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Abstract

We present a highly efficient, automatic method for the
generation of hierarchical surface triangulations. Given a
set of scattered points in three-dimensional space, without
connectivity information, our method reconstructs a valid
triangulated surface model in a two-step procedure. First,
we apply clustering to the set of given points and iden-
tify point subsets in locally nearly planar regions. Second,
we construct a surface triangulation from the output of the
clustering step. The output of the clustering step is a set
of 2-manifold tiles, which locally approximate the under-
lying, unknown surface. We construct the triangulation of
the entire surface by triangulating the individual tiles and
triangulating the “gaps” between the tiles. Since we apply
point clustering in a hierarchical fashion we can generate
model hierarchies by triangulating various levels resulting
from the hierarchical clustering step.

1. Introduction

Surface reconstruction is concerned with the extraction
of shape information from point sets. Often, these point
sets describe complex objects and are generated by scan-
ning physical objects, by sampling other digital represen-
tations, or by merging data from different sources. Conse-
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quently, they might embody incompleteness, noise and re-
dundancy, which makes a general approach for reconstruct-
ing surfaces a challenging problem. In many instances, the
described objects are characterized by high complexity and
high level of detail. Different levels of representation are
needed to allow rapid rendering and interactive exploration
and manipulation. Surface reconstruction problems arise in
a wide range of scientific and engineering applications. The
most important application is reverse engineering, i.e., the
reconstruction of surfaces from digitized data.

We introduce an extremely fast surface reconstruction
technique that is based on cluster analysis. Our approach
generates a multiresolution representation of reconstructed
surfaces from arbitrary point sets. Furthermore, our method
allows us to control the level of detail locally.

Our paper is structured as follows: In Section 2, we
briefly summarize related work in the fields of surface re-
construction, multiresolution modeling and clustering. In
Section 3, we provide an overview of our approach, which
is presented in greater detail in Section 4. The application
of our surface reconstruction approach to a variety of data
sets is described in Section 5. We conclude with summa-
rizing the results in Section 6 and give an outlook on future
work.



2. Related Work
2.1. Surface Reconstruction

The goal of surface reconstruction methods can be de-
scribed like this:

Surface Reconstruction: Given a set of sample points X
assumed to lie on or near an unknown surface U, construct
a surface model S approximating U.

Most surface reconstruction methods require additional
topological knowledge, such as connectivity between data,
surface topology, or orientation.

Parametric reconstruction represents the reconstructed
surface by mapping a two-dimensional parameter domain to
a surface in three-dimensional space. This method usually
requires knowledge of the topological type of the surface.
Moreover, in order to converge to a valid model, this method
also requires an initial embedding that is sufficiently close
to the original surface and assumes a “good” parameteriza-
tion that may be difficult to construct.

Function reconstruction methods deal with surfaces
that are graphs of bivariate functions f(z, y). Various appli-
cations are concerned only with this surface type, including
digital elevation maps, digital satellite imaging, and medical
imaging. It is also possible to apply these non-parametric
methods in a local manner to general two-manifold data,
which we can locally represent by a function f(z, y).

Constriction methods attempt to find a surface mesh
interpolating a set of data points in three-dimensional
space without any given topological information. A three-
manifold (tetrahedral) triangulation of the points (often De-
launay triangulation) is constructed first. The boundary of
the triangulation is a mesh that defines the convex hull of
the points. Since many surfaces are not convex, “undesired”
elements must be eliminated. Therefore, one has to use iter-
ative techniques creating a new triangulation by removing
“undesired” tetrahedra. The result of these methods is a
closed surface mesh.

Only a few methods developed fairly recently [15] [14]
can create valid topological and geometrical models from
only three-dimensional coordinates of sample points. Work
in this field includes Edelsbrunner and Muecke [4], who
generalize the notion of convex hull to that of an alpha hull
(o hull). An interesting, directly related concept is the con-
cept of alpha shapes (a shapes) used for the approxima-
tion of shapes in three-dimensional space (or even higher
dimensions). These shapes are derived purely from finite
sets of scattered, unorganized points. Applications for al-
pha shapes are automatic mesh generation, cluster identifi-
cation for point sets in three-dimensional space, and mod-
eling complex molecular structures.

Alpha shapes can be viewed as a generalization of the
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Delaunay triangulation. Ignoring certain degenerate cases,
the Delaunay triangulation of a point set in three dimensions
is characterized by the fact that the sphere passing though
the four vertices of any tetrahedron does not contain any
other point but the four vertices. The Delaunay triangula-
tion defines a complex of edges, triangles, and tetrahedra.
Given a specific alpha value, an edge in this complex be-
longs to the alpha shape if the radius of the smallest cir-
cle passing through the edge’s end points is less than al-
pha. Similarly, a triangle (tetrahedron) in the complex be-
longs to the alpha shape if the radius of the smallest sphere
passing through the triangle’s (tetrahedron’s) vertices is less
than alpha. The Delaunay triangulation itself has an asso-
ciated alpha value of infinity. Gradually decreasing the al-
pha value towards zero leads to structures consisting of in-
creasingly “isolated sub-complexes,” e.g., strings of edges,
chains of triangles, groups of connected tetrahedra, and iso-
lated points.

The alphashape approach has great potential for a gen-
eral surface reconstruction paradigm. The alpha-shape ap-
proach will, in general, lead to geometric model with rel-
ative “thickness”, i.e., it may locally describe a three-
manifold region. This usually happen when the samples
are noisy or when the underlying surface is not sufficiently
smooth.

2.2. Multiresolution Modeling

A multiresolution model is a model defined by a set of
detail levels of an object, which can be used to efficiently
access any one of those levels on demand. Surface sim-
plification is a particular form of multiresolution modeling
where the goal is to take a polygonal model as input and
generate a simplified model, i.e., an approximation of the
original model. A variety of methods have been developed,
including:

e Image Pyramids. They provide a successful and
fairly simple multiresolution technique for raster im-
ages [18].

Volume Methods. They allow multiresolution repre-
sentations for models that are acquired as volumes and
will be rendered as volumes. If the simplified volumes
must be rendered using polygon-based rendering, then
these volume methods may become less attractive [11].

e Decimation Techniques. There are vertex, edge, face
and cell decimation techniques, which are all itera-
tive simplification algorithms. In each step, an ele-
ment is selected for removal according to one of sev-
eral rules, and the algorithm must locally re-triangulate
the area. Most algorithms were developed to reduce



the density while preserving topology. Such algo-
rithms become computationally expensive for large
data sets [20] [13][17] [7] [8].

o Vertex Clustering. This is a method that subdivides an
object’s bounding box into an octree-like grid struc-
ture, and all the vertices included in a single grid cell
are clustered together and replaced by a single vertex.
This is a very fast and general method, but it is often
affected by a severe loss of detail and by distortions in
the model [19].

e Simplification Envelopes. Such methods provide a
global error measure for approximation quality of the
simplified model, and they preserve topology. How-
ever, these methods require the original model to be an
oriented manifold and can have problems with sharp
edges [2].

o Wavelet Methods. They typically require a tensor prod-
uct structure for a mesh to be represented at multi-
ple resolution levels. Recently, different approaches
have been introduced to overcome topology restric-
tions [3] [23].

2.3. Clustering

Clustering is a classical data analysis technique that has
thoroughly been studied over the last few decades and has
also been adopted as a standard technique in the emerging
field of data mining [1]. So far, very little research has been
done on applying data mining and clustering techniques to
visualization problems. Vertex clustering, briefly described
in 2.2, is one of the very few applications of clustering to
visualization. Conversely, visualization techniques can be
applied to the output of cluster analysis to present extracted
patterns effectively [12] [21].

3. Overview of Approach

Starting with scattered point data in three-dimensional
space, our method is able to generate a multiresolution
model extremely quickly and automatically reconstruct a
valid geometrical and topological model. Our method is
unique in two aspects: (1) It does not require any connec-
tivity information to be supplied with the sample points, and
(2) it is significantly faster than most currently used meth-
ods. We achieve this by using a clustering methodology
tailored to the specific needs of surface reconstruction from
scattered data at multiple levels of detail.

Knowing that the data points originate from some un-
known underlying two-dimensional manifold in three di-
mensions, we associate points with a certain cluster based
on coplanarity and distance checks. By using more or less

restrictive conditions regarding cluster membership, more
or less points are associated with the individual clusters,
and we thus have a means for controlling the levels of de-
tail. Each cluster is essentially characterized by a closed
polygon in three-dimensional space and an associated nor-
mal vector. This information suffices to locally characterize
the underlying surface. These clusters can thus be thought
of as “tiles” — unfortunately unconnected — approximating
the surface from which all sample points originated.

This paradigm leads to an extremely efficient algorithm
for tile generation at multiple levels of detail. Furthermore,
the membership criterion used to associate samples with a
cluster could easily be changed to accommodate hierarchi-
cal representations of vector fields in two or three dimen-
sions or inherently three-manifold data (volumetric data).

We apply the Delaunay triangulation to the set of tile
center points leading to a set of tetrahedra. At this point,
we have established a topologically complete representation
which, unfortunately, contains “too much connectivity” in-
formation: After all, we know that our samples belong to
some underlying surface and thus the triangulation that we
need for the tile centers must define a two-manifold sur-
face. Using a set of rules, we produce a model that, in the
end, will describe a true two-manifold surface triangulation
in space.
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Figure 1. lllustration of the principal phases
of the algorithm.

The input data set consists of a list of points in space
(without connectivity). The output is a valid geometrical
and topological surface model for the given samples. Our
clustering-based surface reconstruction algorithm consists
of two stages:

e Stage 1: Tile generation

This stage uses the input data and applies a cluster-
ing algorithm that splits the original data set in quasi-
planar tiles according to a user-defined error tolerance.



The goal of the clustering process is to construct a hier-
archy of representations of the model based on the sur-
face description by tiles. The output of the first stage
is a set of tiles representing clusters of nearly coplanar
points.

Stage 2: Reconstruction

In this stage, we fill the gaps between tiles by using
a triangulation algorithm, i.e., we construct the miss-
ing connectivity information. For the triangulation-
step, we consider only the boundary of the tiles. Since
the triangulation algorithm will lead to a model whose
boundary is the convex hull of the entire point set,
a post-processing phase is necessary to delete “unde-
sired” triangles/tetrahedra from our model.

4. Surface Reconstruction
4.1. Clustering

The input for our clustering process is a set of scat-
tered points in three-dimensional space. Our method for
creating the cluster hierarchy is based on an incremen-
tal and divisive paradigm. Initially, all points are placed
in one cluster, which is recursively split. A cluster C' is
a subset of the given data set. The center of a cluster
Crenter = (Cz,Cy,:) is defined as the geometric mean of
the points P; = (24, ¥i, 2i)s 1 = 1,2,.- -5 k, associated with
a cluster of size k. At each stage of the clustering process,
every point is associated with exactly one cluster, which is
the cluster with its center being the closest in terms of Eu-
clidian distance. The internal error of a cluster is the sum of
the distances from the cluster center to the associated points,
i,

Errorinterna[(c) = Z ” P[i] — Ceenter ” .
rlileC

1)

The global error is defined as the sum of the internal
error over all clusters. In each iteration of the clustering
process, the cluster C; with the highest internal error is split
into two clusters. Each iteration decreases the global error
and the maximum internal error. The centers of the gener-
ated clusters are determined by adding/subtracting an offset
vector to/from the center of the original cluster. This off-
set vector lies either in the direction of highest deviation of
the cluster data or in the direction of maximum variance.
The direction of maximum variance is computed by per-
forming principal component analysis (PCA) for the 3-by-3
covariance-matrix M, given by

M=AT. A, 2)
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where A is the cluster’s normalized k-by-3 data matrix A,
defined as

1 -Cx W —C <1 Cz
g —C e 29— C

A= 2 z y2 y 2 z (3)
Tp—Cz Ys—Cy Zk—C:

We compute the eigenvalues and “eigendirections” for
M. The direction of maximum variance is equivalent to the
eigendirection with the largest eigenvalue. Using the direc-
tion of maximum variance is generally more accurate, but
this is only feasible when the number of points is relatively
small e.g., less than 500. Therefore, a threshold variable
Tpc 4 is used to control which splitting mechanism is used.
If the number of points associated with the cluster C; tobe
split exceeds Tpca, the cluster C; is split in the direction
of highest deviation. Otherwise, the eigenvector with the
highest eigenvalue is used to determine the centers of the
new clusters that result from splitting C;. After splitting a
cluster, a local reclassification scheme is used to improve
the quality of the classification.

The points to be reclassified are given by all points
that are assigned to the split cluster or to the Gabriel neigh-
bors of that cluster. Hierarchical clustering is illustrated for
curve reconstruction in Figure 2.

Figure 2. Cluster splitting.

Two clusters are Gabriel neighbors when they are connected
in the Gabriel graph constructed from the cluster centers.
Two points p and g are connected in the Gabriel graph when
only p and g—but no other point— are contained in the hy-
persphere with the midpoint of p and g as its center and the
distance from p to ¢ as its diameter. (The Gabriel graph of
a point set is a subset of its Delaunay graph and a superset
of its relative neighborhood graph [16].)

After each reclassification step we update the local
neighborhood. The cluster centers are moved to reflect the
changes in the point-cluster association due to local reclas-
sification. The Gabriel graph is updated locally and another



Figure 3. Gabriel neighbors

cluster is split subsequently. The clustering process termi-
nates when the smallest eigenvalues of all clusters do not
exceed the threshold Tpc 4 1im.

Algorithm 1 Creating the cluster hierarchy

Input: set of points

Output: set of clusters
while Tpc 4 1im is exceeded {
determine cluster C, to be split;

split cluster C, into two new clusters and define their
centers;

create list of clusters in the local neighborhood of split
cluster;

perform local reclassification;

update neighborhood;

}

4.2. Tile Generation

At this point, we have generated a set of clusters that
partition the original data set. Since we choose a relatively
small value for 7pc 4 1im, the points associated with a cer-
tain cluster are nearly coplanar. Thus, the point clusters
have an almost flat shape. For each cluster C;, the clus-
ter center and the two eigendirections with the two largest
eigenvalues define a plane P, that locally minimizes the
sum of the plane-to-point distances of the associated points.
We project all points py associated with cluster C; into the
plane P; and compute the convex hull H; for the projected
points pj, in the associated plane. We map the points pj
on H; back to their original locations in three-dimensional
space. The result is a closed, nearly planar polygon in three-
dimensional space, defining the so-called tile 7; of cluster
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C; consisting of a set of points p;’ lying in H;. For each
cluster we generate a pseudo tile 77 by replacing the points
p|, defining the tile boundary, by their original points p;.

Figure 4. Tile generation.

Once tile generation is completed, each cluster C; has two
corresponding representations by its tile 7; and its pseudo
tile 7;.The normal directions of 7; and 7T are defined by
the cluster’s eigendirection with the smallest eigenvalue.

4.3. Reconstruction

For the reconstruction process we triangulate pseudo
tiles by connecting the cluster center with the vertices of its
boundary polygon. The resulting set of triangles Ty (tile
triangulation) is a close approximation of the unknown sur-
face. However, it does not yet describe a complete model
due to the lack of connectivity information for the tiles.

Figure 5. Triangulation of tiles and between
tiles.

A “connected model” is obtained by T; with a set of trian-
gles T (gap triangulation) that fills the gaps between the
tiles. To determine T2 we apply a Delaunay triangulation
algorithm to the boundary points of the pseudo tiles '.

The result of the Delaunay triangulation step is a “true volumetric”
triangulation of the input points, i.e., a set of tetrahedra, from which we
have to eliminate “undesired” edges, triangles, tetrahedra according to a
set of heuristics.



The algorithm we use employ a variant of the random-
ized incremental-flip algorithm developed by Edelsbrunner
and Shah [5]. Based on the characteristics of the data, we
use two different variants of the Delaunay triangulation:

e For functional data (i.e., data sets where each point
of the input lies on the graph of a bivariate function
f(x,y)) we project the points in the x-y plane and
apply the two-dimensional Delaunay triangulation al-
gorithm. We use the resulting triangulation to estab-
lish the connectivity of the points in three-dimensional
space (Figure 6).

e For an arbitrary data set, the three-dimensional Delau-
nay triangulation algorithm is directly applied to the
boundary points of the pseudo tiles.

Figure 6. Triangulation of functional data.

Since the boundary of the Delaunay triangulation describes
the convex hull of the point set, we have to remove certain
elements of the mesh (triangles or tetrahedra) that “do not
belong” to the desired surface. Our approach to reduce the
Delaunay triangulation to T is related to the alpha shape
definition by Edelsbrunner and Miicke [4]. We remove tri-
angles from the Delaunay triangulation when

e all points lie in one tile or

e the points do not fit in a sphere of radius b,

where the value of b is chosen by locally adjusting the global
alpha threshold depending on the tile area.

In the original alpha shape approach, the quality of the
reconstructed model is very sensitive to the alpha value,
which is used globally to identify triangles to be removed.
When using an alpha value that is too large, “undesired”
triangles do not get removed, while an «a-value that is too
small might remove features that do belong to the model. A
valid surface model cannot be reconstructed in many cases,
due to an inadequately chosen alpha value. Our clustering-
based approach yields additional information (e.g., tile area,
connectivity, local density of point distribution) that can be
used to locally refine the alpha value.
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Figure 7. Models obtained using varying al-
pha values (o=optimal alpha value)

Since we have “almost defined a topology” after the tile
generation step, completing the reconstruction is a far sim-
pler problem than applying the alpha shape approach di-
rectly to the original set of points. Because the gaps be-
tween the tiles are relatively small, one can choose a very
small alpha value without removing important features of
the model. However, long, skinny triangles along the tile
boundaries can result due to small alpha values. We deal
with this problem by inserting vertices along boundary
edges when they exceed a certain length.

tile center |

gap triangl{lanon

Figure 8. Removing “undesired” triangles.

With this enhancement, our approach is relatively insensi-
tive to changes of the alpha value. Since a wide range of al-
pha values yields a consistent model, the global alpha value
can be determined automatically as a linear function of the
average edge length. However, when a the data set contains
a large number of discontinuities (the underlying surface is
actually discontinuous) we propose to select the alpha value
manually. Removing the undesired triangles from the De-
launay triangulation of the tile boundary points yields the
set of triangles T'; that fill the gap between tiles. By merg-
ing T and T we obtain a consistent model.

Algorithm 2 Reconstruct model

Input: set of pseudo tiles
Output: consistent model



reconstruct model {

generate T'; by triangulating pseudo tiles;
generate T'5:

if boundary edge length > €

then insert additional vertices;

triangulate vertices using Delaunay triangulation;
remove undesired triangles;

merge T and T'o;

}
5. Results

We have applied our method to a variety of data sets.
The number of tiles produced by our algorithm is—for a
given data set—a function of the threshold for the smallest
eigenvalue of a cluster (see 4.1). The error Fj; of a point py
of the original data set associated with cluster C; is defined
as the distance of py to the plane H; containing tile T, i.e.,

Ek = Dist (p[k], H,') » (4)
The global error Egjopa is defined as the sum of the
errors of all points in the original data set, i.e.,

Eglobal = ZDZSt (p[k]s H:) . (5)

p[k]

To measure the root-mean-square (RMS) error, we
compute the object diameter, which is the diameter of the
smallest sphere that includes the object. We have tested our
approach for five different data sets, which are listed in Ta-
ble 1.

Table 1. Number of points and object diame-
ters

Data set Original # of pts.  Object diameter?
Rabbit 35929 0.1557

3Holes 4000 208

Car 20621 0.8

Step function® 8000 1

Mt. St. Helens 151728 567,602

We obtain an RMS error measure Egprs by dividing
the global error by the product of object diameter and num-
ber of points in the original data set, i.e.,

Eglobal

(6
number of points X object diameter ©

Epms =
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The listed execution times were obtained for an SGI
0? workstation with a 180 MHz R5000 processor. Table
2 summarizes the performance and quality information for
our five data sets.

Table 2. Data sets: 1-Rabbit, 2-3Holes, 3-Car,
4-step function®, 5-Mt. St. Helens

Set 7Tpca tim teluster Niites Npoints Erms
1 0.006 7.83 50 1110 1.68

1 0.002 15.05 354 4764 0.049

1 0.001 18.94 727 8016 0.026
2 10 0.97 59 762 1.7

2 5 1.24 91 1002 0.9

2 2 177 202 1815 0.39

2 1 2.38 402 2620 0.19

3 0.0015 8.37 517 5174 0.064
4 0.001 1.63 60 715 0

5 80 43.08 154 3100 0.0034
5 40 51.06 382 6307 0.0025
> 20 74.70 1391 17513 0.0014

Figures 9-13 show reconstructed models for our five
test data sets. Figures 9 and 10 show tiles and recon-
structed, triangulated surfaces. Figure 9 demonstrates how
our method can be used to preserve or remove a discontinu-
ity.

Figures 11, 12, and 13 illustrate the power of our tech-
nique to generate multiresolution models. Three examples
show that our algorithm can handle extremely large data sets
(Mt. St. Helens) and surfaces that are topologically compli-
cated (3Holes, Rabbit).

6. Conclusions

The algorithm we have presented allows the genera-
tion of a hierarchy of surface models from discrete point
sets without known connectivity information. While we
have demonstrated the power of our approach only for sur-
face models, we are quite confident that the same cluster-
ing paradigm, when applied to more general two- or three-
manifold, or even time-varying data, would significantly
speed up the process of computing level-of-detail represen-
tations.

We plan to extend our approach to the clustering of
more general scattered data sets describing scalar and vec-
tors fields, defined over either two-dimensional or three-

2We define the object diameter as the diameter of the smallest sphere
including all original data.

*f(z,y) =1,y > z, and f(z,y) =0,y < z; =,y € [0,1]



dimensional domains. Faster algorithms for the genera-
tion of data hierarchies for scientific visualization will be-
come more important as our ability to generate ever larger
data sets increases: Computing a data hierarchy prior to the
application of a visualization algorithm should not require
minutes or hours but seconds instead. We believe that our
clustering methodology provides one viable answer to this
problem.

Currently, we are working on a scalable parallelization
of our approach. We believe that this parallelization will
allow us to analyze data sets that consist of several millions
of points in real time.

Furthermore, we plan to extend our algorithm to ensure
that all tetrahedra are removed, such that the reconstructed
model is a true two-manifold representation. Regarding the
triangle elimination phase, we will develop means to guar-
antee that no “holes” are inserted into the model.
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(a) (b) (c)

Figure 9. Discontinuous example (step function); (a) tiles, (b) discontinuous triangulation, (¢) contin-
uous triangulation.
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(a) (b)

Figure 10. Car data set; (a) tiles, (b) reconstructed model.

(a) (b) (c)

(d) (e) (f)

Figure 11. Three resolution levels of Mt. St. Helens data set (154, 382 and 1391 tiles); (a)—(c) tiles,
- (d)—(f) reconstructed surface.
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(e) (f) (2) (h)

Figure 12. Four resolution levels of three-hole data set 59, 91, 202 and 402 tiles); (a)—(d) tiles, (e)—(h)
reconstructed model.

(a) (b) ()

(d) (e) (f)

Figure 13. Three resolution levels of rabbit data set (50, 354 and 727 tiles); (a)—c) tiles, (d)—(f) recon-
structed model.



