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ABSTRACT

We present a highly efficient, automatic method for the
generation of hierarchical surface triangulation. Given a set of
scattered points in three-dimensional space, without known
connectivity information. our method reconstructs a valid
triangulated surface model in a two-step procedure. First, we
apply clustering to the set of given points and identify point
subsets in locally nearly planar regions. Second, we construct a
surface triangulation from the output of the clustering step. The
output of the clustering step is a set of 2-manifold tiles, which
locally approximate the underlying unknown surface. We
construct the triangulation of the entire surface by triangulating
the individual tiles and triangulating the gaps between the tiles.
Since we apply point clustering in a hierarchical fashion we can
generate model hierarchies by triangulating various levels
resulting from the hierarchical clustering step.
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1 INTRODUCTION

Surface reconstruction is concerned with the extraction of shape
information from point sets. Often, these point sets describing
complex objects are generated by scanning physical objects, by
sampling other digital representations (e.g., contour functions) or
by merging data from different sources. Consequently, they might

embody incompleteness, noise and redundancy making a general
approach for reconstructing surfaces a challenging problem. In
many instances, high complexity and high level of detail
characterize the described objects. Different levels of
representation are needed to allow rapid rendering and interactive
exploration and manipulation. Surface reconstruction problems
anise in a wide range of scientific and engineering applications
including reverse engineering and industrial design. geometric
modeling and grid generation, multiresolution rendering.

We. introduce an extremely fast surface reconstruction method
that is based on cluster analysis. Our approach generates a
multiresolution of reconstructed surfaces from arbitrary point sets.
The reconstructed model is generated in two stages. First.
applying clustering to the point set yields a set of almost flat
shapes - so-called tiles - that locally represent the underlying
surface. In the second stage, the gaps between the unconnected
tiles are filled by inserting triangles producing a valid geometrical
and topological multiresolution model.

2 RELATED WORK

2.1 Surface Reconstruction

The goal of surface reconstruction methods can be described like
this:

Given a set of sample points X assumed to lie on or near an
unknown surface U, construct a surface model S approximating U.

a) original discrete data

clustering

b) intermediate model

¢) final surface model

reconstruction
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Most surface reconstruction methods require additional
topological knowledge, such as connectivity information, surface
topological type. Common approaches are parametric
reconstruction, function reconstruction. and constriction methods.

Only a few methods developed recently by Hoppe et al. [3][4] are’

capable of creating valid topological and geometrical models from
only 3D coordinates of sample points. Another surface
reconstruction method that is related to the reconstruction stage of
our approach is the concept of alpha shapes (ct-shapes) proposed
by Edelsbrunner and Muecke [1]. Compared with other
approaches, our method’s main advantage is the overall
performance.

2.2 Multiresolution modeling

A multiresolution model is a model defined by a set of levels of
detail of an object. which can be used to efficiently access any one
of those levels on demand. Surface simplification is a particular
form of multiresolution modeling in which the goal is to take a
polygonal model as input and generate a simplified model (i.e.,
approximation of the original) as output. A variety of methods
have been developed, including image pyramids [9], volume
methods [10]. edge, face and vertex decimation techniques
[111[6][7][13][2], vertex clustering [12], simplification envelopes
[14]. and wavelet methods [5][8].

3 SURFACE RECONSTRUCTION

3.1 Clustering

The input for our clustering process is a set of scattered points in
3-dimensional space. Our method for creating the cluster
hierarchy is based on an incremental and divisive paradigm.
Initially, all points are placed in one cluster, which is recursively
split. A cluster C is a subset of the given data set. The center of a
cluster C.p.=(cx,cy,cz) is defined as the geometric mean of the
points pi=(Xi,Ypi-Zpi) With i€ {1..k} associated with the cluster of
size k.. At each stage of the clustering process. every point is
associated with exactly one cluster, that is the cluster with its
center being the closest in terms of Euclidean distance. The
internal error of a cluster is the sum of the distances from the
cluster center to the associated points. In each iteration of the
clustering process, the cluster C; with the highest internal error is
split into two clusters. Alternatively, the cluster with the highest
eigenvalue could be selected for the splitting process, which in
our experience yields similar results. The centers of the generated
clusters are determined by adding/subtracting an offset vector
to/from the center of the original cluster. This offset vector lies
either in direction of highest deviation of the cluster data or in the
direction of maximum variance. The direction of maximum
variance is computed by performing principal component analysis
(PCA) on the 3-by-3 covariance-matrix M of the cluster’s
normalized k-by-3 data matrix A:
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The direction of maximum variance is equivalent to the
eigendirection with the largest eigenvalue. Using the direction of
maximum variance is generally more accurate, but is only feasible
if the number of points is relatively small (e.g.. less than 500).
Therefore, a threshold variable Tpcs is used to control which
splitting mechanism is used. After splitting a cluster, a local
reclassification scheme is used to improve the qualitv of the
classification. The points to be reclassified are given by all points
that are assigned to the split cluster and its neighbor clusters in the
Gabriel graph [15] of the cluster centers. After each
reclassification step we update the local neighborhood. The
cluster centers are moved to reflect the changes in the point-
cluster association. The Gabriel graph is updated locally and
another cluster is split subsequently. The clustering process
terminates when the smallest eigenvalues of all clusters do not
exceed the threshold Tpcajimic-

3.2 Reconstruction

At this point, we have a set of clusters that partition the original
data set. Since we choose a relatively small value for Tpeagmi. the
points associated with a certain cluster are near-coplanar. Thus.
the point clusters have an almost flat shape. For each cluster C;,
the cluster center and the two eigendirections with the two largest
eigenvalues define a plane P; that locally minimizes the sum of
the plane-to-point distances for the associated points. We project
all points p, associated with cluster C; into the plane P, and
compute the convex hull H; for the projected points p,' in the
associated plane. We then map the points p,' on H; back to their
original locations in three-dimensional space. The result is a flat,
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Figure 2: Tile generation.

convex polygon in 3D-space defining the so-called tile T; of
cluster C,, that consists of a set of points p,” lying in H;. For each
cluster we generate a pseudo-tile T;' by replacing the points p;”
defining the tile boundary by their original points p;. Pseudo-tiles
are not necessarily planar.
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After the tile generation is completed, each cluster C; has two
corresponding representations by its tile T; and its pseudo-tile Ty
The principal orientation of T; and T’ is described by the cluster’s
eigendirection with the smallest eigenvalue.

tile triangulation T4

gap triangulation T,

Figure 3: Triangulation of tiles and between
tiles.

For the reconstruction process we triangulate pseudo-tiles by
connecting the cluster center with the vertices of its boundary
polygon. The resulting set of triangles T1 (tile triangulation) is a
close approximation of the unknown surface. However, it is not a
consistent model due to the lack of connectivity information for
the tiles. A connected model is obtained adding a set of triangles
T2 (gap triangulation) to T1 that fills the gaps between the tiles.
To determine T2. we apply a Delaunay Triangulation (DT)
algorithm to the boundary points of the pseudo-tiles. Since the
boundary of the Delaunay Triangulation describes the convex hull
of the point set, we have to remove certain elements of the mesh
(triangles or tetrahedra) which “do not belong” to the desired
surface. We remove triangles from the Delaunay Triangulation, if
(1) all points lie in one tile or (2) if the points do not fit in a sphere
of radius B. the value of B is chosen by locally adjusting the
global alpha threshold depending on the tile area. Since we have

“almost defined a topology” after the tile generation step.
completing the reconstruction is a far simpler problem than
applying the o-shape approach directly to the original set of
points. Because the gaps between the tiles are relatively small,
one can choose a very small a-value without removing important
features of the model. Removing the undesired triangles from the
Delaunay Triangulation of the boundary points yields the set of
triangles T, that fill the gap between tiles. By merging T, and T,
we obtain a consistent model.

4 APPLICATION

We have applied our method to a variety of data sets. Three
resolution levels of the Mt St. Helens data set. which consists of
151,728 points, are shown in figure 4. The multiresolution
hierarchy for up to 1391 tiles has been generated in about 2
minutes on a SGI O° workstation with a 180 MHz R5000
processor. In Figure 5, the result of the application of our method
to four other data sets is shown. The corresponding performance
data is shown in Table 1. Additional performance information.
error measure and pictures can be found on the project homepage
(http://graphics.ucdavis.edu/people/heckel/projects/reconstruction
/index.html).

Data Set #of reconstruction # of tiles
points time in [sec]
Mt St. Helens | 151,728 132.8 1391
Car 20.621 16.3 517
3Holes 4.000 4.1 402
Rabbit 35.929 34.7 127
Peak function 20.000 18.1 693

Table 1: Performance data for five data sets.

Figure 5: Four reconstructed models.
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5 SUMMARY AND FUTURE WORK

The algorithm we have presented allows the generation of a

hierarchy of surface models from discrete point sets without

known connectivity information. While we have demonstrated the
power of our approach only for surface models, we are quite
confident that the same clustering paradigm. when applied to
more general two- or three-manifold, or even time-varying data,
would significantly speed up the process of computing multiple-
level-of-detail representations.

We plan to extend our approach to the clustering of more general
scattered data sets describing scalar and vectors fields, defined
over either two-dimensional or three-dimensional domains. Faster
algorithms for the generation of data hierarchies for scientific
visualization will become more important as our ability to
generate ever larger data sets increases: Computing a data
hierarchy prior to the application of a visualization algorithm
should not require minutes or hours but seconds instead. We
believe that our clustering methodology provides one viable
answer to this problem. To allow the analysis of massive data sets
we have also implemented a scalable parallelization of our
approach.

Furthermore, we plan to extend our algorithm to ensure that all
tetrahedra are removed, such that the reconstructed model is a true
2-manifold representation. Regarding the triangle elimination
phase, we will develop means to guarantee that no “holes™ are
inserted into the model. Currently, we are also working on
alternative gap elimination schemes, that are performed directly
during the clustering stage.
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