by recursively merging two clusters that have the lowest dissimilarity. While
constructing the hierarchy, a rank is assigned to each cluster. The leaves of the hierarchy have rank 0. A cluster with rank 0 is
called leaf cluster, while the cluster with the highest rank is considered root cluster. A root cluster contains all objects of the
data set. After merging two clusters, the rank of the resulting cluster is the maximum of its child clusters plus one. Clusters
with the same rank are considered to lie on the same /evel of the hierarchy.

The time complexity for the classification process using global reclassification is O(c**n), where c is the number of clusters
and n the number of objects. Therefore, global reclassification is hardly applicable to larger data sets. For local
reclassification and partition, the time complexity is O(c*n). However, partitioning is independent of the number of
dimensions, while the execution time using local reclassification depends on the number of neighbors, which generally
increases with the number of dimensions. (In the formula above, the number of dimensions is assumed to be constant.) A
three-dimensional, randomly distributed data set using partitioning as a reclassification scheme is about eight times faster
than local reclassification. The global error using local reclassification is about 5%-10% less than using partitioning, and 1%-
3% higher in respect to global reclassification.

Alternatively, other heuristic reclassification schemes could be used. For example, the quality of the local classification
scheme could be improved by recursively propagating changes throughout the neighbor clusters until no changes occur.
However, we find that using the local reclassification scheme described above is a good compromise between output quality
and execution time. It provides a tremendous speed-up compared to global classification, while the error is only slightly
greater.

4. DENSITY FUNCTIONS

Each cluster in the cluster hierarchy has an associated center and a set of eigenvectors v; and eigenvalues A, obtained by
. principal component analysis. This data describes a cluster's hyperelliptical shape. It
. can also be interpreted as a local, orthogonal coordinate system: the center of the cluster
' x is the origin and the eigenvectors, scaled by the corresponding eigenvalues, are the

unit vectors of the local coordinate system. Thus, each node in our tree representation

of the cluster hierarchy has an associated coordinate system, which we use to define a

cluster-specific density function.

To measure the distance & of a given point £ in n-dimensional space to a certain cluster,

we use the metric implied by its local coordinate system. First, § is transformed to a

point in the local coordinate system &' by projecting it onto the eigenvectors and scaling
: it by the corresponding eigenvalues:

Figure 2: Local coordinate (f 2 A ) Vi
system. (x;) = “"“_'1—'“ (1)

Then the distance to the center of cluster is:

(2)

We use these local distance measures to define density functions with compact support for each cluster. More specifically, the
region over which the density function is non-zero contains all the points that are part of the cluster. Outside this region, the
density function is zero. We use a Hermite-like approach: The density function has its maximum at the origin of the cluster's
local coordinate system (and zero derivative at this point) and decreases smoothly to zero on the boundary of its compact
support region. The boundary is determined by that point in the cluster that lies furthest away from the origin of the local
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coordinate system.~The distance o to this point is used to scale the parameter § of the Hermite function. The value of the
density function varies in a cubic fashion from its maximum value 1 at the origin to zero on the boundary, where its
derivative is also zero. The independent variable of this distance function is distance from the local origin. Furthermore, this
distance is measured in the metric induced by the local eigendirections and eigenvalues, i.e., points in the domain having the
same distance to the origin lie on hyperellipsoids.

Density We assign a color value to each cluster. Given a point P in n-dimensional
A space, the color contribution of a cluster to the color at P is calculated by
1 5\ Y using the density function to determine the intensity of the cluster's color

Density(3)={' =3 [(;J +2'(d) A A in P.

0 ifd >a

We use the principle of superposition to define two overall functions for
density and color at a given point. These are in some sense the sum of all
the individual, cluster-specific functions. Later we will use these functions
v Distance 5 for tl.1e visualigation qf a clustér hier.archy. We use the following
0 a paradigm: Density functions associated with clusters with a low rank have
Figure 3: Density function. relatively large density values associated with the origins of their local

coordinate systems. Density functions associated with a high rank have
relatively small density values associated with the origins of their local coordinate systems. The reason for this becomes
more obvious in the context of the visualization process: In order to generate transparent images of the cluster hierarchy,
smaller clusters have to shine through the larger parent clusters. This is achieved by weighting the individual density
functions using individual or level-specific maximum values for the individual density functions. This also allows
highlighting certain clusters or layers in the hierarchy. In order to support data exploration, these parameters can be changed
interactively. Only a subset of the complete cluster hierarchy is used for the visualization process in order to provide real-
time visualization using slicing and contouring. Clusters are only considered if their density function has a positive weight.

Another approach is to only consider the density of clusters with the lowest rank at a given point. In this case, if the point P
lies in a cluster, the contribution of its parent clusters are simply ignored in the overall function. Because clusters with an
equal rank may overlap, more than one cluster may contribute to the density or color at P.

For ray casting, instead of measuring the distance to the cluster center, we alternatively use the distance to the boundary of
the cluster as input for the density function. We call the resulting function a cluster’s boundary density Sfunction. Using this
function in the visualizing process yields the shell of a cluster. This approach allows the user to better see through clusters
and look at their interior. In order to control the thickness of the shell, the boundary distance is multiplied by a scaling factor.
Choosing a thin shell results in very sharp contours of a cluster’s shell.

5. SPECIAL CASES

It is possible that certain clusters consist of individual points, of points lying on a line, or points lying in a plane. Thus, the
inherent dimensionalities of such clusters are 0-dimensional, 1-dimensional, and 2-dimensional, respectively. The principal
component analysis will yield zero eigenvalues for the corresponding directions.

In the context of defining our density functions and visualizing our clusters as inherently 3-manifold structures, we must
replace eigenvalues of value zero by an artificial, small number. This number has to be chosen large enough, such that
sampling the density function for visualization purposes does not miss a cluster. The number, therefore, is dependent upon
the sampling rate. With replacing eigenvalues of zero we can always define a cluster-specific coordinate system whose
eigendirections are all different from the null vector. This allows definition of our density functions for all possible types of
clusters and to visualize all types of clusters as truly volumetric entities.
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. 6. VISUALIZATION

Currently, we support_four different display modes in three-dimensional object space. If the object space has more than three
dimensions, a three-dimensional hyperspace has to be selected for the rendering process. One of the visualization modes
directly uses the cluster hierarchy. The centers of clusters at a certain level in the hierarchy are displayed. By changing this
level, one can observe how clusters are nested in the hierarchy. By clicking on the centers, different functions can be
activated, for example, to show a cluster's Gabriel neighbors, its associated data points, or its local coordinate system.
Figure 4 shows an example for this display mode - three clusters (large, green spheres) generated from 16 randomly
distributed data points (small, red spheres). The size of the spheres representing clusters indicates the number of associated
. data objects. Gray lines describe the local coordinate systems and blue lines are connecting

Gabriel neighbors. This visualization mode proved to be useful to get a first impression

A about the data set and find appropriate parameters for rendering the density functions.

®. We use three standard visualization techniques to render density functions: slicing,

5 Ja e contouring, and ray casting. Since all density functions are known explicitly once cluster

T & centers, eigendirections, and eigenvalues have been determined, we can evaluate them at

r’/'f“‘ . arbitrary locations, which is needed for slicing. Alternatively, we can evaluate them on a

A\ uniform-rectilinear grid, which is needed for contouring and ray casting. For these

2 visualization techniques, the gradient vector is determined at a given point and used for
Phong shading.

Slicing is performed in the following way: Once the user has defined an arbitrary cutting
Figure 4: Viewing the output plane, we discretize this plane using a uniform-rectilinear grid and evaluate the underlying
of the classification process. density function at all grid points. The individual quadrilaterals defined by the grid in the

cutting plane are then Gouraud-shaded. It is possible to move a cutting plane in real time through the density function.

Contouring is achieved by means of the Marching Cubes algorithm: The density function is evaluated at the grid points of a
uniform-rectilinear mesh that discretizes the region of interest in three dimensions. The grid implies a piecewise trilinear
approximation of the underlying continuous density function. We construct a triangulation of a contour by determining the
individual contour pieces for each grid cell.

Our system supports two standard ray casting techniques: Levoy’s and Sabella’s algorithms. Again, we evaluate the
underlying density function on a uniform-rectilinear grid and assume a piecewise trilinear variation for the approximation of
the density field. Given a user-specified eye point and line of sight, we shoot a two-dimensional array of rays into the set of
data cubes and integrate the density function along each one of those viewing rays. The result is a two-dimensional image
showing the various levels in the cluster hierarchy. At this point, it becomes evident why we chosen our cluster-specific
density functions in the way that we did: Clusters consisting of a small number of points have associated density functions
that are non-zero over only small regions, yet their associated maximal density values (at their centers) are very high. This
produces translucent images where the small clusters stand out as high-intensity points shining through the next levels in the
cluster hierarchy.

7. EXAMPLES

We have applied our hierarchical classification and visualization approach to various test data. We provide two examples: (1)
four overlapping spheres places on the corners of a square; and (2) data points along a helix.

For the sphere data set, four thousand data points were generated which are uniformly distributed in four spheres. These
spheres are located on the comers of a square and overlap by 10% of their radius. A cluster hierarchy consisting of seven
clusters and four leaf clusters is determined. For the visualization, the root cluster and the four leaf clusters are selected. In
figure 5, ray casting is applied to the density function of the cluster hierarchy. A low weight is used for the root cluster and
high weights are associated with the leaf clusters. The resulting picture shows a hull around the data set and four overlapping
spheres inside it. In figure 6, the density function is replaced by the corresponding boundary density function. Comparing
figure 5 and figure 6 shows that when the boundary function is used, more levels in the hierarchy can be displayed at once.
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Pictures generated from the boundary density function appear sharper. The density function stresses the ‘influence’ of a

cluster center at a certain point. The farther away a point is from a cluster center, the smaller is the influence of that center
and the smaller is its color contribution.

Figure 5: Ray casting applied to the density Figure 6: Ray casting applied to the boundary
function of the sphere data set. density function of the sphere data set.

In figure 7, slicing is applied to the sphere data set. Three orthogonal and transparent cutting planes are used. Contouring is
applied in figure 8 to render the density function. The pictures for the sphere data set indicate that the clustering algorithm
correctly identifies the overlapping spherical clusters.

Figure 7: Ray casting applied to the density Figure 8: Contouring applied to the
function of the sphere data set. density function of the sphere data set.

The helix data set is obtained by randomly choosing points along the curve [sin(t), cos(t), t], t varying between 0 and 67, and
randomly perturbing the points away from the exact helix. The data set used to generate the pictures below consists of 5000
samples. A classification with 30 leaf clusters is determined; these clusters are selected for the visualization process. Figure 9
shows ray casting applied to the density functions of the leaf clusters. High transparency of the clusters creates an X-ray-like
image. In figure 10, the boundary density function is rendered with low transparency value. The pictures show ellipsoids
with different orientation and shape representing the underlying helix structure. In figure 11, the shape of the helix is
reconstructed by applying contouring on the density function.
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Figure 9: Ray casting applied to the Figure 10: Ray casting applied to the
density function of the helix data set. boundary density function of the helix.

Figure 11: Contouring applied to the helix data set.

8. CONCLUSION AND FUTURE WORK

We presented a new approach to visualize cluster hierarchies. It allows a user to analyze and interactively explore large data
sets. The fundamental idea is to represent a cluster hierarchy as a density function, which is rendered using standard
visualization techniques. Our approach enables examination of data sets on different level of detail and local refinement of
the level of abstraction. The classification provides a reduction of the original data set while minimizing the deviation error.
This is important for allowing interactive data exploration in real-time.

The classification process and the density function concept are applicable to data sets of an arbitrary number of dimensions,
however visualization is currently limited to three-dimensional object (sub-)space. In order to display complete data sets of
higher dimensionality, transformations like (1) nonlinear projection based on Kohonen's topology preserving maps [5][9] or
multidimensional scaling [6] could be applied. Alternatively, we are currently working on new visualizations techniques for
multi-variant data sets that can be used for exploring multiresolution hierarchies. We are also working on the parallelization
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of the classification and visualization processes to utilize multiprocessor workstations and network of workstations. This willA,,
enable interactive exploration of a larger selection of clusters in real-time. |

Other extensions of our work will include research on adaptively changing the level of detail. For example, if the viewer s
very far away from a helix-shaped object as described in chapter 7, only the outer hull will be displayed. Moving closer to
the helix will incrementally reveal the underlying shape of the object.

Currently, the primitives used for rendering are hyperellipsoids. The shape of these elements results from the metric used to
measure dissimilarities between objects. Other primitives, for example polyhedrons, could be derived from the cluster
hierarchy by applying feature detection techniques.
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