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Summary. This chapter introduces a visualization method specifically tailored to
the class of tensor fields with properties similar to stress and strain tensors. Such
tensor fields play an important role in many application areas such as structure
mechanics or solid state physics. The presented technique is a global method that
represents the physical meaning of these tensor fields with their central features: re-
gions of compression or expansion. The method consists of two steps: first, the tensor
field is interpreted as a distortion of a flat metric with the same topological struc-
ture; second, the resulting metric is visualized using a texture-based approach. The
method supports an intuitive distinction between positive and negative eigenvalues.

1 Introduction

Since the physical interpretation of mathematical features of tensor fields is
highly application-specific it is important that visualization techniques are
closely driven by the special application. In this chapter, we focus on symmet-
ric tensor fields of second order that are similar to stress strain tensor fields,
or the symmetrical part of the gradient tensor. These tensor fields are char-
acterized by the property that they have positive and negative eigenvalues.
The sign of the eigenvalues indicates regions of expansion and compression,
and it is therefore of special interest. To understand the field behavior, it is
important to express these features in an intuitive way. The underlying idea
of our visualization method is to transform the tensor field into a metric. This
metric is represented using a texture that is aligned to the eigenvector fields,
similarly to line integral convolution (LIC) [CL93, SH95]. The eigenvalues are
included using the free parameters in the texture generation: the convolution
filter length, and parameters of an input noise texture. This approach leads
to a fabric-like texture that is dense in regions of compression and sparse in
regions of expansion.



2 Related Work

Even though several good visualization techniques exist for tensor fields, they
only cover a few specific applications. Many of these methods are extensions
of vector field visualization methods, which focus on a technical generalization
without providing an intuitive physical interpretation of the resulting images.
They often concentrate on the representation of eigendirections and neglect
the importance of the eigenvalues. Therefore, in many application areas tra-
ditional two-dimensional plots are still used, which represent the interaction
of two scalar variables.

One way to represent a tensor field is based on using icons. They illus-
trate the characteristics of a field at some selected points (see, for example,
[Hab90, KGM95, LW93]). Even though these icons represent the tensor value
at one point well they fail to provide a global view of the tensor field. A more
advanced but still discrete approach uses hyperstreamlines. This approach is
strongly related to streamline methods used for vector fields. They were in-
troduced by Delmarcelle and Hesselink [DH92] and have been utilized in a
geomechanical context by Jeremic et al. [JSchF02]. Given a point in the field,
one eigenvector field is used to generate a vector field streamline. The other
two eigendirections and eigenvalues are represented by the cross section along
the streamline. This method extracts more information than icons, but it still
leaves the problem of choosing appropriate seed points to the user. Thus, both
methods have limited usage in exploration complete data sets and are limited
to low-resolution due to cluttering.

To generate a more global view, a widely accepted solution for vector
fields is the reduction of the field to its topological structure. These methods
generate topologically similar regions that lead to a natural separation of
a field domain. The concept of topological segmentation was also applied
to two-dimensional tensor fields [HD95]. The topological skeleton consists of
degenerated points and connecting separatrices. Degenerated points are where
the tensor has multiple eigenvalues and the eigenvectors are not uniquely
defined. Although the tensor field can be reconstructed on the basis of its
topological structure, physical interpretation is difficult.

Following an approach of Pang et al. [BP98, ZP02] a tensor field is con-
sidered as a force field that deforms an object placed inside it. The local
deformation of probes, such as planes and spheres, illustrate the tensor field.
This method only displays a part of the information because it reduces the
tensor field to a vector field. To avoid visual clutter only a small number
of probes can be included in one picture Zheng et al. [ZPa03] extended this
method by applying it to light rays that are bended by the local tensor value.

Another class of visualization methods provides a continuous representa-
tion, based on textures. The first one to use a texture to visualize a tensor
field in a medical context were Ou and Hsu [OH01]. An approach based on the
adaptation of LIC to tensor fields by Zheng et al. [ZP03]. Here, a white-noise
texture is blurred according to the tensor field. In contrast to LIC images,



the convolution filter is a two-dimensional or three- dimensional volume de-
termined by the local 2D or 3D tensor field respectively. This visualization
is especially good for showing the anisotropy of a tensor field. However, one
problem of this method is the integration of the sign of the eigenvalues. Points
with the same eigenvalues but with opposite sign are illustrated as isotropic.

There exist some other techniques designed especially for the visualiza-
tion of diffusion tensors that only have positive eigenvalues. But they are not
appropriate for stress, strain or gradient tensor fields.

3 Metric Definition

To motivate our approach we discuss an example for the kind of tensor fields
we are interested in. These are stress tensor fields and gradient tensor fields
whose behavior is very similar, as a stress tensor is often computed as gradi-
ent of a virtual displacement field. It can be observe that for gradient fields
or stress and strain tensors, positive eigenvalues lead to a separation of par-
ticles or expansion of a probe. Eigenvalues equal to zero imply no change in
distances, and negative eigenvalues indicate a convergence of the particles or
compression of the probe.

For the symmetric part of a gradient tensor S of a vector field v =
(v1, v2, v3) with sij = 1

2 (vi,j + vj,i) this behavior is expressed by equation
(1). Here, vi,j denotes the partial derivative of the ith component of v with
respect to coordinate xj .

d
dt

(ds2) =
3∑

i,k=1

sik dxi dxk =
3∑

j=1

λj du2
j . (1)

Here, ds = (dx1,dx2,dx3) and ds2 is the quadratic distance of two neighboring
points, λj , j = 1, 2, 3 are the eigenvalues of S, and duj are the components
of dx corresponding to the eigenvector basis {wj , j = 1, 2, 3}. If we focus on
just one eigendirection wi, the change of ds2 is defined by the corresponding
eigenvalue λi:

λi > 0 → d
dt

ds2 > 0, λi = 0 → d
dt

ds2 = 0, λi < 0 → d
dt

ds2 < 0. (2)

A similar behavior can be observed for the deformation of a probe in a stress
field (see Figure 1).

Considering a time-independent vector field, a formal integration of Equa-
tion (1) results in the following expression for ds2:

ds2(t) = ds2(0) +
∑
ik

(sik · t) dxi dxk. (3)

Using ds2(0) = a ·
∑
i

dxi dxi we obtain:



ds2(t) =
∑
ik

(aδik + sik · t︸ ︷︷ ︸
=: gik

) dxi dxk, (4)

where δik is the Kronecker-delta. The tensor g with components gik =
aδik + sik · t can be interpreted as a time-dependent metric of the under-
lying parameter space D. The constant a plays the role of a unit length, and
t is a time variable that can be used as a scaling factor. This metric definition
is the basis of our tensor field visualization method.

 λ  < 0iwi

iλ  > 0

  iλ  = 0

Fig. 1. Deformation of a unit probe under influence of a stress tensor in direction of
eigenvector wi. Eigenvalues larger than zero correspond to a tensile, and eigenvalues
smaller than zero to a compressive force in the direction of the eigenvector.

3.1 The Transformation

Based on the observations made in Section (3), we define a transformation
of the tensor field into a metric. We do not exactly follow the motivating
Equation (4) but use a more flexible approach.

Let T be a tensor field defined on a domain D. The tensor at a point
P ∈ D is given by T(P ). For each point P , the tensor T(P ) is mapped to a
metric tensor g(P ) describing the metric in P . In the most general form, the
assignment is achieved by the following three steps:

1. Diagonalization of the tensor field:
Switching from the original coordinate basis to the eigenvector basis {w1,
w2, w3}, we obtain a diagonal tensor T′ having the eigenvalues of T on its
diagonal:

T 7→ T′ = U ·T · UT = diag (λ1, λ2, λ3) , (5)

where U is the diagonalization matrix.

2. Transformation and scaling of the eigenvalue, to define the metric g′ ac-
cording to the eigenvector basis:

T′ 7→ g′ = diag (F (λ1), F (λ2), F (λ3)) , (6)

where F : [−λmax, λmax] → IR+ is a positive monotone function, with
λmax = max{|λi(P )|;P ∈ D, i = 1, 2, 3}.



3. Definition of the metric g in the original coordinate system by inverting the
diagonalization defined in Equation (5):

g = UT · g′ · U. (7)

If the mapping F is linear, the three steps can be combined into one step,
and F can be applied to the tensor components, independently of the chosen
basis. The resulting metric g has the following properties:

• It is positive definite and symmetric.
• Its eigenvector field corresponds to the original eigenvector field of T.

Thus, the tensor field topology in the sense of Delmarcelle et al. [HD95] is
preserved.

• Its eigenvalues are given by F (λj). Positive eigenvalues are mapped to
values greater than a, negative eigenvalues to values smaller than a but
larger then zero.The zero tensor is mapped to a multiple of the unit matrix.

• Since the transformation is invertible, we get a one-to-one correspondence
of the metric and the tensor field is given.

3.2 Examples for Transformation Functions F :

In this paragraph we suggest some explicit definitions for the function F .
Except from the first example all these functions are nonlinear and therefore
cannot be directly applied to the tensor components. The functions we discuss
can be classified in two groups:

1. Anti-symmetric Treatment of the Eigenvalues
To underline the motivation defined by (4), we can define the transformation
function as:

F (λ) = a + σf(λ). (8)

Here, a = F (0) defines the unit length, and σ 6= 0 is an appropriate scaling
factor that guarantees that the resulting metric is positive definite. The func-
tion f : IR → IR is a monotone function with f(0) = 0. If we want to treat
positive and negative Eigenvalues symmetrically it is f(−λ) = −f(λ). From
the large class of functions satisfying this condition we have considered three
examples:

a. Identity: f = id , f(λ) = λ
Since f is linear, the metric g is defined by gij = F (tij) = a + σ · tij . This
equation corresponds exactly to our motivating Equation (4), where σ plays
the role of the time variable t. With σ < a/λmax we can guarantee that the
metric is positive definite.

b. Anti-symmetric logarithmic function:
To emphasize regions where the eigenvalues change sign one can choose a
function f with a larger slope in the neighborhood of zero.
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Fig. 2. Figures (a) and (b) are examples for an anti-symmetric transformation
function f . (a) Logarithmic function; (b) arc-tangent for two different slopes for
λ = 0. Figure (c) is an example of a non-symmetric transformation function F for
two different slopes at the origin.

f(λ; c) =
{

log(c · λ + 1) for λ ≥ 0
− log(1− c · λ) for λ < 0 . (9)

If we require σ < a/ log(c · λmax + 1) the resulting metric is positive definite.

c. Asymptotic function:
A function where the limitation of the scaling factor σ is independent of λmax

is
f(λ; c) = arctan(c · λ), (10)

with σ < 2a/π. For both functions, the constant c controls the “sharpness”
at the zero crossing. For higher values of c the function becomes steeper, see
Figure 2.

2. Non-symmetric function:
As the visual perception of texture attributes is nonlinear, an anti-symmetric
approach is not always the best choice. An alternative that takes care of this
aspect is defined by the class of functions F [−λmax, λmax] → [ a

M , a·M ], where

F (−λ) =
a2

F (λ)
. (11)

The constant a defines again the unit, aṀ the maximum, and a
M the minimum

value for F satisfying M > 1. Functions with this property can be obtained
by using anti-symmetric functions f as exponent:

F (λ) = a · exp(σ · f(λ)) where f(−λ) = −f(λ). (12)

An example for such a function with a = 1 is F (λ; c, σ) = exp(σ arctan(c ·λ)).
The constant c determines the slope of the function in the origin, see Figure
2. The second class of functions produces much better results because the
differences in the density of the resulting structure is more obvious. The special
choice of the function f does not have a significant influence on the result.
Another advantage of this class of functions F is that the resulting metric is



always positive definite and therefore, the scaling factor σ is not limited. By
an animation of this parameters we can enhance the impression of stretching
and compression.

3.3 Visualization

We now have transformed the problem of visualizing a tensor field to the
problem of visualizing an abstract metric. One way to solve this problem is an
isometric embedding of the metric [Hot02]. The disadvantage of this approach
is that it is restricted to two dimensions, and its existence is only guaranteed
locally. In general, several patches are needed to cover a field’s entire domain.
Since we want to produce a global representation of a field we decided to follow
a different approach: Our basic idea is to use a texture that resembles a piece
of fabric to express the characteristic properties of the metric. The texture is
stretched or compressed and bended according to the metric. Large values of
the metric, which indicate large distances, are illustrated by a texture with
low density or a stretched piece of fabric. We use a dense texture for small
values of the metric. One can also think of a texture as probe inserted into
the tensor field.

We generate the texture using LIC, a very popular method for vector
field visualization. LIC blurs a noise image along the vector field or integral
curves. Blurring results in a high correlation of the pixel along field lines,
whereas almost no correlation appears in direction perpendicular to the field
lines. The resulting image leads to a very effective depiction of flow direction
everywhere, even in a dense vector field. LIC was introduced in 1993 by Cabral
and Leedom [CL93]. Since the method was introduced, several extensions and
improvements were made to make it faster [SH95] and more flexible.

We compute one LIC image for every eigenvector field to illustrate the
eigendirections of the tensor field. For the integration of the integral curves
we use a Runge-Kutta method of fourth order, the LIC image is computed
using Fast-LIC as proposed in [SH95]. In each LIC image the eigenvalues of
every eigenvector field are used to define the free parameters of the underlaying
noise image and the convolution. Finally, we overlay all resulting LIC images
to obtain the fabric-like texture.

Input Noise Image

We use the free parameters of this input image to encode properties of the
metric. Three basic parameters are changed according to the eigenvalues. They
are: density, spot size, and color intensity of the spots. Considering these
parameters, the standard white-noise image is the noise image with maximum
density, minimal spot size, and constant color intensity. It allows one to obtain
a very good overall impression of the field; its resolution is only limited by pixel
size. Unfortunately, it is not flexible enough to integrate the eigenvalues which
represent fundamental field properties besides the directions. For this reason,



we use sparse noise input images, with lower density and larger spot size even
if we obtain a lower resolution. Some examples for different input images with
changing density and spot size are shown in Figure 3. The connection of these
parameters to the eigenvalues is explained in the following paragraphs:

Density For each direction field wi, we define a specific density di de-
pending on the orthogonal eigenvalues. A compression orthogonal to fibers
leads to increasing density, and an expansion to decreasing density. For two-
dimensional textures this approach leads to the following definition of a one-
dimensional density di [spots/cm]:

di(λ) = d0 ·
1

F (λj)
, with j =

{
2 if i = 1
1 if i = 2|; , (13)

where F is defined by Equation (6), and d0 defines the “unit-density,” d(0) =
d0/F (0). In three dimensions, we have two orthogonal eigenvalues and thus
obtain a direction-dependent density di,j for each direction wj :

di,j(λ) = d0 ·
1

F (λj)
. (14)

(a) (b) (c)

Fig. 3. Example for different input images. (a) White noise image with maximum
resolution; (b) spot noise image with changing density; (c) spot noise image with
changing spot size.

Spot Size Increasing the radius of the underlying noise image leads to
thicker; decreasing the radius leads to thinner fibers. This value is controlled
by the orthogonal eigenvalues. In three dimensions, we define ellipsoids with
three different diameters according to the three eigenvalues:

ri,j =
r0

di,j
. (15)

Convolution Length The defined noise image only uses the eigenvalues
orthogonal to the actual eigendirection field. A stretching or compressing in



the direction of the integral lines changes the length of the fibers. Fiber length
is directly correlated to the length of the convolution filter li, i.e.,

li = l0 · F (λi). (16)

(a) (b) (c) (d) (e)

Fig. 4. Effect of changing image parameters for one eigenvector field of different
simple synthetic tensor fields. In (a)-(c), only the input image is changed correspond-
ing to the eigenvalues of the orthogonal eigenvector field; (a) change of density; (b)
change of spot size; (c) change of density and spot size. Images (d) illustrates the
effect of changing the convolution length, where the parameters of the input noise
image are constant. Image (e) shows a combination of the three parameters (density,
spot size, and convolution length).

(a) (b) (c)
Fig. 5. Combination of two eigenvector fields, each representing both eigenvalues.
In (a) and (b), only density and spot size are changed; (c) shows a combination of
the three parameters.

Color and Color Intensity In addition to these three “structure” pa-
rameters, color intensity can be used to enhance the impression of compression
and stretching. We use red for compression and green for tension. We apply
a continuous color mapping from red for the smallest negative eigenvalues,
white for zero eigenvalues, and green for positive eigenvalues. The definition
of the different parameters for three dimensions is summarized in Table 1.



4 Results and Conclusions

We have evaluated our method using synthetic and real data sets. Simple
tensor fields, where the eigenvector fields are aligned to the coordinate axes,
have allowed us to validate the effect of changing texture parameters. We have
obtained similar results for datasets where the eigenvector fields are rotated
by 90 degrees. Results where only one eigenvector field is used are shown in
Figure 4. Images for the same datasets showing both eigendirections are shown
in Figure 5. We have used different input textures and parameter mappings.

The next examples are results for simulated finite element data sets of
the stress field resulting from applying different load combinations to a solid
block. These datasets are well-studied and therefore appropriate to evaluate
our method. For the simulation, a ten-by-ten-by-ten gird had been used. The
tensor field resulting from the simulation is continuous inside each cell, but
not on cell boundaries. This fact can be observed in our images. Figure 6
and Figure 7 (see color plates) show different slices of the three-dimensional
dataset from a single point load. Figure 8 (see color plates) represents a block
where two forces with opposite sign were applied. These images provide a
good visual segmentation of regions of compression and expansion.

(a) (b) (c)

Fig. 6. Images showing a yz-plane slice of single top-load data set, where a force is
applied in z-direction. (a) and (b) illustrate the two eigenvector fields separately; in
(c) they are overlaid. In all images, spot size and density are changed according to
eigenvalues.

The interpretation of a tensor field as a distortion of a flat metric can
be used to produce a visualization based on the real physical effect of the
tensor field. The distortion of the texture according to the metric supports a
flexible representation of two-dimensional slices of a tensor field, which is easy
to understand. An extension to three dimensions is possible but there is still
the problem of cluttering which must be solved.



eigenvector field
free parameters i = 1 i = 2 i = 3

density value di,j
1

λ2

1
λ1

1
λ1

di,k
1

λ2

1
λ1

1
λ1

color intensity Ii
1

λ1

1
λ2

1
λ3

convolution length li λ1 λ2 λ3

spot diameter ri,j λ2 λ3 λ1

ri,k λ3 λ1 λ2

Table 1. Assignment of eigenvalues to free parameters for a three-dimensional tex-
ture.
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(a) (b)

Fig. 7. This figure shows a single-top-load. Spot size and density of the input images
are adapted to the corresponding eigenvectors. Red shows regions of compression,
green expansion according the respective eigenvector field: the images are planar
slices along the (a) yz-plane and (b) xy-plane slice orthogonal to the force.

(a) (b)

Fig. 8. The images represents a yz-plane (a) and xz-plane (b) slice of a two-force
dataset. (a): In the lower-left corner we see a region of compression, a result mainly
due to the pushing force on the left; in the upper-right corner expansion dominates
as a result of the right pulling force. (b): The left circle corresponds to the pushing
and the right to the pulling force. The fluctuation of the color is a result of the low
resolution of the simulation.


