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Abstract Recent developments in magnetic resonance imaging (MRI) have shown
that displaying second-order tensor information reconstructed from diffusion-weigh-
ted MRI does not display the full structure information acquired by the scanner.
Therefore, higher-order methods have been developed. Besides the visualization of
derived structures such as fiber tracts or tractography (directly related to stream
lines in fluid flow data sets), an extension of Reynold’s glyph for second-order ten-
sor fields is widely used to display local information. At the same time, fourth-order
data becomes increasingly important in engineering as novel models focus on the
change in materials under repeated application of stresses. Due to the complex struc-
ture of the glyph, a proper discrete geometrical approximation, e.g., a tessellation us-
ing triangles or quadrilaterals, requires the generation of many such primitives and,
therefore, is not suitable for interactive exploration. It has previously been shown
that those glyphs defined in spherical harmonic coordinates can be rendered using
hardware acceleration. We show how tensor data can be rendered efficiently using a
similar algorithm and demonstrate and discuss the use of alternative high-accuracy
rendering algorithms.
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1 Introduction

When implementing and testing novel visualization techniques, basic methods for
displaying data are important to verify their correctness. One of the best-known
techniques is the visualization of glyphs, i.e., small icons representing the local data
values. Whereas in vector visualization a single direction indicated by an arrow can
be used to display the local information, second-order information can be repre-
sented by displaying scaled eigenvectors derived from the tensor’s matrix represen-
tation. Even though this representation displays all information, surface glyphs are
often preferred as they show the continuous behavior and, in general, reduce visual
clutter: Spheres spanned by the scaled eigenvectors are the most general representa-
tion for positive-definite symmetric second-order tensor fields, but a generalization
to higher-order tensors is hard to derive. Therefore, the Reynold’s glyph for second-
order tensor fields has been extended to higher-order data.
For second-order tensors, the representation of the glyph is straightforward and

can be implemented by sampling a sphere and scaling the radius according to the
function

f (x) = xTDx, (1)

where x is a unit vector andD the tensor’s matrix representation. Rewriting the equa-
tion using Einstein’s sum convention, the extension to higher-order tensors becomes
obvious [6] and is given by

f (x) = Ti1i2i3...inxi1xi3xi3 · · ·xin . (2)

where the sum is implicitly given over same indices. The standard way of rendering
those glyphs is by sampling a tessellation of a sphere. The two most common meth-
ods used to display higher-order glyphs are sampling the glyph along the azimuthal
and longitudinal coordinates of a sphere, which leads to an unbalanced distribution
of sampling points close to the poles, and sampling the glyph using a subdivision of
basic shapes, usually triangulated platonic solids (tetrahedra, octahedra, and icosa-
hedra). Applying those subdivision schemes produces several hundred triangles per
glyph and, when displaying slices of the data set with several hundreds of glyphs,
the increasing memory consumption negatively influences the performance of the
whole visualization system. Even though the described method introduces an al-
most uniform sampling on the sphere, it does not provide a uniform sampling on
the surface, which should be sampled depending on the curvature of the glyph, i.e.,
a refined sampling where large curvatures occur and a coarse sampling in flat areas.
While increasing the smoothness of the glyph’s representation, this method leads to
an increased computational complexity. Given the fact that the function f relates to
the spherical harmonic representation, which can be seen as a Fourier transform on
the sphere, it can be shown that higher-order tensors introduce more high-frequency
components on the surface that require finer tessellation. The increasing angular
resolution of diffusion-weighted magnetic resonance scans and the increasing an-
gular precision provided by post-processing tools require the data to be represented
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at order eight to twelve (cf. Tournier et al. [20]) which exceeds the point where the
generation of geometry is no longer reasonable.
We review recent work on higher-order glyph visualization and show how to

apply these techniques efficiently to tensor data. Several issues arise with this tech-
nique when moving to higher-order representations that we resolve. We propose
alternative rendering schemes for high-quality rendering.

2 Related Work

Glyph rendering has a long history in visualization. With the raise of modern graph-
ics boards, hardware acceleration has become a major topic for efficient rendering
of large amounts of glyphs for high-resolution displays. Starting from the ray trac-
ing of spheres and ellipsoids [4] where an analytical projection is possible, sphere
tracing and ray tracing became important for superquadrics (e.g., Sigg et al. [18, 7])
where no analytical intersection can be calculated. Hlawitschka et al. [5] presented
a method of rendering superquadrics on the GPU-based evaluation of the glyph’s
gradient function along the ray of sight and using a gradient descent method to ap-
proach the surface. In both cases, heuristics have been used to discard unused frag-
ments early on to speed up calculations. Both methods fail in terms of performance
for more complex surface functions.
Only recently, Peeters et al. [15] were the first to publish a method to dis-

play fourth-order glyphs in spherical harmonic representation using hardware-
accelerated ray tracing for spherical harmonic functions given by

Φ(θ ,ϕ) =
∞

∑
l=0

l

∑
m=−l

aml Y
m
l (θ ,ϕ),

where θ and φ are the polar and the azimuthal angle, respectively, Yml is the spher-
ical harmonic function of degree l and order m, and aml are the factors defining the
function. After a bounding-sphere test for early ray termination, the ray is sampled
at a constant step size using a sign test on an implicit function derived from Eq. 2 to
check whether the surface is hit. If a possible intersection is found, a binary search
refines the intersection up to a visually reasonable level.
Several publications describe rendering implicit surfaces on the GPU [8, 9], but

most of them are not suitable because the simplicity of Peeter et al.’s approach sim-
ply outperforms the “optimizations” suitable for more complex settings.
Our method presented here differs from the method by Peeters et al. in various

ways. First, we compute all values using the Cartesian tensor representation to avoid
the use of trigonometric functions. Second, our method is not limited to symmetric
glyphs of order four, but can be used for a wider range of glyphs, especially glyphs
of higher order. Third, we present a method that automatically optimizes the code
to the given tensor representation and, therefore, the method is optimal in mem-
ory requirement and necessary computations for lower-order glyphs as well as for
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higher-order glyphs. Finally, we tested our method on higher-order glyphs to en-
sure its suitability for data representations such as those required for the spherical
deconvolution method by Tournier et al. [20].

3 Method

We first derive a function representation suitable for rendering higher-order tensor
data. We then show how to optimize the rendering and, finally, introduce a different
approach using high-quality ray casting.

3.1 Implicit Function Representation

Spherical harmonics basis representations have proven to be a standard method of
computing and storing derived data from medical images [6, 3, 17, 16]. In general,
the explicit, parameterized representation of the surface described in spherical coor-
dinates is

f : S2→ 3

f (θ ,ϕ) = v(θ ,ϕ)∑
l,m
aml Y

m
l (θ ,ϕ),

where v(θ ,φ) denotes a normalized vector pointing in direction (θ ,φ), and Yml is
called the spherical homogeneous polynomial of degree l and order m. Let θ and
φ be the latitudinal and longitudinal angles indicating a point p ∈ 3. The function
can be written as an implicit function with the variable p

v(θ ,ϕ)∑
l,m
aml Y

m
l (θ ,ϕ)− p= 0

or simply
∑
l,m
aml Y

m
l (θ ,ϕ)−‖p‖= 0.

Nevertheless, a transform from spherical coordinates to Cartesian coordinates seems
appropriate to avoid trigonometric functions and the evaluation of Legendre poly-
nomials, which both are numerically unstable at the poles and tend to be computa-
tionally challenging. Given data in spherical harmonic coordinates described by the
linearized version of the weighting factorswi, the spherical harmonic basisVYi, and
the tensor Ti, the matrix given by

M :mi j =
〈Yi(S2),Tj(S2)〉S2

‖Tj‖S2
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defines the transform from spherical harmonic space to tensor space [14, 2]. The
expression 〈·, ·〉S2 denotes the scalar product on the sphere and the linearized tensor
after the transform is

t=Mw.

A change of coordinate system leads to a representation in harmonic polynomials
that can be written using an n-th order tensor T (n) as

fn(x) = xTi1i2i3...inxi1xi3xi3 · · ·xin . (3)

When evaluating f at an arbitrary point p, an implicit function representation for
‖p‖ '= 0 is derived from

‖ fn(p)‖−‖p‖n+1= 0,

which takes into account that f (p) is a polynomial of order n+1 regarding the radial
directions (i.e., regarding r = ‖p‖). 1

3.2 Surface Normal

Whereas the normal in glyph-based techniques is usually estimated using finite dif-
ferences to determine the tangent space and calculate this tangent space’s normal,
using the previous definition of the spatial function, we can compute the glyph’s
normal implicitly. The normal is given by the gradient at points on the isosurface
(contour), i.e.,

∂ f (p)−‖p‖
∂ pi

=
∂ f (p)
∂ pi

−
∂‖p‖
∂ pi

=
∂ f (p)
∂ pi

− 2pi‖p‖

1 We can rewrite fn to a function f ′n equivalent to the spherical harmonics case by scaling the
function by its distance from the center

f ′n(p) =
p
‖p‖

fn(p)
‖p‖n

and using the implicit function
f ′n(p)−‖p‖ = 0

we get

p
‖p‖

fn(p)
‖p‖n −‖p‖= 0

1
‖p‖

fn(p)
‖p‖n −1= 0

fn(p)−‖p‖n = 0



6 Mario Hlawitschka, Younis Hijazi, Aaron Knoll, and Bernd Hamann

4 Implementation

We use hardware-accelerated ray tracing for rendering the implicit function given
in Eq. 3. As the approach of Peeters et al. [15] targets the same class of functions,
we closely relate their approach that consists of 1) copying the data to the vertex
shader; 2) utilizing early ray termination using a bounding sphere; 3) approximation
of intersections of the ray with the implicit surface by sampling the path using a fixed
step size and doing a sign check of the implicit function; 4) refining the point by a
bisection algorithm; and, finally 5) computing the surface normal for lighting. In the
following sections, we only point out the major differences of the two approaches
and refer the reader to the original paper for technical details.
Setup.We transform the ray into a local coordinate system so that the glyph lies

in [−1,1]3 and its center lies at the origin. This simplifies the ray-glyph intersection
computation as all calculations are performed relative to the glyph’s center.
Copying Data to the GPU. As we are dealing with higher-order tensors, the

number of scalars representing a single tensor value is large and, starting with the 28
values of a symmetric sixth-order tensor, reaches the limit current desktop hardware
allows us to pass to the shaders and between the shaders (typically 24 floating-point
variables). To bypass this issue, we have to store all data in texture memory and
access the data independently for each pixel fragment shader. An example of the
memory layout we use is shown in Figure 3 using a symmetric fourth-order tensor.
The exact location of the data is given by the tensor’s index, which can be stored in
any free vertex attribute. Obviously, using texture memory and the need to extract
the tensor values per fragment affects the speed of the algorithm, but we keep the
number of texture look-ups small (four look-ups for order four, seven look-ups per
pixel for order six, )(n+1)(n+1)/8* look-ups for order n). In addition, the texture
look-ups are not required for the early ray termination step and, therefore, all texture
look-ups are performed after this step.
Ray–Surface Intersection. The preliminary ray–glyph intersection step is the

most important step in the algorithm. A failure to detect an intersection here will
discard the fragment and this error cannot be corrected later on. Therefore, the sam-
pling step size has to be sufficiently small to ensure that all rays that hit the glyph
are correctly detected and, in addition, that they intersect with the right “lobe” of
the glyph. If they accidentally miss a part of the glyph, sampling artifacts occur.

number of steps bisect 0 bisect 1 bisect 2 bisect 3 interpolation
0.01 5.0 5.0 5.0 5.0 4.8
0.02 8.6 9.3 9.1 9.0 8.5
0.05 18.6 19.0 18.7 18.0 18.0

Table 1 Comparison of the performance for different rendering modes using frames per seconds.
The same data set is rendered repeatedly under the same viewing angle for about two seconds and
the average frame rate is shown here.
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Fig. 1 Rows from top to bottom: comparison of different rendering modes using fixed step size;
fixed step size combined with one, two, and three bisection steps; and fixed step size combined
with interpolation, respectively. Columns from left to right: two glyphs rendered using a step size
of 0.01, 0.02, and 0.05, respectively. None of the methods can improve the quality of the shape
in those parts that are not captured by the initial sampling. Those artifacts become especially vis-
ible in the center of the right glyph, which has the same shape as the left one but is slightly tilted
which makes it numerically challenging. When the glyph is correctly sampled, a linear interpo-
lation performs better than two bisection steps. Depending on the application and the size of the
glyphs, a step size of 0.2 and linear interpolation as shown in the center bottom panel seems to
provide the best tradeoff: A coarser initial sampling is crucial especially for rays that do not hit the
glyph, as those account for most function evaluations and the linear interpolation does not need
any additional function evaluations but provides visually better results than three bisection steps.

Refinement Step. Given a proper pair of points, one lying outside the glyph
towards the eye point and one lying inside the glyph, bisection is in fact an efficient
method to increase the quality as it requires a single function evaluation to reduce
the interval by a factor two, giving a binary digit in precision. In our experiments
we found that a final linear interpolation of the given interval improves the quality
of the rendering tremendouslywithout requiring an additional interpolation because
we store the previous pair of function values and the size of the search interval. Let
f a, f b be the function values for parameter a and b, respectively, we compute the
ray parameter t

t =
− f a

f b− f a
(b− a)+ a.



8 Mario Hlawitschka, Younis Hijazi, Aaron Knoll, and Bernd Hamann

This reduces stair-stepping artifacts when using lower sampling rates along the ray
as seen in Figure 1.
Overcoming the Singularity at the Origin. Similarly to the spherical harmonics

definition, the implicit function defined here has high-frequency components close
to the glyph’s center, i.e., the origin of our local coordinate system. Whereas mov-
ing the coordinate system to the glyph’s center in general ensures higher numerical
precision for some operations, it does not solve the problem of under-sampling by
the simple ray casting. Even though the glyphs shown in Figure 1 are rare in stan-
dard imaging techniques like q-Ball imaging [21, 22], in the post-processing step
and to ensure better visibility, a sharpening filter is applied to the surface function
that introduces high-frequency components and, in general, removes the major part
of the isotropic behavior. Therefore, it is not uncommon to have glyphs that touch
their center point. There are two ways to overcome this problem: First, one can use
a redefinition of the glyph that avoids those situations and, second, one could use a
finer sampling of the data. Even though the first approach changes the glyph, it can
be used to visualize the data since the user is aware of this fact.
As a finer sampling of the data reduces the speed of the algorithm tremendously

(which is mainly due to the fact that a large number of rays never hit the surface and,
therefore, account for the majority of function evaluations), we adapt the sampling
to the expected frequency pattern of the surface by changing the step size to a finer
step size in closer vicinity to the center of the glyph while maintaining the coarser
step size at the outer parts. A result of this approach is shown in Figure 2.

Fig. 2 The problem of under-sampling the glyph in the center (first picture) can be solved in dif-
ferent ways. The introduction of a basic isotropic component to every glyph avoids high-frequency
components in the implicit function and, therefore, produces a picture without gaps while only
slightly changing the glyph (second picture). A better solution is an approach based on adaptive
sampling towards the center of the glyph. The two pictures are rendered with a step size of 0.2 and
0.5 (third and fourth picture, respectively), and increase the sampling step size to a third of their
original step size towards the center. While slowing down rendering speed slightly (from 18 fps to
15 fps in our test case), we are able to produce more precise visualizations.

Function Implementation. Depending on the type of input data, we automat-
ically generate the suitable rendering code. This is useful as the tensor function
simplifies for lower-order tensors as well as for symmetric tensors. Especially the
reduced amount of texture look-ups during rendering leads to an increase in perfor-
mance.
We compute the function depending on the data using

f (x,y,z) =∑
i

[

xhi,xyhi,yzhi,z
]

−
√

x2+ y2+ z2
n+1

(4)
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Fig. 3 Layout of the tensor in texture memory using the example of a symmetric fourth-order
tensor: Depending on the graphics board used, the use of 1D or 2D textures may result in better
performance. Usually, the tensor data is not a power of two and, therefore, leaving memory ele-
ments empty may be necessary to achieve better frame rates. Those texture elements can be used
as additional information for example for color coding or scaling.

for non-symmetric tensors. The optimized version for symmetric tensors is

f (x,y,z) =∑
i

[

πixhi,xyhi,yzhi,z
]

−
√

x2+ y2+ z2
n+1

(5)

where
πi =

3n

hi,x!hi,y!hi,z!

is the number of occurrences of each term and hi,x is the number of occurrences of
the digit 0 (1, 2) in the number i represented to the base 3, i.e., the power of x (y,z),
respectively.
For higher shading quality and faster evaluation of the gradient, we also provide

the partial derivatives of the function used as surface normal, which can be derived
analytically from Equation 5, e.g., for the symmetric case

∂ f (x,y,z)
∂x

=∑
i

[

vπihi,xxh
′
i,xyhi,yzhi,z

]

− 2x(n+ 1)
√

x2+ y2+ z2
n
,

∂ f (x,y,z)
∂y

=∑
i

[

vπihi,yxhi,xyh
′
i,yzhi,z

]

− 2y(n+ 1)
√

x2+ y2+ z2
n
, and

∂ f (x,y,z)
∂ z

=∑
i

[

vπihi,zxhi,xyhi,yzh
′
i,z
]

− 2z(n+ 1)
√

x2+ y2+ z2
n
,

with
{

h′i,a = hi,a− 1 and v= 1 ∀hi,a > 0,
h′i,a = 0 and v= 0 otherwise.

Given the flexibility of automatic glyph function generation, an implementation
of the spherical harmonics case described by Peeters et al. [15] is possible with only
minor changes in our existing code. We used the real-valued definition as defined
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by Descoteaux et al. [3] using sine and cosine of θ and ϕ , and the radius r as
input parameters of a modified spherical harmonic function. Again, we store the
parameter vector a linearly in a texture similarly to the tensor parameter texture
discussed before.
Optimization. The obvious drawback of this automatic code generation is the

missing manual optimization of code. There are many calculations of powers that
are used in several places across the functions that could be reused. This is even par-
tially true across functions; the function evaluation itself shares major parts with the
gradient evaluation. For three reasons, we did not explore this additional potential:
When looking at the generated compiled code, many of these optimizations already
were performed by the compiler and we doubt there is much room for optimization
at this point. Second, most of these optimizations require additional storage which
is limited on the graphics board and, therefore, may limit the number of threads
running on the GPU in parallel. Third, besides the additional memory requirement,
cross-function storage between the function evaluation and the gradient vector cal-
culation is not possible when interpolating the parameter to increase precision (as
done in the bisection and in our linear interpolation approach).
Rendering. We implemented our approach using Nvidia’s Cg and OpenGL in

our existing visualization system. We trigger the fragment shader by rendering the
front-facing quadrilaterals of a bounding box around the glyph, which is projected to
image space in the vertex shader and parameterized using local coordinates that help
with the calculation the ray parameters. Even though we could add another early ray
termination step here by ignoring all pixels that do not lie within the projection of the
bounding sphere, we currently skip this step for simplicity. The sphere intersection
test is responsible for discarding about π6 of the rays hitting the bounding box [12]
and, therefore, is a mandatory optimization. Based on the ray–sphere intersection,
the ray is parameterized and the main algorithm starts as described in the preceding
paragraphs.
Color Coding. Whereas there are many different ways to color-code second-

order tensor information, to the best of our knowledge, only two major color-coding
schemes are used for higher-order tensors: The frequently used color coding by
scalar value and the less frequently used color coding by direction. Both schemes
fit seamlessly in our approach as the information required can be obtained from the
surface position itself. Given a point p on the surface and the normalized vector p̄
pointing from the origin towards p,

c= colormap(‖p‖)

represents the first and

c= RGB(abs(p̄x),abs(p̄y),abs(p̄z))

the latter color coding scheme. Both can be implemented efficiently in the frag-
ment shader, as the only required information, the hit point p, is already computed.
Examples of different color codings are shown in Figure 5.
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5 Robust intersection using interval and affine arithmetic

Even though the constant step size approach has proven to be efficient and we have
shown how to improve the rendering quality even further, we introduce another
glyph rendering approach, relying on interval analysis, for even more accurate re-
sults. This approach is based on Knoll et al.’s implicit surface rendering [8, 9], which
can be used to render almost any implicit surface up to a user-defined precision. The
algorithm is based on interval arithmetic (IA) and reduced affine arithmetic (RAA)
which are sketched below. We integrated Knoll’s algorithm in our software and may
use it as an option for the glyph rendering.

Interval arithmetic and reduced affine arithmetic. We first implemented an
IA and an RAA library in Cg and re-implemented the glyphs functions using these
two new types. Interval arithmetic was introduced by Moore [10] as an approach
to bounding numerical rounding errors in floating point computation. IA is partic-
ularly well-known for its robust rejection test, especially for ray tracing, but it can
suffer from overestimation problems. To address this issue, a few decades later,
affine arithmetic (AA) was developed by Comba & Stolfi [1]. In practice we might
want to truncate the number of elements composing an affine form due to memory
consumption, in which case it is referred to as reduced affine arithmetic. Intuitively,
if IA approximates the convex hull of a function f with a bounding box, AA em-
ploys a piecewise first-order bounding polygon, such as the parallelogram in Fig. 4.
For our class of glyph functions, RAA is up to five times faster than IA.

Fig. 4 Bounding forms resulting from the combination of two interval (left) and affine (right)
quantities.

Rejection test. Moore’s fundamental theorem of interval arithmetic [10] states
that for any function f defined by an arithmetical expression, the corresponding
interval evaluation function F is an inclusion function of f : F(x)⊇ f (x) = { f (x) |
x ∈ x} where x is an interval. Given an implicit function f and a n-dimensional
bounding box B defined as a product of n intervals, we have a very simple and
reliable rejection test for the box B not intersecting the image of the function f (in
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our case, the glyph surface), 0 /∈ F(B)⇒ 0 /∈ f (B). This property can be used in ray
tracing or mesh extraction for identifying and skipping empty regions of space.
Comparison with our previous glyph rendering algorithm. IA/AA numeri-

cal approaches are more robust than point-sampling methods (e.g. using the rule
of signs) but they require more computations and therefore are slower; they work
well when a function is generally non-Lipschitz (Knoll et al. [9]), as is the case at
singularities in our functions. However, our glyph functions are generally Lipschitz
outside these singularities, causing point-sampling approaches to work well in prac-
tice. Note that brute-force methods like point-sampling work best on the GPU [19].
When combined with a bisection scheme (with enough iterations) on the GPU, IA-
based approaches provide high-quality glyphs at interactive rates [9] regardless sin-
gularities such as the one at the center; in this way IA helps solving the singularity
problems discussed previously.

6 Results

We applied our algorithm to several real-world data sets. The first data set shown
in Figure 5 is a 3× 3× 3× 3 stiffness tensor of order four generated by Alisa Nee-
man [11].
The second data set is a human brain image data set of a healthy volunteer and

was provided by the Max Planck Institute for Human Cognitive and Brain Sciences,
Leipzig, Germany. It had been acquired using 60 gradient directions, using three-
times averaging and 19 b0 images on a three Tesla Siemens Trio scanner. The input
was mapped to symmetric tensors using least-squares fitting [6]. It turns out that the
standard resolution glyphs are shown is quite small and, therefore, a lower-quality
rendering can be employed without notable difference in quality of the final visual-
ization.
Performance.We tested our algorithm on a late 2008 Apple MacBook Pro 15”

laptop computer with the build-in Nvidia GeForce 9600M GT graphics board and
512MB of VRAM. There, using an OpenGL window size of 800x600 pixel, we
achieve a rendering typical speed of 15 to 20 frames per second. Even though this
is lower than the speed of standard tessellation-based approaches, there is almost
no overhead when pre-processing the geometry. Therefore, changing the glyph’s
location, e.g., by changing the plane in the data set or modifying a region of interest,
can be done at almost the same frame rates.
Memory Requirements. The memory use highly depends on the amount of

glyphs displayed, whether display lists are generated or not, and the order of the
tensor information. The texture memory used has the same size as the data in main
memory. Only when an additional padding is used, e.g., when power-of-two textures
lead to increased performance, slightly more memory is used. Additional memory
on the GPU may be required to store the bounding box information, which could be
generated on the fly using geometry shaders.
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Fig. 5 A fourth-order stiffness tensor data set from material sciences shown using RGB color
coding, a magnitude color coding ranging from black to red to yellow, and a uniform blue color
coding. The data shows a simulated force applied to a brick of complex material.



14 Mario Hlawitschka, Younis Hijazi, Aaron Knoll, and Bernd Hamann

System #glyphs tensor #triangles time generation fps rendering
L 258 4n (res 7) 1s 60s−1
L 258 4n (res 10) 3s 59s−1
L 258 4n (res 20) 9s 50s−1
L 258 4n ray tracing <1s 18s−1

Table 2 Number of glyphs, type of glyph (order and s=symmetric n=non-symmetric), number of
triangles per glyph, time to create geometry, and frame rate in frames per second (fps) of final
rendering. The computer system is a MacBook Pro 15” Laptop Computer.

7 Discussion

Due to the flexibility of the implicit function ray tracing, the presented approach
can be used to display different kinds of glyphs: Using symmetric, positive-definite
second-order tensors as input, the output is the Reynold’s glyph [11, 6]. Using the
function

f (p) =
1
p2x
Txx+

2
pxpy

Txy+
2

pxpz
Txz+

1
p2y
Tyy+

2
pypz

Tyz+
1
p2z
Tzz = c

leads to a representation of the ellipsoidal glyph, which can be selected as an option
in our implementation. Using the functions provided by Özarslan and Mareci [13]
we could even render this glyph directly from higher-order data. However, as there
is an explicit ray-ellipsoid intersection algorithm, this is not recommended. Even
though the superquadric tensor glyph [7] can be represented by implicit functions,
currently, it does not fit in this scheme as the function is based on the relation of two
parameters (cf. [7] for details.) Even though this could be implemented as well, we
advice to use more efficient implementations as presented by Hlawitschka et al. [5],
for example.
In contrast to displaying geometry, which is usually copied to the GPU in smaller

packets, our method relies on most data residing in GPU memory. This implies that
the GPU’s main memory and the order of the glyph limits the number of glyphs that
can be displayed in one rendering pass. This can be circumvented by splitting the
data set into smaller subsets that are rendered successively.
Future research will target optimizations to reduce the number of glyphs that

are rendered even though they are occluded by other glyphs. Deferred shading is
not suitable in our case because most of the time is used for the actual ray-glyph
intersection, which has do be done anyway. In addition, deferred shading requires
additional data lookups and, when a small number of glyphs is occluded, this would
slow down the system tremendously.
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