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Abstract. This paper presents a method to reduce time complexity of
the computation of higher–order tensor lines. The method can be applied
to higher–order tensors and the spherical harmonics representation, both
widely used in medical imaging. It is based on a gradient descend tech-
nique and integrates well into fiber tracking algorithms. Furthermore, the
method improves the angular resolution in contrast to discrete sampling
methods which is especially important to tractography, since there, small
errors accumulate fast and make the result unusable. Our implementa-
tion does not interpolate derived directions but works directly on the
interpolated tensor information. The specific contribution of this paper
is a fast algorithm for tracking lines tensor fields of arbitrary order that
increases angular resolution compared to previous approaches.

1 Introduction

Tensor data have a long history in engineering. The studies of Basser et al. [1,
2] introduced the diffusion tensor to medical imaging of the human brain. In
human brain imaging applications, it is now possible to measure anisotropic dif-
fusion of hydrogen that relates to the major neural fiber bundles in vivo. More
recent methods focus on improving the diffusion model by using the higher an-
gular resolution of scanners that are now available even in clinical environment
due to the sustaining decrease in scanning times. While second–order diffusion
tensor imaging is only meaningful in isotropic areas or in areas where a voxel
contains a single fiber bundle, many voxels in human brain scans contain mul-
tiple fiber bundles [3]. To overcome these well–known limitations, multi–tensor
models have been proposed that match the sum of more than one tensor in every
voxel, where usually the number of fibers has to be known in advance. In con-
trast to this, other methods, including Frank’s high angular resolution diffusion
imaging (HARDI) [4, 5], Tuch’s q–ball imaging [6, 7], Alexander’s PASMRI [8]
and higher–order tensor approaches by Özarslan et al. [9] do not base on a–
priori knowledge. They all derive a spherical function that is used to estimate
the direction of fibers. Depending of the approach, this function is described by
higher–order tensors, spherical harmonics or discrete, spherical sample points.
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Fiber tracking has become popular in recent years, and many groups started
implementing fiber tracking for second–order tensors [10, 11] or higher–order
methods [3]. Most of these methods split computation of directions from the
tracking itself which leads to problems in areas, where the direction changes
rapidly. The only method that is in some way comparable to our approach has
been presented by Weinstein et al. [12]. Their method uses an advection–diffusion
progress to propagate lines through second–order tensor fields. While their major
intention is to use the advection as a smoothing process to provide tracking in
areas of isotropic diffusion or noisy data, our method may be interpreted by its
function – but not its physical meaning – as the advection step, but uses this
step to compute the exact directions that can not be found analytically. The
result is a line that is tangential to the directions at every position sampled by
the line which is true for Weinstein’s method only in constant tensor fields.

We use methods of Özarslan and Frank and describe the function as higher–
order tensors and spherical harmonics. Both representations describe the same
function space and can be used interchangeable as a basis set for our algorithm.
While their method sets the basic idea for the storage of the local data, we show,
how directions of fibers can be found efficiently and consistent tracking is per-
formed using the higher–order information in every tracking step. Furthermore,
all smooth, scalar, square integrable functions on the sphere can be approxi-
mated by this basis set, therefore, it can be easily adapted to methods such
as PASMRI where the “persistent angular structure” has similar function like
the orientation distribution function (ODF) computed in q–ball imaging that
we use. While the method demonstrated to work on data acquired using med-
ical imaging, the underlying theory is independent of the application and the
tracking can be extended to other fields of science, e.g., mechanical engineering,
where higher–order tensors are used to describe material properties.

In the next section we present the basics of higher–order tensor lines pre-
viously presented by Hlawitschka et al. [13] that are needed to understand this
paper. Then we improve the previously presented method using gradient descend
methods to make them computationally efficient. The resulting algorithm is ca-
pable of painting lines in about the same speed as second–order tensor methods
and have a much higher angular precision than grid based methods. The in-
creased local accuracy improves fiber tracking tremendously as drawing integral
lines is highly sensitive to small local errors.

2 Higher–Order Tensor Lines

Higher–order tensor lines [13] are a generalization of streamlines and second–
order tensor lines to tensors of arbitrary order. They have been defined as lines,
following the maxima, minima or saddle points on the scalar surface function
describing local properties. The function can be defined, for example, by the
tensor T and a direction g on the unit sphere S2 as parameter by

fs(g) = Ti1...in
gi1 . . . gin

. (1)
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If T is a second–order tensor, i.e., n = 2 this is the standard case found in
mechanical engineering, e.g., as derivative of vector fields as well as in second–
order diffusion tensor imaging. Higher order tensors are mainly used in medical
imaging which is the major motivation for this formulation. The function fs can
be represented by a spherical height–field as used later in Fig. 3, resulting in a
surface that can be used as a glyph representation. For simplicity, we call the
field tensor field, even though it is not limited to the tensor formulation provided
in Eq. 1, but fs(g) may be written in spherical harmonics basis, too, eventually
leading to the same formulation of lines.
Let T be a tensor field defined on D ⊆ R3. If the field is not degenerate there
exist open, connected sets Um ⊆ D and functions ĝm(x), x ∈ Um where ĥ(x) is
a vector valued function indicating the direction of the m-th local maximum of
fs. We already have shown in [13] that the function can be chosen that ĝ(x) is
C1 continuous on Um. The function ĥ can be interpreted as a vector field on
Um. Then a major tensor line through the point x0 on the field defined by ĥ(x)
is the curve c(t) where

c(0) = x0 and
∂c(t)
∂t

= ĥ(x) for t ≥ 0 (2)

It is important to see that as there may exist many local maxima m at any
position x there may exist a large number of different, C1–continuous vector
fields Um1 . . . Umn containing the same point x which makes many different lines
go through the same point x. As the structure of these neighborhoods is quite
complex and there currently is no method to compute them analytically, it is not
possible to extract the vector fields first, followed by painting streamlines in these
vector fields. Although computing multiple vectors locally and finding the best
matching direction does not provide good results because direction information
between sample points has to be interpolated. Obviously, before interpolating
the data, it has to be guaranteed that all vectors interpolated belong to the
same locally defined vector field, which cannot be computed by only taking
information of the local directions into account. Instead, it is possible to use the
property of C1 continuity of these vector fields to fill this gap. The problem of
finding the locally defined field ĥ efficiently is addressed first. Then we present
an algorithm using the continuity property of the field to extract higher–order
tensor lines by implicitly constructing the local vector field.

2.1 Search for Local Directions

All algorithms described in literature base on evaluation of the tensor function on
a discrete set of points and, in some cases after applying a sharpening transform,
search for local maxima based on these sample points. The result is the same
when the grid is seen as a linearly interpolated field. Up to now, this method
is state of the art in computer graphics and medical visualization and has been
used in many publications, among them Descoteaux et al. [14].

Although this method leads to good results and, given a reasonable amount
of sample points, the directions derived are good enough for most cases, we
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Fig. 1. Simple glyphs out of a data set. Black arrows indicate the gradient field. Vector
field topology is indicated with sources (green) saddles (red) and sinks (blue). The
separatrices (white lines) segment the left surface in four parts of similar behavior.
A pseudo color–map indicates the underlying scalar function from deep blue (lowest
value) via green to red (highest value). Left: second–order tensor. Right: more complex
fourth–order tensor based on the same data set.

improve the directions using the underlying interpolation of the tensor model.
Assuming, we already have a good starting point that is close to the current
fiber direction, Euler’s algorithm provides a fast way of finding this maximum.
Because the number of steps is small and the field is well conditioned, Euler’s
approach provides good results. Higher–order approaches such as Runge Kutta
integration would lead to more evaluations of the gradient function for small
amount of steps. If the angles become larger, this is clearly a tradeoff in precision
versus speed, but as the gradient field is a smooth potential vector field, this
simple approach already provides good results. As the algorithm depends on the
derivative of the scalar field, vector field topology [15] of the derivative of the
scalar field can be used to visualize the areas of influence of every maximum as
it is shown in Fig. 1.

2.2 The Algorithm

We start as all previous methods by sampling the function on a predefined grid
and looking for local maxima on this grid. Instead of repeating the search at
every position, the following integration algorithm is used:

function integrateLines( position p, initial direction ):

for every direction found at position p

optimize direction using Euler’s algorithm

do

go a step in the direction

try newdir = Euler’s algorithm ( direction )

if Euler failed: decrease step size and revert last step

else

update position

update direction = newdir

check directional change and increase step size if possible

while step size > eps and position still inside grid
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In contrast to most algorithms where the directions are pre–computed and direc-
tions are interpolated, our algorithm computes the directions on–the–fly. There-
fore, we are able to use the feedback between finding the directions and the line
integrator to change the step size of the integrator as shown in Fig. 2.2. A smaller
step size of the integrator ensures that the inner Euler algorithm finds the max-
imum in less time but on the other hand increases the number of steps of the
integrator. In our tests, we found that this parameter is not critical for the algo-
rithm, but we kept the step size small to ensure that we find the next direction in
at most ten steps. Using adaptive step size further reduced the number of steps
in the inner loop and finally improved the precision of the direction. Because of
the smoothness of the glyphs, the maximal step size can easily be adapted in a
way that no significant maximum is missed and the algorithm always converges.

Fig. 2. Illustration of the iteration process using Euler’s integration with adaptive step
size. The black line shows the actual integration path. Red arrows show the iteration
on the glyph for finding the new direction. The dashed line depicts a path that is
tried but rejected. After the first step in point a, the step size is increased because
of the angular criterion. In point b, a step (dotted line to c) is tried, but finding the
direction in c failed because too many iterations are required and the angle becomes
large. Therefore, the step size is reduced and the new direction is found in point d. The
iteration continues with the smaller step size.

2.3 Gradient Calculation for Tensor Representations

The described algorithm needs the surface gradient of the scalar function fs

that can be calculated analytically. Let T be a symmetric tensor and let f(g)be
a tensor–function as defined in Eq. 1. For simplicity, most of the analysis is done
on the sphere ḡ ∈ S2 ⊂ R3, ‖ḡ‖ = 1. The derivatives along the coordinate axes
of the scalar function f are

v(g) = ∇f(g) = Ti1...i`
gi1 · . . . · gi`−1 (3)

The radial derivatives are given by projection of the derivative on the radial
direction g

vr(g) =
∂

∂r
f(g) = 〈v(g), g〉

= Ti1 i`
gi1 · . . . · gi`−1 ḡi`

= ‖g‖`−1f(ḡ).
(4)
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Fig. 3. Gradient descend on the surface function fs. The red arrow indicates starting
direction of the iteration. The green line indicates the correct new direction which is
reached by the cyan vector, too. The green grid shows the scalar function as an offset
from the center and is not used in the calculation but only shown to visualize the
function. Left: fixed step size, right: Adaptive step size yields faster convergence. The
angle between the starting direction and the result is exaggerated here as our algorithm
would not allow that large angles.

If ‖g‖ = 1 the normalization factor vanishes and the gradient on the surface of
the unit sphere can be calculated using

vs = v − vr · ḡ = Ti1...i`
ḡi1 · . . . · ḡi`−1 − Tj1...j`

ḡj1 · . . . · ḡj`
ḡi`

(5)

2.4 Gradient Calculation for Spherical Harmonics

An alternative representation that can be used to describe the tensor field is
the spherical harmonics representation. Here, a finite set of spherical harmonics
basis functions [16], i.e., a smooth set of globally defined basis functions on the
sphere that can be seen as a spherical analogue to the Fourier basis in 2D is
used to represent the measured data. Usually the lowest orders of the spherical
harmonics are used to approximate the data, where the order defines the angular
resolution. As spherical harmonics are eigenfunctions of the Laplace operator,
their derivatives can be represented in the spherical harmonics basis, too and
therefore are easy to compute. Using numerical evaluation, one must be aware
of instabilities near the z-Axis. The instabilities arise from the unbounded Leg-
endre associated polynomials P 1

` (cos(θ)). This can be circumvented by rotating
the spherical harmonics by 90◦ before computing the derivatives. The rotation in
spherical harmonics basis representation can be performed using a vector matrix
multiplication where the rotation matrix is a sparse block structure matrix as
described, e.g., by Ivanic [17, 18]. Using this approach, derivatives can be com-
puted on spherical harmonics representations of the spherical field with high
numerical precision. The matrix to rotate the spherical harmonics depends on
the degree of the spherical harmonics and is pre–computed once and is applied
to every data point when needed. A 3× 3 rotation matrix is then used to rotate
the resulting direction back into the original frame of reference.



Lecture Notes in Computer Science 7

3 Evaluation and Results

We applied our algorithm to data acquired with a three Tesla Siemens scanner on
a healthy volunteer. 60 diffusion weighted images were acquired using three times
averaging and 21 baseline images at b = 2500. The same gradient information
is used to compute a test data set for single fiber distributions. In all cases, the
data is prepared using spherical harmonics based q–ball imaging and converted to
orientation distribution function using Descoteaux’s [19] description of the Funk–
Radon–Transform for the spherical harmonics basis. The in–slice resolution is
128 × 128 voxels and 71 slices are acquired on a 1.7 × 1.7 × 1.7mm3 grid.

Fig. 4. From left to right: second order ellipsoidal glyphs, second order superquadric
glyphs, and fourth–order glyph on q-ball data.

We first test our algorithm for simple test data sets. Fig. 4 shows a simple
second–order data set. The data was created from second–order tensors showing
a single fiber direction and stored as raw data. For the evaluation the data
was reconstructed using linear least–squares fitting to second–order tensors and
q–Ball imaging on a spherical harmonics basis of order four. We chose a second–
order model here, because visualization of second–order glyphs can be used to
evaluate the precision of our algorithm as there, the behavior of the fiber tracts
is well–known. We compared iterative refinement to brute–force search for three
different resolutions. While 60 sample points on a regular spherical grid obviously
lead to low angular resolution, 240 sample points are still unusable, but even for
960 sample points, our algorithm performs better. As the grid is symmetric,
for grid sampling 30, 120 and 480 evaluations of the spherical harmonics are
required respectively. Our algorithm usually converges in five steps to an error
of approximately 1e-5 in polar angles, therefore, a fixed upper limit of ten steps
can be used. In this case, the algorithm would need 50 evaluations of spherical
harmonics to compute the maxima, i.e., 30 to compute a rough estimate on the
grid and another twenty because computation of the derivative has the same
complexity as evaluating the spherical harmonics twice and can be written as
a spherical harmonics itself. This means a reduction of evaluations of spherical
harmonics from 960 to 50, which improves the overall speed tremendously and
still increases the angular resolution. A comparison of the two methods is shown
in Fig. 5.
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Fig. 5. A comparison of grid based search (top row) and iterative improvement (bottom
row) for sampling on a grid containing 60 points (left) and zoomed into the bottom row
for 240 points (middle) and 960 points (right). The points were constructed from an
icosahedron subdivision. While the arrows indicate the directions found by the fourth–
order q–ball imaging, superquadric glyphs are drawn for comparison as they show the
true tensor direction. For 240 sample points, the deviation of the naive implementation
is clearly visible, but even for 960 points it is visible in the bottom row of arrows.
Iterative refinement (bottom row) gives the same results for all three cases, i.e., it is
independent of the initial resolution.

On the measured data set of a healthy subject, low FA values make the
second–order tensor lines fail while higher–order lines are able to extract the
structures (Fig. 6). Our algorithm is able to extract multiple fiber crossings as
shown in Fig. 7. There crossings of two fibers can be found, e.g., in the area
where the corpus callosum and the pyramidal tract meet.

4 Conclusions

We presented a method for fast calculation of higher–order tensor lines in both
higher–order tensor representations as well as spherical harmonics representa-
tions of high angular resolution data. As the number of evaluations of the local
data is small, the speed of our algorithm supersedes the speed of previous al-
gorithms and is comparable to implementations of second–order tensors lines,
where checks of the eigenvector orientation and direction corrections slow down
the integration. We have shown that our implementation outperforms previous
algorithms in both speed and precision. Especially in areas where maxima lie
close together, our algorithm provides much higher resolution as sampling on a
grid. Furthermore, it does not have problems with maxima artificially induced
by the sampling structure as it is based on a continuous and smooth surface
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Fig. 6. Lines on second–order tensor field (left) and fourth–order data (right). The
second order lines are not able to follow the right directions because of low fractional
anisotropy, while higher–order lines find the dominant anterior–posterior fiber bundle
in this area. The arrows indicate the grid–based directions at the sample points to get
an approximate overview of the data, but are not used for the calculation.

Fig. 7. Left: Crossing of three fibers out of a measured data set. Right: Fiber tracts in
the same data set. The data has been acquired using a three–Tesla scanner at b = 2500.

model. Thus, our main contribution is a fast and reliable algorithm that per-
forms tracking of tensor lines in tensor fields of arbitrary order.
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