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Summary. We present a visualization method that for three-dimensional tensor
fields based on the idea of a stretched or compressed piece of fabric used as a “tex-
ture” for a two-dimensional surfaces. The texture parameters as the fabric density
reflect the physical properties of the tensor field. This method is especially appro-
priate for the visualization of stress and strain tensor fields that play an important
role in many application areas including mechanics and solid state physics. To al-
low an investigation of a three-dimensional field we use a scalar field that defines a
one-parameter family of iso-surfaces controlled by their iso-value. This scalar-field
can be a “connected” scalar field, for example, pressure or an additional scalar field
representing some symmetry or inherent structure of the dataset. Texture genera-
tion consists basically of three steps. The first is the transformation of the tensor
field into a positive definite metric. The second step is the generation of an input
for the final texture generation using line integral convolution (LIC). This input
image consists of “bubbles” whose shape and density are controlled by the eigenval-
ues of the tensor field. This spot image incorporates the entire information content
defined by the three eigenvalue fields. Convolving this input texture in direction of
the eigenvector fields provides a continuous representation. This method supports
an intuitive distinction between positive and negative eigenvalues and supports the
additional visualization of a connected scalar field.

1 Introduction

Tensor data play an important role in several mathematical, physical, and
technical disciplines. Mathematically, a tensor is a linear function that relates
different vectorial quantities. Its high dimensionality makes it very complex
and difficult to understand. Since the physical interpretation and significance
of its mathematical features is highly application-specific, we focus on sym-
metric tensor fields of second order that are similar to stress, strain tensor
fields. Such fields appear, for example, in geomechanics and solid state physics,
which are our major application areas. Here tensors are used, for example, to
express the response of a material to applied forces. In contrast to other types



2 Ingrid Hotz et al.

of tensors, like diffusion tensors, these tensor fields are characterized by the
property that they have positive and negative eigenvalues. The sign of the
eigenvalues indicates regions of expansion and compression, and it is there-
fore of special interest. To understand field behavior it is important to express
this behavior in an intuitive way.

We extend a method interpreting these tensor fields as distortions of a
flat metric [9]. A deformation of a fabric-like texture leads to a continu-
ous representation of the main features of the tensor field, regions of com-
pression and tension. Due to occlusion this method is basically restricted to
two-dimensional slices of higher-dimensional fields. We now use a similar ap-
proach to investigate three-dimensional datasets, visualizing the tensor field
on a family of arbitrary two-dimensional surfaces. Defining these surfaces as a
one-parameter family of iso-surfaces it is possible the possibility to represent
an additional related scalar field, e.g., pressure. Another way to define the
surfaces might be the geometry of the problem. The texture on the surfaces
is generated by blurring a three-dimensional input texture along the tensor
lines of the tensor field, projected onto the surfaces. The result is a fabric-like
texture that is dense in regions of compression and sparse in regions of expan-
sion. The input texture consists of three-dimensional “spots”, whose size and
density reflects the eigenvalues of the tensor field. It is precomputed using a
reaction-diffusion method.

2 Related Work

Even though several visualization techniques exist for tensor fields, they only
cover a few specific applications. Many of these methods are extensions of
vector field visualization methods, which focus on a technical generalization
without providing an intuitive physical interpretation of the resulting images.
They often concentrate on the representation of eigendirections and neglect
the importance of the eigenvalues. Therefore, in many application areas tra-
ditional two-dimensional plots are still being used, which represent the inter-
action of two scalar variables only.

A basic way to represent a tensor field is “icons”. They illustrate the char-
acteristics of a field at selected points. One simple example icon that repre-
sents a symmetric tensor is the ellipsoid. The principal axes of the ellipsoid are
aligned to the eigendirections, scaled according to the corresponding eigenval-
ues. (See, for example, Kriz et al. [12] or Haber [12].) Ellipsoid-based methods
are very common for medical applications to visualize results of diffusion mag-
netic resonance imaging (MRI). More complex glyphs were constructed by
Leeuw et al. [13] showing additional features using flow probes. An improve-
ment of these icon methods using a reaction-diffusion simulation, introduced
by Kindlmann et al. [11], generates a pattern that is closely related to ellip-
soids. There, the packing of the texture spots are generated automatically by
the simulation.
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A more advanced but still discrete approach uses hyperstreamlines. This
approach is strongly related to streamline methods used for vector field vi-
sualization. Hyperstreamlines were introduced by Delmarcelle and Hesselink
[3] and were adapted in a geomechanical context by Jeremic et al. [10]. Given
a point in the field, one eigenvector field is used to generate a vector field
streamline. The other two eigendirections and eigenvalues are represented by
the cross section along the streamline. This method extracts more information
than icons, but still leaves the problem of choosing appropriate seed points
to the user. Thus, both methods have limited value for the exploration of
complete data sets and are limited to low-resolution due to cluttering.

An adaptation of hyperstreamlines to diffusion tensors of MRI data was
used by Zhukov and Barr [27] with the goal of tracing anatomical fibers. Their
method is based on the assumption that there exists one large and two small
eigenvalues inside the fibers, and fiber direction corresponds to the dominant
eigenvector. An approach that arose in a similar context is an adaptation of
direct volume rendering to diffusion tensor fields presented by Kindlmann et
al. [21]. After a classification of a field with respect to anisotropy, it is divided
into three categories: linear, planar and spherical. This property is then used to
define barycentric coordinates of a transfer function over a triangular domain
that highlights regions of different anisotropic properties. Approaches like this
one are specially designed for the visualization of diffusion tensors that only
have positive eigenvalues and thus are not appropriate for stress, strain or
gradient tensor fields.

To generate a more global view, a widely accepted solution for vector fields
is the reduction of the field to its topological structure. These methods gen-
erate topologically similar regions that lead to a natural separation of a field.
The concept of topological segmentation was also applied to two-dimensional
tensor fields [5, 6, 18] and has recently been extended to three dimensional
tensor fields [26]. The topological skeleton consists of field singularities and
connecting separatrices. For tensor fields the vector field singularities are re-
placed by degenerate points, which are points where the tensor has multiple
eigenvalues. Although the tensor field can be reconstructed on the basis of
topological structure, physical interpretation is difficult. One reason is the
fact that high multiplicity of eigenvalues has no obvious physical significance.

Following an approach of Pang et al. [1, 23], a tensor field can be considered
as a force field that deforms an object placed inside it. The local deformation
of probes, such as planes and spheres, illustrate the tensor field. Zheng et al.
[24] extended this method by applying it to light rays that are bended by the
local tensor value.

Another class of visualization methods provides a continuous representa-
tion, based on textures. The first one to use a texture to visualize a tensor
field in a medical context were Ou and Hsu [15]. A method similar to LIC
adapted to tensor fields was proposed by Pang et al. [25]. Here, a white-noise
texture is blurred according to the tensor field. In contrast to LIC images, the
convolution filter is a two-dimensional area determined by the local tensor
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field. This visualization is especially powerful for showing the anisotropy of a
tensor field with only positive eigenvalues.

A geometrical approach was followed by Hotz et al. [7]. This approach uses
a metric interpretation of a tensor field to emphasize the physical meaning
of tensors behaving similarly to stress, strain or gradient tensors. For two-
dimensional fields an isometric embedding is used to visualize the resulting
metric locally [8]. Using a deformation of a fabric-like texture makes possible
a global representation of the metric [9].

3 Mathematical Background and Notation

A tensor is a geometrical entity that generalizes the concept of scalars, vectors
and linear operators in a way that is independent of any chosen coordinate
system. It is the mathematical idealization of a geometric or physical quan-
tity that expresses a linearized relation between multidimensional variables.
For example, the stress, strain or elasticity tensors express the response of a
material to an applied force.

The tensors we are interested in are tensors of second order defined over
three-dimensional Cartesian space. Using a fixed coordinate basis, each tensor
can be expressed by a 3 × 3 matrix, given by nine independent scalars: T =
(tij). A tensor T is called symmetric if tij = tji for i, j = 1, .., n. It is called
antisymmetric if tij = −tji for i, j = 1, .., n. Every tensor can be decomposed
in a symmetric part S and an antisymmetric part A: T = S + A, where
sij = 1

2 (tij + tji) and aij = 1
2 (tij − tji). In many applications, the tensor fields

are already symmetric by definition. We restrict ourselves here to symmetrical
tensor fields.

A tensor S is characterized by its eigenvalues λ1, λ2 and λ3 and its corre-
sponding eigenvectors w1, w2 and w3, implied by the characteristic equation
Swi = λiwi. For symmetric tensors the eigenvalues are always real, and the
eigenvectors are mutually orthogonal.

4 Method Overview

To support an intuitive investigation on the entire 3D tensor dataset we de-
fine a family of surfaces that move through the volume, controlled by one
parameter. The tensor field restricted to these surfaces is represented by de-
formed fabric-like texture illustrating the forces on the surface. The texture
is stretched or compressed and bent according to the tensor field. Positive
eigenvalues, which indicate tension, are illustrated by a texture with low den-
sity or a stretched piece of fabric. Correspondingly, negative eigenvalues are
represented by a dense texture. Our method can be divided into four steps
described in more detail in the next sections:
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1. Interpretation of the tensor field as distortion of a flat metric:
This step corresponds to a transformation of the tensor field into a metric.
The resulting metric reflects the physical meaning of the tensor field.

2. Definition of a family of surfaces:
To define the surfaces we support tow different approaches. The first inte-
grates an additional related scalar field (e.g., pressure or the determinant
of the tenors field). The second approach uses some underlying geometry
of the numerical simulation to define an artificially family of surfaces.

3. Texture generation:
Using a fabric-like texture we have enough flexibility to integrate all char-
acteristics of the tensor field. The direction of the fibers reflect the eigen-
vector fields, their density, thickness, and length the eigenvalues. We com-
pute the texture using LIC. The specific definition of the input noise image
determines the density of the fabric. The texture is computed in two steps:
a) Generation of the three-dimensional spot input image, e.g., using a

reaction diffusion approach
b) Final texture generation by blurring the input image on the surfaces

according to the eigenvector fields
4. Representing two orthogonal tensor fields by overlaying the LIC images

on the surfaces moving through the dataset

5 Metric Definition

Our method requires the definition of a metric representing a tensor field. (For
more details we refer to [9].) Considering a stress or strain tensor field or the
symmetrical part of the gradient tensor field of a vector field, positive eigen-
values lead to a separation of particles or expansion of a probe. Eigenvalues
equal to zero imply no change in distances, and negative eigenvalues indicate
a convergence of the particles or compression of the probe. For a tensor field
T defined on a domain D this behavior can be expressed by a time-depending
metric g of the underlying parameter space D with components gik:

ds2(t) =
∑
ik

(aδik + sik · t︸ ︷︷ ︸
= gik

) dxi dxk, (1)

where δik is the Kronecker-delta. The constant a plays the role of a unit length,
and t is a time variable that can be used as a scaling factor.

We use a more general mapping that supports more flexibility in the vi-
sualization, but still represents the same properties. We use a transformation
based on three steps:

1. Diagonalization of the tensor field:

T 7→ T′ = U ·T · UT = diag (λ1, λ2, λ3) , (2)

where U is the diagonalization matrix.
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2. Transformation and scaling of the eigenvalue, to define the metric g′ ac-
cording to the eigenvector basis:

T′ 7→ g′ = diag (F (λ1), F (λ2), F (λ3)) , (3)

where F : [−λmax, λmax] → IR+ is a positive monotone function, with
λmax = max{|λi(P )|;P ∈ D, i = 1, 2, 3}.

3. Definition of the metric g in the original coordinate system by inverting the
diagonalization step defined by Equation (2):

g = UT · g′ · U. (4)

If the mapping F is linear, the three steps can be combined into one step,
and F can be applied to the tensor components, independently of the chosen
basis.

Since we visualize the metric by a texture and the visual perception of
texture attributes is nonlinear, a linear approach is not always a good choice.
An alternative approach, for example, is defined by the class of functions:
F [−λmax, λmax] → [ a

M , aM ], where

F (−λ) = a2/F (λ). (5)

The constant a defines the unit, aM the maximum, and a
M the minimum

value for F with M > 1. Functions with this property can be constructed by
using anti-symmetric functions f as exponent:

F (λ) = a · exp(σ · f(λ)) where f(−λ) = −f(λ). (6)

An example for such a function with a = 1 is F (λ; c, σ) = exp(σ arctan(c · λ))
is shown in Figure 1. The constant c determines the slope of the function at
the origin.

−4 −2  0  2  4
 0

 0.5

 1

 1.5

 2

 2.5

 1−1/M

 M

Fig. 1. Example of a non-symmetric transformation function F for two different
slopes at the origin.
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6 Surface Definition and Tensor Projection

To explore the entire three-dimensional volume D we define a family of sur-
faces by an additional scalar field S defined over D. We use iso-surfaces defined
by the implicit equation

Sq(x, y, z) = q, (7)

where q is an iso-value moving from a minimal to maximum value. The used
scalar field can be an arbitrary additional field. A simple possibility is to move
planes through the volume or more complicated surfaces like cylinders or parts
of spheres. To compute the textures for the surfaces we project the tensor field

S(x,y,z)=q

Surfa
ce
a a1 2

N

Tangentplane

Tensor T

Tensor Projection

Fig. 2. Projection of the 3D tensor onto the surface S.

onto the surfaces. The surface unit normals are given by the gradient of the
scalar field:

N =

nx

ny

nz

 =
gradS

|gradS|
=

1√
S2

x + S2
y + S2

z

Sx

Sy

Sz

 , (8)

where nx, ny, nz are the components of the normal, and Sx = ∂S
∂x , Sy = ∂S

∂y

and Sz = ∂S
∂z the partial derivatives of the scalar function S. The projection

T ′ of the tensor T onto the surface defined by N is given by

T ′ = P · T · PT , (9)

where the projection tensor P to the surface is

P =

 (1− n2
x) −nxny −nxnz

−nxny (1− n2
y) −nynz

−nxnz −nynz (1− n2
z)

 . (10)

The projection tensor is symmetric (PT = P ). The resulting tensor has one
eigenvector in direction of the surface normal N with eigenvalue zero and two
orthogonal eigenvectors, lying in the tangent plane.
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7 Texture Generation

To visualize the properties of the resulting metric we use a texture that re-
sembles a piece of fabric. The texture is stretched or compressed and bent
according to the metric. To generate the texture we use LIC, a method for
vector field visualization [2, 17]. LIC blurs a noise image along the vector field
or integral curves. Blurring results in a high correlation of the pixels along
field lines, whereas perpendicular to them almost no correlation appears. The
resulting image leads to a very effective depiction of flow direction everywhere,
even in a dense vector field. We compute a LIC image for both eigendirection
fields on the surface. Finally we overlay these images, choosing everywhere
the pixel value with the larger intensity, to obtain the fabric-like texture, see
Figure 3.

(a) (b)

Fig. 3. Overlay of two LIC images to illustrate two direction fields, without inte-
grating the eigenvalues, constant input image and constant convolution length. (a)
White noise image; (b) sparse noise image

7.1 Input Texture Definition

Besides the direction field we need for each LIC image a specific noise input.
The parameters of this input image determine the properties of the texture.
The standard white noise input is the input that supports the highest reso-
lution, but it is not flexible enough to represent a stretched or compressed
structure. For this reason, we use sparse input images with lower density and
larger spot size even if we obtain a lower resolution. A regular, homogeneous
input spot image results in a piece of fabric with constant density and fiber
width. An impression of a stretching or compressing can be achieved by chang-
ing density, width and length of the fibers. Figures 4 and 5 show examples of
different input images and their impact on the fiber structure.
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Fiber Density and Fiber Width - Forces Orthogonal to the Fibers:

Stretching and compressing forces orthogonal to the fiber direction are directly
related to the eigenvalues of the orthogonal eigenvector field. The change of
the fiber density and fiber width can be controlled by the density and spot-size
of the input spot texture. For each direction field wi, i = 1, 2, on the surface,

(a) (b) (c)

Fig. 4. Different input images. (a) Spot noise image with changing density; (b) spot
noise image with changing spot size; (c) spot noise image generated with isotropic
reaction.

we define a specific density di and spot size ri, i = 1, 2:

di(x, y, z) = d0 · 1

F (λj)
ri(x, y, z) = r0 · F (λj)

, with j =
{

2 if i = 1
1 if i = 2,

(11)

where the function F is defined by Equation (3), λ1 and λ2 are the two
eigenvalues of the projected tensor field, d0 and r0 define the “unit density”
and respectively, the “unit-radius” of the circular spots. The density and spot
size are spatially varying and depend on the definition of the surfaces. Since
the change of the texture parameters in direction of the integration is hardly
noticeable we can combine the two textures by using ellipses instead of circles
and a direction-dependent density. The resulting texture still depends on the
definition of the surface. This means that every time we define a new set of
surfaces we have to recompute all input textures.

An alternative construction of the spot textures on the surfaces is the
generation of a three-dimensional input image, where the spots are replaced
by three-dimensional ellipsoids whose principal axes and radii ri = r0F (λi)
are defined by the metric g given by Equation (4). The texture on the surface
then results from an intersection of the surface with the three-dimensional
texture. The direction dependent radius can be expressed by the tensor r, i.e.,

r = r0 · g = r0 · UT ·

F (λ1) 0 0
0 F (λ2) 0
0 0 F (λ3)

 · U. (12)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Effect of changing image parameters; one eigenvector field of a simple syn-
thetic tensor field. In (a)-(c), only the input image is changed corresponding to the
eigenvalues of the orthogonal eigenvector field; (a) change of density; (b) change
of spot size; (c) change of density and spot size. Image (d) illustrates the effect of
changing the convolution length, where the parameters of the input noise image
are constant. Image (e) shows a combination of the three parameters (density, spot
size, and convolution length). Images (f)-(h) show a combination of both eigenvector
fields. In images (g) and (h), only density and spot size are changed; (i) shows a
combination of the three parameters.

The direction-dependent density is defined by the tensor d with the same
principal directions but inverse eigenvalues, i.e.,

d = d0 · UT ·

1/F (λ1) 0 0
0 1/F (λ2) 0
0 0 1/F (λ3)

 · U. (13)

The parameters r0 and d0 define a unit radius and unit density. Using this
approach the input texture only has to be computed once, independently of
the surface definition, and can be done in a pre-processing step.

Fiber Length - Forces along the Fibers

Stretching and compressing forces parallel to the fibers change length. This
property can most easily be controlled by the filter length used for the convo-
lution, and it is merely influenced by the parameters of the input spot texture.
We define for each direction field a spatially varying convolution length

li = l0 · F (λi). (14)
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Color and Color Intensity

In addition to these three “structure” parameters, color intensity can be used
to enhance the impression of compression and stretching. We use red for com-
pression and green for tension. We apply a continuous color map ranging from
from red for the smallest negative eigenvalues, white for zero eigenvalues, and
to green for positive eigenvalues.

7.2 Input Texture Computation

To synthesize the input texture we need an algorithm that places ellipsoids
with varying radii and direction-dependent density in the three-dimensional
domain. “Reaction diffusion” is a method that generates a texture with the
desired properties automatically. Using reaction diffusion a large variety of
patterns arising from local nonlinear interactions of two chemicals can be
generated. This mechanism was first discussed by Alan Turing [19] to de-
scribe the biological process of morphogenesis in biological cells. The basic
assumption is that two concurrently operating processes build the biological
patterns. The two processes are: diffusion, which transports chemicals form
points of higher concentration to points of lower concentration, and reaction,
which produces or destroys a chemical.

Reaction diffusion has been used in many different computer graphics ap-
plications, including for examples, the generation of natural texture patterns
[22, 20, 14] and for vector field visualization [16]. An application very similar
to ours was described by Kindlmann et al. [11] who used reaction diffusion to
visualize diffusion tensor fields. We provide a short overview of the method.

Reaction Diffusion:

Reaction diffusion can be described by a set of two nonlinear partial differential
equations describing the concentrations of two chemicals as function of time:

∂cl

∂t
= Rl(c1, c2) +∇dl∇cl, l = 1, 2, (15)

where c1 and c2 are the concentrations of the two chemicals. The functions
Rl, l = 1, 2, are the functions controlling the reaction of the two chemicals.
dl, l = 1, 2, are the diffusion rates for the chemicals. ∇2cl is the Laplacian
of the concentrations cl, l = 1, 2. The resulting “Turing patterns” depend on
the specification of the functions Rl. We choose a set of functions proposed
by Turing and used by Kindlmann et al. [11] for the visualization of diffusion
tensor fields.

R1 = k(16− c1c2) (16)
R2 = k(c1c2 − c2 − 12 + β) (17)
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Here, k is the reaction rate relative to the diffusion. The value β is the decay
rate of c2; it is a random value in a small interval around zero. This value is
the source of slight irregularities in the concentrations. These initially small
variations can cause the system to be at first unstable moving over time
to a stable state, in which the concentrations vary across the surface and
form characteristic patterns. As initial condition for the concentrations are
c1 = c2 = 4 everywhere. Further, we apply periodic boundary conditions.

This model assumes that the diffusion occurs at a uniform rate in all
directions and at all positions. It generates a texture with spherical bubbles.
A generalization using anisotropic diffusion can be achieved by replacing the
scalar diffusion rate d by a diffusion tensor matrix D:

∂c

∂t
= R +∇(D∇c). (18)

The pattern generated with a diffusion tensor D is an ellipsoid whose axes are
proportional to the square root of the eigenvalues of D. To generate ellipsoids
with the aspect ratio radii as defined in Equation (12) we use the following
diffusion:

D = r2
0 · UT ·

F 2(λ1) 0 0
0 F 2(λ2) 0
0 0 F 2(λ3)

 · U. (19)

To obtain spots of the desired size one has to adjust the parameter k in
Equation (16).

Discretization

In our implementation we represent the concentration c as a tree-dimensional
array of discrete samples Ci,j,k. The partial differential equations used ti model
the reaction diffusion process may be simulated with a variety of techniques.
We use forward Euler integration of the finite-difference equations that one
obtains by spatial discretization of the Laplacian:

∂2c

∂x2
' Ci+1,j,k + Ci− 1, j, k − 2Ci,j,k

h2
. (20)

The discrete Laplacian for three-dimensions can be expressed as the con-
volution of the concentration array with a 3× 3× 3 mask. Together with the
anisotropic diffusion tensor D the convolution mask M has the following form:
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Fig. 6. The 27 voxels involved in the convolution with mask M

z = k + 1 :

 0 Dyz/2 0
−Dxz/2 Dzz Dxz/2

0 −Dyz/2 0

 ,

z = k :

−Dxy/2 Dyy Dxy/2
Dxx −2 trace(D) Dxx

Dxy/2 Dyy/2 −Dxy/2

 ,

z = k − 1 :

 0 −Dyz/2 0
Dxz/2 Dzz −Dxz/2

0 Dyz/2 0

 .

(21)

The discretized reaction diffusion equation is finally given as

∆Ct+∆t = Ct + ∆t(M ∗ C + R(C)). (22)

A convolution with the mask M is a weighted sum of the intensity values of
the neighboring voxels, see Figure (6).

(M ∗ C)i,j,k =
∑

x=i−1,i,i+1
y=j−1,j,j+1
z=k−1,k,k+1

Mxyz Cx,y,z.

7.3 Convolution

The last step for final fabric texture creation is the computation of two line
convolution images. The two direction fields are defined by the tensor field
projected onto the set of surfaces defined by Equation (9). For the integration
of the integral curves we use Runge-Kutta of fourth order. The LIC image
is computed using Fast-LIC as proposed by Hege et al. [17]. The convolution
length depends on the eigenvalues of the tensor field. It is defined by Equation
(14). For integration we do not require an explicit surface definition, since this
information is already part of the definition of the projected tensor field.
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7.4 Visualization

Representing an entire texture leads to occlusion problems. Therefore, we only
show the texture on one surface that is moved through the volume, defined
by an iso-value. We use two approaches to represent the surfaces:

• Volume rendering transfer function illustrating the volume only in an ε-
neighborhood of the chosen iso-value.

• explicitly extraction and visualization of the surfaces.

8 Results and Conclusions

We have used two data sets of stress fields being the results of applying dif-
ferent load combinations to a solid block. These datasets are well-understood
and therefore appropriate to evaluate our method. The tensor field resulting
from the numerical simulation is continuous inside each cell, but not on cell
boundaries. In Figures 7 and 8, we show two-dimensional planar slices through
a one-point and two-point load dataset. These images were generated using a
specific input noise texture for each eigenvector field. The input textures con-
sist of circular spots of varying size, density and (Figure 8) also color. Figure
9 shows results for the same dataset when using only one input texture gener-
ated with reaction diffusion. These images provide also a good representation
of the tenor field, but the features are not as clearly visible when compared
with the corresponding results based on the spot noise input. Image 10 show
examples of textures on curved surfaces for the two-point load dataset. All
images provide a good visual segmentation of regions of compression and ex-
pansion.

The interpretation of a tensor field as a distortion of a flat metric can be
used to produce visualizations based on the real physical effect of the tensor

(a) (b) (c)

Fig. 7. Images showing a yz-plane slice of single top-load data set, where a force
is applied in z-direction. Images (a) and (b) illustrate the two eigenvector fields
separately, in (c) they are overlaid. Spot size and density are changed according to
eigenvalues.
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field. Using a three-dimensional input texture simplifies texture generation
for arbitrary surfaces substantially. Having a pre-computed of the input tex-
ture, the three dimensional volume can easily be examined using different
surfaces. The advantage of using reaction diffusion to generate input texture
is the methods capability of automatic placement and packing of the spots
according to the desired density and spot size, but is also has several disad-
vantages. The generated features are not as “crisp” as they are for spot noise
input. The determination of appropriate parameters in the reaction diffusion
equation is not intuitive and its numerical computation is time-consuming.
To improve our method we intend to use a more efficient algorithm that can
achieve a much higher performance, considering, for example, the approach
proposed by Witkin and Kass [22]. We also plan to investigate other ways to
generate the three-dimensional input textures, ways that are less expensive
and produce crisp features. Other possible extensions are approaches for a
better visualization of the resulting surfaces.

(a) (b)

Fig. 8. The images represent a xz-plane slice of a two-force dataset. (a) represents
one of the two spot noise input textures for the final image. (b) The lower left circle
corresponds to the pushing and the right to the pulling force.
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(a) (b)

Fig. 9. These images represent a xz-plane slice of (a) a one-force and (b) a two-force
dataset using three-dimensional spot noise input generated with diffusion reaction.

(a) (b)

Fig. 10. These images are examples for the representation of several curved surfaces
to explore the three-dimensional domain for the two-point load dataset.
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