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Abstract. Visualization of glyphs has a long history in medical imaging
but gains much more power when the glyphs are properly placed to fill
the screen. Glyph packing is often performed via an iterative approach
to improve the location of glyphs. We present an alternative implementa-
tion of glyph packing based on a Delaunay triangulation to speed up the
clustering process and reduce costs for neighborhood searches. Our ap-
proach does not require a re–computation of acceleration structures when
a plane is moved through a volume, which can be done interactively. We
provide two methods for initial placement of glyphs to improve the con-
vergence of our algorithm for glyphs larger and glyphs smaller than the
data set’s voxel size. The main contribution of this paper is a novel ap-
proach to glyph packing that supports simpler parameterization and can
be used easily for highly efficient interactive data exploration, in contrast
to previous methods.

1 Introduction

A variety of methods exists for the visualization of tensor fields. In medical
imaging applications, for example, tensor data is most commonly visualized
via pseudo–colored slices. In the context of diffusion tensor (DT) imaging, the
color of a pixel typically depends on the directional information and fractional
anisotropy (FA) of a tensor. Due to the human perception of the color space, this
method does not provide full coverage of all tensor information. Tensor glyphs
are another simple method, widely used especially in engineering that is capable
of displaying all intrinsic information of the tensor. However, this visualization
is only informative when it is not obscured, i.e., all glyphs can be seen properly.
Other methods use the continuous properties of interpolated fields to display
structures, such as texture–based methods like line integral convolution (LIC) [1].
While LIC itself can only provide a single directional information without scal-
ing attributes, enhancements of LIC to tensors such as HyperLIC [2] and metric
interpretations of tensor fields [3] overcome this problem. Hyperstreamlines [4]
show line features in the data and can be combined with additional attributes,
but when applied to 2D slices of 3D tensor data, they provide incorrect informa-
tion when integration is restricted to a plane. Nevertheless, integration–based
methods provide a continuous view of the data.

In contrast to vector field visualization, where glyph placement tries to min-
imize the number of glyphs that describe the vector field [5], for medical tensor
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fields, a full coverage of the field is important as features, such as tumor, may
be small. This is partly due to boundaries playing an important role in medical
imaging data sets and behavior along these boundaries is of interest, and partly
because noise changes the data locally. Because of the noise, clustering the data
into areas of similar behavior does not work here. Kindlmann and Westin [6]
combined this continuous nature of the field as done by LIC or hyperstreamlines
with the discrete sampling of glyphs by densely packing the glyphs to strengthen
the continuity of the field. The major improvement of this method compared to
discrete sampling of the glyphs is that glyphs no longer overlap and visual ar-
tifacts induced by the regular sampling of glyphs are reduced. In contrast to
glyph–based vector field representations where a reduction of glyphs is the most
important method to reduce visual clutter, a dense packing is enforced in mea-
sured tensor data to not overlook small features.

We use Kindlmann and Westin’s “glyph packing” as a basis for our algorithm
but have enhanced his method. Our main contributions are

– the use of a different, parameter–less acceleration structure that does not
require good selection of bin sizes like the structure proposed before,

– an improved initial placement of glyphs to reduce overall computation time,
– a re–usable acceleration structure and placement for interactive manipula-

tion of the planes the glyphs are drawn in,
– the exchange of parameters by self–explanatory ones that directly influence

the visualization in an intuitive way, and
– an implementation where the glyphs follow a pointer such that a plane in

the data set or a region of interest can be chosen interactively by the user
while the algorithm provides feedback at interactive frame rates.

2 Glyph Packing

Kindlmann and Westin introduced glyph packing as an iterative approach to op-
timize the placement of tensor glyphs. Their method uses a particle model where
each particle induces a potential field and therefore, particles attract or repel
each other, depending on their distance measured in a metric space distorted
by the tensor shape. The movement of particles is described by the differential
equation ∑

a6=b

fab − Cdrag
dp
dt

+ Cextfext =
d2p
dt2

. (1)

Cdrag and Cext are scaling parameters, fab are the inter–particle forces, and p
is the location of the particle a. These forces are illustrated in Fig. 1. The drag
force prevents the field from oscillating while the external force fext forces some
additional layout parameters. Kindlmann and Westin use, e.g., fext = ∇M(p)
where M is a scalar mask on the data to prevent the glyphs from leaving the
domain of the data set.
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Fig. 1. Illustration of the particle interactions resulting in the force fab (left) the drag
force fdrag (middle) and the resulting acceleration faccel (right) from Eq. 1. The forces
are computed for a glyph located at the red point. The blue points are positions of
glyphs that influence the current point, resulting in an interparticle force. The drag
force (middle) always antagonizes the current speed causing fast particles to slow down
which prevents oscillation. Note that the particle’s speed is the first derivative and the
drag force influences the second derivative. Finally, all forces are summed up resulting
in an acceleration on the particle (right).

2.1 Computing the Initial Distribution

When analyzing the force function of Kindlmann and Westin, there is a distance
of strong repulsion, followed by a strong attraction that decays with increasing
distance. Therefore, glyphs that are farther away have less influence than nearby
glyphs. In addition, glyphs that have almost the optimal distance to each other
have strong forces for keeping that distance fixed. If there is a hole in the data
where no glyph is located while the glyphs outside are aligned at an almost
optimal distance, there are only weak forces that try to close that hole. This
example shows how crucial good initial seeding is for the algorithm. An example
of the described effect is shown in Fig. 2. The initial sampling is a uniformly
distributed random placement but obviously the same effect can occur when
Neumann’s rejection method is applied as done by Kindlmann and Westin. To
prevent these cases, we compute an improved initial distribution compared to
the one proposed by Kindlmann and Westin by using one of the two variants
of the following approach, depending on the size of glyphs relative to the cell
size of the original data set. The choice of the size of glyphs partly depends on

Fig. 2. A worst–case scenario for the initial seeding: The randomly placed initial glyphs
(left) do not fill the area completely, but leave a hole at one point. Because of the
distance across the hole, there are only week forces trying to close that hole, while
there are strong forces to stabilize the layout around that hole. The holes stay stable
throughout the optimization process (middle and right image).
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the available screen resolution. To avoid visual clutter, glyphs have to be large
enough to distinguish them and identify their properties, e.g., different scaling
along the eigen–directions. On the other hand, they have to be small enough to
keep a certain amount of glyphs on the screen to provide the interpolation like
effect of dense packing and to provide information on the behavior around the
glyph. Therefore, when zooming into one area, there have to be more glyphs per
cell than when looking at the data from far away. Considering most commonly
used medical data sets, cell size is fixed by the scanner’s resolution where every
slice of the data set provides a uniform, rectilinear grid containing 128× 128 or
256× 256 tensor values. When inspecting the data set in a full–screen mode, we
found that 1000 glyphs for areas of interest and up to 65000 glyphs for whole
data sets are enough for providing all features of dense packing and still avoiding
visual clutter. Therefore, less than one glyph per cell needs to be drawn. When
inspecting certain areas more closely – especially in printing media, we end up
with areas of about 10 × 10 cells, but still want to draw the same amount of
glyphs. In this case more than ten glyphs on the average gather in one cell. This
is taken into account in our second sampling approach, where stratified sampling
is used to increase the quality of the sampling for more than one glyph per cell.
Let v be a cell and let Av be the (average) area covered by a glyph in the cell. The
ratio between the cell size Av and the estimated glyph area pv = Av

av
provides

an estimate of the number of glyphs in the voxel. Obviously, we overestimate
the number of glyphs, but this is not a problem. By summing up pv for all cells,
i.e., P =

∑
v pv, we get an estimate P of the number of glyphs we need to cover

the whole data set. Furthermore, the probability for a new glyph to be added in
cell v will be pv/P . We then can use the inversion method [7] to get a mapping
from a uniform distribution to the distribution of glyphs and estimate the initial
placement of glyphs using the following algorithm:

Algorithm: Initial Glyph Placement

A[] = cellSizes();

a[v] = estimated size of glyph in cell v

p[v] = A[v]/a[v]

// integrate density

for (v = 1; v < #cells; ++v)

p[v] = p[v-1]+p[v]

P = p[#cells-1]

for (v = 1; v < #cells; ++v)

p[v] = p[v]/P

for (i=0; i < P; ++i) // place P random glyphs

d = random() // in [0..1)

// binary search for cell with p[v-1] <= d < p[v] where p[0]=0

i = findCellFor(d)

place glyph randomly in cell i

For cells outside the data set or in areas where no glyphs should be drawn, pv

can be set to zero to avoid initial seeding of glyphs. The more glyphs there have
to be seeded in a single voxel, the more important becomes a proper placement
within the cell. As described before, high–quality close–up views of the data set
require many glyphs seeded in a single cell. We address this by placing glyphs
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using stratified sampling [8], i.e., we sample the cells independently to guarantee
a better distribution within the cells: When there are voxels where it is likely
that no glyph is placed, the shown algorithm is used to estimate the number of
glyphs placed in every voxel. When we already know, by checking, e.g., the values
of pv for larger than one everywhere, that more than one glyphs will likely be
placed in every voxel, we use a rounded value of pv as the number of glyphs. Now
every voxel is filled with a uniform distribution of this amount of glyphs where
the location of the glyphs are obtained from a list of strata.These strata can
be pre–computed sets of points, e.g., following a Poisson–disc distribution [8]
or other randomly created samples of points that have been checked to have
low energy between neighboring points for the isotropic case. To avoid regular
patterns during the first steps of the optimization, we implemented interleaved
sampling [9] using a set of strata and access different sets of points through
a hash map using the cell index as key. Instead of using pre-computed strata,
pseudo–random sequences can be used and applied with different seeds. Good
pseudo–random sequences automatically fill the holes in–between points and
therefore can be used incrementally, i.e., if the resolution changes, more points
can be added using the same sequence.

2.2 Modified Force Function

While Kindlmann and Westin use a force function based on the ellipsoidal tensor
model, we propose the use of an alternative function to improve the packing for
different types of glyph representations. We describe the force on a particle
directly from its scaled distance to its neighboring glyphs, i.e.:

yab = pa − pb (2)

dopt(a, b) = ga(−y) + gb(y) + coffset (3)

fab = φ′
(

yab

dopt(a, b)

)
. (4)

Here, coffset is a parameter describing an absolute offset between the glyphs.
In most cases coffset = 0 is a good choice, but to reduce the number of glyphs
while keeping their size constant, an absolute offset may be given here. ga(y)
denotes the surface function of glyph a evaluated at direction y. The sign in
the argument is only important if the glyphs would be asymmetric which is
not the case in medical data. A simple example of g for ellipsoidal glyphs, i.e.,
the surface described by the sphere S deformed by the tensor D by DS would
be g(y) = α‖y‖

‖D−1y‖ which is the distance from the glyph’s center to its surface
measured along direction y. In contrast to the previous paper [6], in our version
the function g can be chosen arbitrarily, therefore glyphs can be painted as
boxes, superquadrics or ellipsoids and the force function will always try to avoid
glyphs overlapping which is not the case in the previous approach. If g is chosen
to be the projection of the glyph on the plane we can overcome the problem of
overlapping glyphs in 2D slices that is mentioned in Kindlmann and Westin’s
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results section. φ denotes the force function where φ′, i.e., its derivative, is chosen
to be

φ′(r) =

 r − 1 0 < r < 1
(r − 1)(1 + γ − r)2/γ2 1 ≤ r ≤ 1 + γ
0 r > 1 + γ

, (5)

where the optimum would be the zero–crossing at r = 1. All glyphs farther away
than r = 1 + γ do not influence this glyph.

2.3 Acceleration Using a Delaunay Triangulation

Because glyphs that are farther away in the metric distance have no influence
on each other, computation of distances between them should be avoided. We
do this by introducing a Delaunay triangulation of our sample points that is
updated after moving the points. Building such a triangulation for the relevant
amount of glyphs is fast. Timing can be found in Table 1. In general, between
two steps, the grid does not change much. Therefore, the computational cost
can be reduced by reusing the existing data structure which is only useful when
a lot of glyphs are drawn and the computational complexity of the Delaunay
triangulation surpasses the time of the force computation. The advantange of
this data structure is that searches for neighboring points can be performed
easily. A breadth–first–search can be performed to get the closest points in terms
of edge distance. Usually, these points are the ones with the largest influence on
the vertex. While using neighbors with a two edge distance seems to have slightly
better results, direct edge neighbors are enough to make our algorithm converge.

2.4 User Parameters

Our implementation has two modes: First, it is possible to distribute a certain
amount of glyphs in the data set and let the algorithm spread them in a large
enough area, and second, one can select an area, where glyphs should be placed
and the algorithm selects the number of glyphs needed by itself. This is an
advantage to the approach previously presented, as in both cases, the user only
has to select visual properties while the previous approach only lets you select
the number of glyphs and the parameters for the forces, but does not provide a
reasonable mean to compute one parameter from the others.

2.5 Addition and Removal of Glyphs

If a certain area of the data set needs to be filled with glyphs, and the pre–
estimated amount of glyphs is not enough to fill this area, we need to add glyphs.
A glyph is added when there is an area, where the distance between neighboring
glyphs is large. These areas can be found by looking for triangles that have at
least two long edges. In contrast, in areas where too many glyphs are present,
glyphs need to be removed. We mark glyphs for removal that only have high
repelling forces on their neighbors. As in dense areas, we do not want to remove
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all glyphs at once, we remove a certain set of glyphs randomly. Re-evaluation
of the edge forces in this step provides a hint of the quality after removing the
glyphs which may be used to improve the selection.

2.6 Adding Group Movement for Interactive Glyph Clouds

In addition to the mode presented in 2.4, an interactive mode is supported in
our implementation, where a set of glyphs is placed around a pointing device
and will follow the pointer loosely. Instead of having fixed positions related to
the pointing device, the glyphs will be in motion to reorganize for the best
visualization. Here, the user selects the number of glyphs to have displayed. We
initially place the glyphs randomly around the cursor as described before. Then
the grid is optimized while the glyphs are already displayed, which gives the user
interactive feedback. When the cursor is moved, all points are moved the same
way as the cursor and the optimization process keeps on moving them relatively
to each other to avoid overlapping. By fixing one glyph to the cursor, we prevent
the cloud to diffuse randomly into the data set, but the cloud may become
asymmetric. To prevent this, additional small forces can be applied pointing to
the cursor.

2.7 The Integration Step

The actual optimization is done in an Euler iteration [10] where a stepsize of
0.2 has empirically proven to be appropriate for all data sets for which we have
tested our method.

Algorithm: Iteration

while not converged or maximal stepsize reached

sample tensor values at particle positions

compute all particle forces

update particle speed

move particles

recompute Delaunay triangulation

if( change in number of glyphs is allowed by user )

check grid for triangles with large distances and

attracting forces and place glyphs in those cells

check grid for vertices with large repelling forces on all

edges and mark these vertices for removal

remove random subset of these vertices

3 Evaluation and Results

We implemented the proposed algorithms in our visualization system and used
CGAL [11] for computing the Delaunay triangulation. We applied our algorithm
to data acquired with a three–Tesla Siemens scanner on a healthy volunteer.
60 diffusion weighted images were acquired using three times averaging and 21
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baseline images. The data has been converted to second order tensors using linear
least squares fit [12]. Data acquisition takes about 20 minutes with an in–slice
resolution of 256× 256 voxel and 40 slices on a 1.7× 1.7× 3.0mm3 grid.

Fig 3 shows the Delaunay triangulation used for neighborhood calculation,
the resulting packing of glyphs and an overlay on a pseudo–colored slice. While
the grid only shows direct neighbors, all neighbors having an edge distance of
two are taken into account in the calculation to improve stability when edges
of the triangulation flip. The evolution from the initial seeding throughout the
first 30 steps is shown in Fig. 4. The energy function between glyphs decreases
tremendously during the first steps which results in an almost stable packing
after about 15 steps. Fig. 5 shows a sequence of images out of an interactive
sweep from the singuli to the corpus callosum.

We performed timing experiments on different scenarios in a single threaded
environment. It turns out that up to 8000 glyphs can be optimized using the
interactive approach on a desktop PC. For complete slices, a calculation time of
about one minute is needed to get first results but up to four minutes are required
until they become stable. A comparison of times can be found in Table 1. We
used 10000 iterations for small amounts of glyphs to get comparable times, but
far less than 100 iterations are required to obtain stable results there.

4 Conclusions

The main contribution of this paper is the development of a modified glyph
packing algorithm that overcomes several drawbacks we found in the algorithm
presented by Kindlmann and Westin [6]. First, we introduced a parameter–less
acceleration structure that has small computational complexity and allows in-
teractive tensor visualization using glyph placement. Second, we implemented
an improved initial seeding that reduces the number of steps required by the it-
erative optimization and makes the algorithm more likely to converge to visually
good results.To provide the user, i.e., the radiologist or surgeon, with an easy to
use user interface usable in surgery, we reduced the number of parameters to two,
namely the scaling of the glyphs and the distance between neighboring glyphs.
Furthermore, we provided an interactive user interface where areas of interest
can be selected interactively using a pointer, e.g., the mouse or a tracked 3D

Fig. 3. Result of glyph packing of 2000 glyphs with grid (left), Delaunay triangulation
only (middle) and glyphs shown on a color–mapped slice (right).
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Fig. 4. Different steps of the iterative algorithm using 2000 glyphs. An initial random
placements of seeds and steps 20 and 30 are presented from top left to bottom right.

Glyphs Iterations Depth Time[s] Delaunay[s/step] Force[s/step] Interpol.[s/step]

100 10000 2 15 - - -
200 10000 2 35 - - -
400 10000 2 80 - - -

1000 100 2 2 - 0.03 -
2000 100 2 5 - 0.06 -
4000 100 2 15 - 0.14 -

10000 100 2 55 0.08 0.46 0.03

10000 10 2 5 0.02 0.21 0.02
20000 10 2 17 0.34 1.44 0.06
40000 10 2 61 1.36 4.4 0.1

Table 1. Timings of different configurations as absolute time, time for constructing the
Delaunay triangulation in every step, time for computing the forces in every step and
time for interpolation of the tensor values in every step. Cells marked with a dash are
below the threshold of 0.01 seconds. The glyph packing usually becomes stable after
several hundred steps, more than one thousand steps have never been required in our
experiments. The detailed timings show that most of the time is spend in computing
the inter-particle forces.

Fig. 5. An interactive sweep through a data set. The glyphs realign at interactive frame
rates to prevent overlapping.
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pointing device as used in surgery, and the glyphs automatically align around
this pointer in a way that reduces visual clutter. Because our approach does not
require any pre–computation or pre–processing, it can be used as an interactive
probe to inspect areas of interest and can be used supplementary to existing
visualization techniques.
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