
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 1

Ordering Traces Logically to Identify Lateness in
Message Passing Programs

Katherine E. Isaacs, Todd Gamblin, Abhinav Bhatele, Martin Schulz, Bernd Hamann,
and Peer-Timo Bremer

Abstract—Event traces are valuable for understanding the behavior of parallel programs. However, automatically analyzing a large
parallel trace is difficult, especially without a specific objective. We aid this endeavor by extracting a trace’s logical structure, an ordering
of trace events derived from happened-before relationships, while taking into account developer intent. Using this structure, we can
calculate an operation’s delay relative to its peers on other processes. The logical structure also serves as a platform for comparing
and clustering processes as well as highlighting communication patterns in a trace visualization. We present an algorithm for
determining this idealized logical structure from traces of message passing programs, and we develop metrics to quantify delays and
differences among processes. We implement our techniques in Ravel, a parallel trace visualization tool that displays both logical and
physical timelines. Rather than showing the duration of each operation, we display where delays begin and end, and how they
propagate. We apply our approach to the traces of several message passing applications, demonstrating the accuracy of our extracted
structure and its utility in analyzing these codes.

Index Terms—trace analysis, performance

F

1 INTRODUCTION

Writing an efficient, scalable parallel program that performs
well on different architectures is challenging. Achieving
good performance on each new machine involves noticing
performance problems, identifying their causes, reworking
the implementation, and iterating tediously several times.
Tracing tools are commonly used to help with this process.
They capture communication events and display them in
timeline views (as in Vampir [1]). However, two factors limit
their effective use at scale. First, traces from large numbers
of processes and long-running jobs are prohibitively large.
Second, the complex communication patterns common in
many large-scale codes are hard to comprehend when plot-
ted with respect to wall-clock time. We need new analysis
and visualization tools to help users understand complex
parallel execution traces and to aid in determining what is
necessary to optimize parallel code.

In this paper, we address the difficulty of trace anal-
ysis by focusing on the logical communication structure
of message passing programs. We base this structure on
happened-before relationships of traced events across par-
allel processes. This structure differs from previous analyses
in logical time by considering the developers’ intended
organization of concurrent events. This allows us to deduce
happened-before relationships at several granularities. Our
structure allows us to define metrics in terms of relation-
ships among logically simultaneous operations, extracting

• K. E. Isaacs and B. Hamann are with the Department of Computer Science,
University of California, Davis, CA 95616.
E-mail: {keisaacs, bhamann}@ucdavis.edu

• T. Gamblin, A. Bhatele, M. Schulz and P.-T. Bremer are with the Center for
Applied Scientific Computing, Lawrence Livermore National Laboratory,
Livermore, CA 94551.
E-mail: {tgamblin, bhatele, schulzm, ptbremer}@llnl.gov

Manuscript received ; revised .

only the performance critical timing information. We define
lateness, which measures an operation’s delay relative to its
peers, and differential lateness, which measures when delay
is injected into the trace. This allows analysts to quickly
identify delayed processes and the bottlenecks they cause.

Our approach leads to cleaner visualizations because
logical structure aligns communication operations across
processes, directly exposing communication patterns. Logi-
cal structure also provides a basis for comparing and cluster-
ing processes. Ravel [2], our interactive trace visualization
tool, displays traces in both wall-clock and logical time. It
uses clustering to improve visualization scalability and to
help users focus on the most important parts of the trace.

We present our algorithm using traces of the LULESH
shock hydrodynamics proxy application [3]; a communica-
tion proxy application for the pF3D laser-plasma interaction
code [4]; the SMG2000 semicoarsening multigrid bench-
mark [5]; and the NAS MG benchmark [6], [7]. We demon-
strate the effectiveness of our algorithm and our metrics
through three case studies: implementations of collective
operations in MPI [8], an in situ merge tree application [9],
and the AMG2013 sparse linear solver [10], [11]. We conduct
our studies on an IBM Blue Gene/Q system and on an
Infiniband cluster with Intel Sandy Bridge processors.

The major contributions of this work are:

1) A set of techniques to extract the logical communica-
tion structure of a message passing program from its
execution trace;

2) Novel metrics, such as lateness, that help identify per-
formance bottlenecks or delays in the execution;

3) Case studies demonstrating that the new approach
accurately detects and highlights performance charac-
teristics difficult to obtain from existing techniques.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 2

Lateness
0μs 33μs

MPI Application

Fig. 1: Trace of a 16 process MPI_Alltoall using the dissemination implementation from libNBC [8]. From the raw
physical time data, shown on the left using Vampir [1], we deduce a logical structure, visualized on the right, and use this
structure to compute a novel lateness metric of each operation, shown on the right using color. In this example, we can
clearly see that the lateness from a receive on process 11 propagates to several other processes.

2 RELATED WORK

Parallel execution traces are used both for performance
analysis and for debugging. Automated trace tools like
Kojak [12] or its successor Scalasca [13] can detect patterns
of known performance problems, such as the late arrival of
a message, and compute a severity score, which is mapped
to source code. While this helps in identifying the locations
at which the bottleneck exists, it typically does not make the
context or root cause readily available. In particular, while
these tools can pinpoint very local performance problems,
they cannot identify transitive dependence chains or rela-
tions among processes easily. The addition of root cause
analysis [14] allows the tracking of delay through depen-
dencies, much like our differential lateness. However, the
analysis remains limited to local waiting state calculations
instead of taking into account the context of peer operations
as done when calculating lateness.

Morajko et al. [15] build per-process causality graphs to
discover structure and to detect root causes. They aggregate
these graphs by identity and compress performance data
on the representative graph. This can unduly emphasize
boundary behavior of a small number of processes while
hiding more extreme behavior of larger clusters.

Another way of analyzing trace data is to determine the
critical path and analyze performance in that context [16],
[17]. However, it is often unclear how operations on the
critical path interact with the rest of the trace. Moreover,
critical paths can be lengthy, often require costly reverse
playback, and can obscure interesting subpaths.

Manual trace analysis is often facilitated through time-
line visualization: events are arranged in order of increasing
time on the horizontal axis and in rank order by process id
on the vertical axis. Fig. 1 (left) is a typical example taken
from Vampir [1]. Other trace visualizers like Jumpshot [18]
or Paraver [19] provide similar views. While such timelines
allow the user to make inferences about timing directly from
the spatial layout, excessive detail makes finding areas of
interest difficult. It also clutters the visualization and makes
interpretation arduous, as dependencies are hard to follow.
Logical time trace visualizations have been implemented,
mostly for debugging [20], [21], but these incorporate few
dependencies and thus place concurrent events as early as
possible, and do not incorporate physical time information
directly within the view. Our logical structure and metrics

provide another way to visualize traces, the details of which
can be found in [2]. In this paper, we employ Vampir as one
example of an established trace visualization tool using a
conventional timeline view. We employ Ravel to illustrate
our logical structure and metrics.

Many tools [22], [23], [24], [25] have focused on detect-
ing high-level, statistical program behavior using clustering
and wavelet techniques. While these numerical techniques
provide useful high-level structure, they do not help pro-
grammers understand local logical dependence chains in
communication threads. Such algorithms could easily be
combined with our approach to display these aggregate
metrics within our logical structure.

3 EXTRACTING LOGICAL STRUCTURE

In contrast to existing approaches, we transform an event
trace into a logical communication structure, and we per-
form analysis in this context. Throughout, we assume that
a parallel trace for a message passing program consists
of measured instantaneous events that are either function
entry or exit, or communication such as sends, receives,
or collectives. We call two matching enter and exit records
an operation and two matching send and receive records a
message. We further require, at a minimum, that an execu-
tion trace is a series of records of the enter and exit time
of each operation that invokes communication, the send
and receive time of each point-to-point message, and the
processes associated with these operations and messages. In
this paper, we focus on MPI, but aside from a few rules for
specific MPI operations, our structure algorithm could be
applied to any other message passing model.

The logical structure of a program is an ordering of
operations consistent with that program, ideally reflecting
the developers’ intended organization. Due to either pro-
gramming errors or ambiguities in assigning logical time
steps, the structure may differ, but in general our goal is to
determine which sets of operations are intended to happen
simultaneously. This allows us to compare and analyze
demonstrated versus ideal behavior of operations. While a
traditional trace visualization relies on noticing deviations
from the ideal in the layout, we can compute deviations
according to various metrics described in Section 4.

Fig. 1 (right) shows an example logical trace, arranged
so that operations that could happen simultaneously are ver-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 3

Partition Ordering Message

Related Communication

(a) Matching sends and receives indi-
cate operations are related and should be
merged.

Partition Ordering Merged Partitions

(b) Ordering relations for merged par-
titions are derived from the pre-merge
neighbors.

Partition Ordering Merged Partition

(c) Strongly connected components are
merged into single partitions.

Fig. 2: Mandatory Partitions

tically aligned, while the left side shows a traditional view.
In both visualizations, time proceeds from left to right, but
the real-time layout on the left obfuscates the performance
problems. Our layout clearly highlights issues by coloring
them accordingly, and it makes the relationship between
the algorithm and the timing problems more clear. The
remainder of this section describes the ordering constraints
and layout rules that make this possible.

Lamport Clocks. Logical structure is built upon definitions
from Lamport [26]. The happened-before relation (→) is a
partial order where (1) for events a, b of the same process,
a → b if a occurs before b and (2) for matching send
and receive events s, r, s → r. Lamport calls events c, d
concurrent if they are not ordered, i.e., c 6→ d, d 6→ c. The
Lamport clock is a function C mapping a number to each
event such that for events a, b, C(a) < C(b) if a→ b. This is
called the clock condition. Our assigned logical steps satisfy
Lamport’s clock condition, but we add further constraints
when Lamport clocks only provide a partial ordering. Our
constraints aim for a more intuitive alignment.

Simultaneous Operations. Rather than assuming that each
event happens as early as possible, we aim to discover the
operations (paired entry and exit events) that conceptu-
ally should happen simultaneously. For example, all send
operations at one level of a binomial tree broadcast are
conceptually simultaneous. As another example, consider
MPI collectives. A collective communication operation is one
in which all processes in an application must participate at
once. Collectives are useful as they allow applications to
easily leverage highly optimized implementations of com-
plex, distributed algorithms. We assume all operations in the
same blocking collective1 occur simultaneously. From the
developer’s point of view, individual calls on each process
occur together as a logical abstraction. Rooted collectives
like MPI_Bcast imply an order between the call on the root
and calls on all other participating processes, but we avoid
defining collective-internal happened-before rules in order
to match the way collectives are invoked.

Phases. It is often intuitive to think of the communication of
a program in terms of different phases, e.g., a neighborhood
exchange or a global reduction. Our phases are thus very
fine-grained. To match this intuition, we ensure that phases,
whether detected by our algorithm or specified by the user,
do not overlap. In terms of the clock condition, this means
that phases P → Q with operations pi, qi, C(pi) < C(qj),

1. We do not support non-blocking collectives currently. Hereafter,
when we refer to ‘collectives’, we assume them to be blocking.

∀pi ∈ P, qj ∈ Q. This condition ensures that the ordering
within one phase is not affected by other phases.

We focus on communication operations because they
impose happened-before relations between processes, con-
tributing to a global happened-before order built from
single-process timelines. We create operations spanning the
time between messages to represent the non-communication
activities. In the remainder of this section, we describe the
two steps of logical structure creation: phase partitioning
and logical time step assignment.

3.1 Phase Partitioning

The primary reason for organizing all communication op-
erations into phases is to match the intuition of developers
with clear happened-before relations between phases. This
step also has a number of practical advantages. For example,
partitioning the trace into phases makes the computation
and analysis a per-partition rather than a per-trace activity,
significantly simplifying and accelerating the analyses of
Sections 3.2 and 4. We present graph-based algorithms that
first identify inseparable groups of operations, then merge
them to define phases. In general, phase detection is a diffi-
cult challenge [27], [28], [29], [30], [31], [32], especially since
the “correct” partitioning can be subjective or ill-defined.
We give users the additional option to specify their own
partitioning to accommodate application-specific details.

Mandatory Partitions. Our algorithm starts by identifying
mandatory partitions: groups of operations that cannot be
separated due to ordering constraints or semantic reasons.
Given a set of MPI operations with their happened-before
relations represented as a directed acyclic graph (DAG),
we construct the partitioning in a bottom-up fashion. We
initially assign each operation its own partition (Fig. 2a).
Semantically, a matching send and receive, or each message,
should belong to a single partition, and we merge their
corresponding partitions (Fig. 2b). Similarly, the partitions
of all operations in the same collective invocation should be
merged. These merges can introduce cycles in the graph, as
shown in the figure, which prevents a linear ordering among
the partitions and thus the ability to apply happened-before
ordering between partitions. To restore a linear order we
merge all partitions that form a strongly connected com-
ponent, restoring the partition graph to a DAG (Fig. 2c).
The resulting partitions are minimal groups of operations
that support a total order without separating messages and
collectives. In practice, the resulting partitions are often
fine-grained as even simple operations like allreduce can

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 4

Steps

Leaps

Fig. 3: Merging Leaps in LULESH. The graph in terms of leaps is on top. At bottom are the individual processes as they
would be stepped with the leap graph. The result of the strongly connected component merge is the left image. The gray
leap merges in succeeding leaps until it contains all processes, resulting in the center image. The remaining purple leap is
significantly closer to the gray leap than the next one (not shown), so it is merged backwards, resulting in the right image.

be subdivided significantly. Since this typically does not
match the intuition or intent of the developers, we present
additional techniques to further merge partitions if desired.

Waitall Partitions. One common construct in MPI applica-
tions is MPI_Waitall, which causes a process to wait until
a given set of prior MPI operations has completed. As an
additional semantic constraint, we merge all partitions con-
taining operations associated with the same MPI_Waitall.
If these associations were not recorded in our traces, we
determine the set heuristically and make this merging op-
tional in case the heuristic does not apply. We assume that all
calls associated with the MPI_Waitall are not interspersed
with receive, collective, wait, or test operations. Thus, we
assume that all send operations between the last such call
and an MPI_Waitall belong to that MPI_Waitall. The
reason receive operations are included in the first list is that
in the trace any receive associated with the MPI_Waitall
ends during the MPI_Waitall.

Leap Partitions. There may exist messages that do not
result in a strongly connected component as in Fig. 2, but
still logically belong together in the same phase. Fig. 3
shows an example taken from an eight process trace of
LULESH [3]. Many of the communication operations have
been grouped, resulting in the multi-message blue partition.
However, a few messages on either side are isolated and are
thus excluded. In bulk synchronous codes like LULESH, we
expect all processes to participate in each communication
phase, and we optionally merge partitions until this prop-
erty is satisfied. More formally, we define a leap as all the
partitions with the same graph distance from the sources
of the partition DAG2. We merge partitions until each leap
contains operations from all processes using Algorithm 1.

Starting from the first leap, we determine whether it is
complete (contains operations from all processes). If it is not,
we begin to process its member partitions. Each partition
computes its incoming leap distance as the minimum of
the first operation entry time for each of its processes and
the operation exit time of their previous operation in the
partition’s previous-leap neighbors. Similarly, its outgoing
leap distance is the minimum of the last operation exit time
for each of its processes and the operation entry time of their
next operation in the partition’s next-leap neighbors. By

2. Intuitively, the leap is similar to rank in a graded poset, but we
avoid that term due to confusion with MPI ranks.

complete_leaps (partitions);
all leaps = compute_leaps (partitions);
k = 0;
while k < |all leaps| do

leap = all leaps[k];
changed = TRUE;
while changed and not complete (leap) do

changed = FALSE;
for p in partitions (leap) do

incoming = leap_distance (p, k-1);
outgoing = leap_distance (p, k+1);
if incoming� outgoing then

merge_into_previous_leap (p);
changed = TRUE;

else
for c in children(p) do

if will_expand (c, leap) then
absorb_partition (p, c);
changed = TRUE;

end
end

end
end

end
if not complete (leap) and force merge then

absorb_next_leap (leap);
else

k = k+1;
end

end
Algorithm 1: Complete leaps through merging partitions.

construction, any previous leap is complete. We thus prefer
merging at the leap (absorbing un-processed partitions from
the next leap) to merging backwards (extending completed
leaps). In practice, we only consider merging backwards
if the incoming leap distance is more than an order of
magnitude smaller than the outgoing one.

Once the direction of a potential merge has been es-
tablished, we always merge with all previous-leap parents
when merging backwards, but we only absorb a partition
from the next leap if it would expand the set of processes in
the current leap. Thus, the current leap can shrink or grow.
We repeat this process until the leap stabilizes. Depending
on the application, the resulting stable leap may still not
contain all processes. In this case we allow the user to
either force all corresponding partitions to merge in all their

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 5

(a) Vampir rendering of a stencil in the pF3D com-
munication benchmark.

(b) We create a happened-before
graph of only send operations.

(c) Stride boundaries are set based
on graph distance.

(d) We use strides to po-
sition send operations in
logical time.

1

2

3

4

5

6

7

0

(e) Send operations are positioned at the end of
their stride. Receive operations are filled from
the earliest step that meets happened-before con-
straints.

1

2

3

4

5

6

7

0

(f) We insert aggregated operations (green) before
each communication operation, so all physical
time is represented as operations. We use this for
analysis in Section 4.

Fig. 4: Step Assignment. Send operations are yellow, receive operations are blue, and alternating white and gray denotes
stride boundaries.

successors before restarting the leap merge algorithm or to
accept the incomplete leap and continue.

In the example of Fig. 3, the gray partition on the left
successively merges in the succeeding partitions until it has
merged in the blue one and thus contains all eight processes.
As this completes the leap, the algorithm moves onto the
next leap which contains only the purple partition. This
partition merges backward since in this case it is signifi-
cantly closer to the incoming gray one than to the outgoing
leap (not shown). The particular threshold to decide the
merge direction and whether to force completed partitions
should reflect the user’s knowledge (or expectations) of the
application in order to create the most intuitive partitioning.

Leap merging should be performed when the user sus-
pects that the application generally engages all processes
at a coarse scale. This is true in bulk synchronous codes
where it is reasonable to assume the partition DAG is a
path and each phase is understood to contain all processes.
However, this is also true in cases where the partition DAG
branches, but every process can be assumed to be active
in one of the parallel executing phases. Forcing the merge
should be done when the user is confident all processes are
active throughout the trace at phase-granularity.

The algorithms described above may not accurately de-
tect all phases, but they are simple to implement, easy to
adapt, and in our experience create intuitive partitions well-
aligned with the developer’s intention for practical cases.

3.2 Local and Global Step Assignment

In Section 3.1 we create a DAG of partitions containing
related communication operations. Next, we assign logical
steps within each partition locally, then globally across
partitions, defining the logical structure.
The local step assignment follows three simple principles:

1) All happened-before relationships must be strictly
maintained, i.e., a→ b implies step(a) < step(b);

2) All operations of the same collective invocation happen
simultaneously; and

3) Send operations have a greater impact than receive
operations on the communication structure.

Item 3 is a consequence of the fact that the order of receive
operations is not always uniquely defined by the program
and some operations, such as MPI_Waitall, may serve
as the receiving operation for multiple send operations.
Consequently, we initially use only the send and collective
operations to define the communication structure. Once the
local (per-partition) order for these operations has been de-
termined we introduce the receive operations and ultimately
the non-communication operations to the per-partition step
assignment. We use an eight process run of the pF3D
communication benchmark, shown in Fig. 4, as a working
example throughout our explanation.

Strides. The send and collective operations in a trace typ-
ically comprise most of the communication structure. We
start to assign local steps by grouping these operations
into strides. Strides are defined by the graph distances from
the beginning of the partition, considering only send and
collective operations. More specifically, for each partition,
we create a sparse version of the happened-before graph,
containing only send operations, collective operations, and
their aggregated dependencies (Fig. 4b). To maintain the
condition that collectives occur simultaneously, we ensure
that any happened-before dependencies of one operation
in the collective apply to all operations in the collective.
We next group send and collective operations according to
their stride (Fig. 4c). We align the strides in logical time
and assign preliminary steps accordingly (Fig. 4d). Not all
processes must contain an operation in all strides.

After positioning send operations, we re-introduce re-
ceive operations so that the ordering is preserved. We assign
all send and collective operations within a stride to the same
step, and we place receive operations as early as possible
while still maintaining their happened-before relationships
(Fig. 4e). Finally, we insert aggregated non-communication
operations representing all processing between communi-
cation operations (Fig. 4f) such as computation or idling.

Aggregated operations allow us to account for all phys-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 6

(a) (b)

Fig. 5: One partition of an eight process SMG2000 trace, (a)
without and (b) with coalescing of MPI_Isends.

ical time spanned by the trace, which is helpful when
defining temporal metrics (Section 4). To assign global steps,
we shift the local step assignment within each partition to
be after all the steps occupied by its predecessors in the par-
tition DAG, enforcing global happened-before relationships.

3.3 Isend Coalescing
Throughout our structure extraction pipeline, we have de-
fined an operation to be the matching enter and exit of a
single procedure call. However, we have found it useful
to optionally coalesce uninterrupted, unbounded sequences
of neighboring MPI_Isend enter and exit records into a
single operation before starting our extraction routine. The
resulting operation has an enter time of the first MPI_Isend
and the exit time of the last. Messages associated with any
of the composite calls become associated with the coalesced
operation. As individual MPI_Isend operations are short
and non-blocking, coalescing them can reveal structure that
is obscured when processes have different MPI_Isend in-
vocation counts without misrepresenting dependencies. In
general, we recommend coalescing, unless the user requires
more detail about the individual calls and knows they
should be aligned at the level of the individual operation.

Fig. 5 shows the results of our structure extraction for
a single partition of an eight process SMG2000 [5] trace
with and without coalesced MPI_Isends. In Fig. 5a, the
MPI_Waitall operation happens at different steps for each
process depending on how many messages that process is
waiting for (which depends on the part of the boundary
the process computes) and where in the order of the send-
ing processes each of those send operations falls. Fig. 5b
effectively eliminates these concerns, perfectly aligning all
send operations and all receive operations. This depicts
the symmetry of the exchange. Encouraging comparisons
between like operations without violating ordering is also
beneficial when metrics based on these comparisons are
applied (see Section 4 and Section 5.3).

4 TEMPORAL METRICS

By design, we avoid relying on wall-clock timing infor-
mation when determining the logical structure of a trace.
This produces a well-aligned version of the trace where the
relationship between potentially simultaneous operations is
clear. It also avoids problems with clock skew and syn-
chronization. Ultimately, however, the timing of operations
determines where delays or bottlenecks occur and which
part of the program is responsible. We therefore preserve
the temporal information by computing metrics from times-
tamps. In the visualization, these metrics can be mapped

Fig. 6: Logical (top) and physical (bottom) time visualization
of a 16 process execution of MG. Communication opera-
tions are colored by lateness. The first process becomes late
during an aggregated non-communication operation. The
lateness spreads through messages to the other processes.

onto the logical structure as highlights. This makes delays
easy to see without obscuring the logical layout.

Lateness. Simple metrics, such as the entry time, exit time,
or duration of an operation, can be computed directly with-
out the logical structure. However, the true power of our
technique comes from comparing such simple per-operation
metrics within logical partitions. For example, comparing
the exit times of operations in the same logical step allows
one to track delays. In particular, we define the lateness of
an operation as the difference between its own exit time and
that of the earliest operation in its step in the partition:

lop = op.exit−min{x.exit|op, x ∈ P, x.step = op.step}

where P is the set of operations within a partition. In bulk-
synchronous codes leaps typically contain operations from
all processes and thus lateness is calculated globally. This
can also be enforced by a post-stepping merge across shared
global steps. However, for codes with different process-
groups that perform separate and distinct actions, the parti-
tion ensures that only related operations are compared.

Fig. 6 shows a portion of a 16 process MG trace vi-
sualized in Ravel with communication operations colored
by the lateness metric. Ravel displays both a traditional
physical timeline and a logical timeline. Both views show a
delay in a non-communication operation on the first process
which propagates to other processes. The logical time view
highlights a propagation of lateness along processes and
along messages to other processes. This leads us to classify
the conditions that contribute to the lateness of an operation
depending on whether the operation in question is receiving
a message or not. A late, non-receiving operation whose
predecessor is not late is likely responsible for the delay,
perhaps due to load imbalance in the computation (Fig. 7a).
If the predecessor is late as well (Fig. 7b), lateness has been
propagated and was likely caused upstream. Similarly, a late
receiving operation whose corresponding sending operation

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 7

Lateness in Event

(a) A non-receiving opera-
tion is late but its predeces-
sor is not, implying the oper-
ation itself caused the delay.

Lateness Propagated Along Process

(b) A non-receiving opera-
tion is late and so is its prede-
cessor, implying the lateness
was propagated.

Lateness in Message

(c) A receiving operation is
late but the corresponding
sending operation is not, im-
plying that the lateness was
created in flight.

Lateness Propagated Along Message

(d) A receiving operation is
late and so is its match-
ing send operation, implying
that we waited for a late mes-
sage.

Fig. 7: Creation and propagation of lateness for non-receiving (a,b) and receiving (c,d) operations.

is not late (Fig. 7c) indicates that the message has either been
delayed in flight, e.g., due to contention in the network,
or is late because of the processing needed to perform
the receive, which could be caused by, e.g., a slow buffer
allocation. Finally, a late receive operation with a matching
late send operation indicates lateness propagation across
processes (Fig. 7d). The aggregated non-message operations
created in global step assignment are necessary to differ-
entiate between in-process and across-process lateness. One
interesting and useful property of lateness is that it naturally
“resets” once all processes become equally late. For example,
a tree-structured reduction rooted at a single process resets
lateness, as does a barrier or a simple load imbalance that
propagates globally through neighbor exchanges.

Differential Lateness. Lateness provides a good high level
overview of potential root causes of delays. Especially
when coupled with the visualizations in Ravel, a user can
quickly find the first late operation and continue a more
detailed analysis from there. However, in very large or com-
plex traces, identifying these patterns becomes challenging,
meaning techniques are necessary to directly identify the
likely cause of a problem. To this end we propose to ana-
lyze differential lateness: the difference between the lateness
attributed to prior operations and the lateness at exit time:

dop = max{lop −max{lx|x→ op, @y s.t. x→ y → op}, 0}

Instead of showing all late operations, differential lateness
highlights the operations and processes that cause lateness.
Note that we do not allow negative lateness: it can highlight
some operations that compensate for earlier problems, but
negative lateness primarily occurs at reset boundaries lead-
ing to confusing and difficult to interpret configurations.

5 EVALUATION

We execute applications on two radically different architec-
tures: a large Blue Gene/Q (BG/Q) system and an Infini-
band cluster with 12 Sandy Bridge cores per node. The Intel
cores are split across two sockets, with 6 cores per socket.
The BG/Q system uses IBM’s compute node kernel OS and
a custom MPI implementation. The Infiniband cluster uses a
Red Hat derived Linux distribution and the MVAPICH MPI
implementation. On both machines we obtain our traces in
Open Trace Format 2 (OTF2) [33] using Score-P [34] or Open
Trace Format (OTF) [35] using VampirTrace [36].

Our structure extraction algorithm is implemented in
Ravel, a desktop application. Our algorithm operates on
messaging operations, so the runtime primarily depends on

the number of messages, not the number of processes or
the total timespan of the trace. The current implementation
relies on a preprocessing step to match all messages; this can
be memory intensive for large message counts.

5.1 MPI Collective Operations

Collective algorithms are an important part of MPI because
they allow groups of processes to work together for ef-
ficient global communication. For example, MPI provides
an MPI_Allreduce algorithm that performs a distributed
parallel sum (or other associative operation) and puts its
result on all processes. From a visualization perspective,
collectives have dense communication patterns, with many
messages sent between processes at around the same time.
This poses a challenge for existing trace tools, especially
when the system is noisy and dependence chains across
MPI processes are perturbed. We use these as a case study
of our tool to demonstrate its ability to correctly determine
logical structure and to show how we can display collective
operations in an intelligible manner. For our experiments,
we used libNBC [8], an open source implementation of
non-blocking MPI collective operations. We chose libNBC
because the algorithms it implements for its collectives are
well understood, allowing us to verify our logical structure.

We first consider the binomial tree implementation of
MPI_Allreduce. Fig. 8 shows the unprocessed trace as
visualized by Vampir and its extracted logical structure
as visualized by Ravel. The algorithm performs a parallel
reduction with a binomial tree embedded in the MPI ranks,
then it broadcasts the global sum back along another bi-
nomial tree. Our logical structure captures the send-receive
operation pairs at each level of the tree, despite the overlap
observed in the physical time visualization. All of our par-
titioning options yield the same logical steps but different
partitions. In the figure we show the partitioning resulting
from mandatory merging and merging across global steps.

Fig. 9 shows the logical time view of a ring implementa-
tion of MPI_Allreduce, colored by lateness. In this O(P)
algorithm, each of the P processes sends to its neighbor and
accumulates a sum from each rank’s contribution. Again our
logical structure accurately determines the P rounds of this
communication. We further observe the spread of lateness
from the 45th process and its continued effects through the
remainder of the rounds. Also visible are a handful of late
processes in the final rounds. The circled steps were the only
ones calculated to have high differential lateness, indicating
these were the sources of the other delays. Closer exami-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 8

Fig. 8: Visualization of 64 process binomial tree
MPI_Allreduce in physical time by Vampir (top) and
logical time by Ravel (bottom). In logical time, we color
by communication partition. We are able to identify the
binomial tree levels though they overlap in physical time.

Lateness

Fig. 9: Ring algorithm MPI_Allreduce on 64 processes.
Coloring is done by lateness, showing propagation. We find
two operations with high differential lateness (circled).

nation reveals lateness is injected at a messaging operation,
possibly due to congestion on the network.

5.2 Massively Parallel Merge Trees
Merge trees are topological structures that can aid in the
analysis of data from large parallel simulations [37], [38],
[39]. We consider a massively parallel algorithm to compute
them in situ [9], which avoids the limitations and penal-
ties of writing out the data to be analyzed post mortem.
Previously, we demonstrated how visual analysis of logical
structure helped locate a sub-optimal message order in an
early merge tree implementation [2]. Here, we analyze the
validity of the logical structure extracted from this code.

In the merge tree algorithm, each process running the
simulation must compute a local merge tree over features
of interest in the simulation data. These local merge trees
are sent to gather processes which combine the local trees and

(a) Logical steps resulting from developer partitions.

(b) Logical steps resulting from our partitions.

Fig. 10: 4,096 process merge tree, colored by partitioning. In
(a) we use partitions from the merge tree developers. In (b)
we derive partitions using our algorithm. The partitioning
and resulting logical structure are highly similar.

send to the next level of gather processes. The algorithm
iterates until a global merge tree is computed. The gather
processes are organized as a k-ary tree, where one process
of a set of k siblings at one level acts as the group’s gather
process at the next level. At the end of each round, the
intermediate merge tree is sent not only to this gather
process, but also down along the tree to the leaves.

We obtained communication phase information from the
developers and compared it to our partitioning using the
leap merge and merging across global steps. Fig. 10 shows a
4,096 process, 8-ary merge-tree where operations are colored
by membership in their logical partition as determined by
the developer in Fig. 10a and our algorithm in Fig. 10b.
The main difference is that our algorithm breaks the initial
phase into the up and down partitions (to and from the
gather process). Even with this difference, the resulting
logical structures are very similar. In both images, the first
level of the gather tree structure is apparent from the eight
parallelograms stacked vertically in the process space –
indicating the eight parallel subtrees.

The parallel merge tree algorithm uses asynchronous
primitives for its communication. However, an early devel-
opment version of the algorithm used synchronous primi-
tives. Closer examination of this early implementation re-
veals some of the pitfalls of strict adherence to happened-
before ordering. Fig. 11b shows eight gather groups of eight
leaves at the beginning of a 4,096 process, 8-ary merge tree
trace with partitioning given by the developers. In the first
step, the (level-0) leaves send to their level-1 gather process
which responds with corrections and subsequently sends
the result to the level-2 gather process. However, the top set
of eight leaves is later than its sibling groups for the level-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 9

(a) Entire trace.

(b) Detail shows shifting of steps based on happened-before
ordering.

Fig. 11: Trace from an older merge tree implementation, on
4,096 processes. In (a), the entire merge tree trace is shown
colored by lateness. The portion in the black box is shown in
more detail in (b). The top gather process receives messages
from the gather processes of faster groups. To enforce the
true ordering of operations, send operations of the initial
gather must be shifted toward the right, preventing logically
parallel communication from being assigned the same step.

1 gather. The level-1 gather processes of those siblings send
their results to the topmost process (which will act as a level-
2 gahter process) before the it receives all messages from
its (level-0) children in its role as a level-1 gather process.
Thus, the early receive causes the steps to be misaligned.
The remaining communication operations of the top-most
process are shifted towards the right. We observe this effect
among multiple gather groups with varying severity. This is
seen as horizontal lines of different lengths in the full view
(Fig. 11a). Sends are shifted back to the leaves, several steps
to the right.

This effect is an unavoidable consequence of the
happened-before ordering. However, in this case the early
message does not actually change the order of computation.
Allowing the stepping algorithm to violate the happened-
before relation to create the expected regular patterns could
potentially result in a more intuitive visualization and more
meaningful metrics. However, it is not clear under which
circumstances such a re-ordering should be permissible.
This will be the subject of future research.

5.3 Algebraic Multigrid
Algebraic multigrid techniques solve sparse linear systems
that may or may not be associated with an actual spatial
grid. The method begins with a fine-grained grid or matrix

Fig. 12: Partitioning of AMG2013’s solver algorithm exe-
cuted on 64 processes. The last eight processes partition
independently of the others.

Fig. 13: Partitioning of a single iteration of the AMG2013
solve, focusing on the first 54 processes. The individual par-
titions match well with what we expect from the levels of the
V-cycle. We see the amount of communication increase as
processes in coarser levels gain more neighbors. Eventually
some processes become inactive due to coarsening, result-
ing in white gaps across the blue and lavender partitions
preceding the brown one.

that is successively coarsened until it can be solved with
reasonable error. It interpolates back from the coarsened
solution to the fine-grained one. This so-called V-cycle is
repeated until it has converged. We examine an algebraic
multigrid method implemented in the hypre scalable solver
library [10], via the AMG2013 benchmark, which is part
of the CORAL [11] benchmark suite. This gives us an
opportunity to verify our structure algorithm for a more
complicated example.

Fig. 12 shows a portion of the logical structure we
extracted, using the leap merge option, from a 64 process
trace of the AMG2013 solver algorithm executed on the
BG/Q machine. The operations are colored by partition.
Our structure separates the first 54 processes into distinct
partitions from the remaining eight. This led us to examine
the rest of the structure and discover that the two process
groups never interacted within the solve. Upon consulting
with the development team and verifying the results, we
learned that the final eight processes are assigned to the
anisotropic portion of the domain, which explains why
they behave differently and independently, as found by our
logical structure.

We narrow our focus to a single iteration, shown in
Fig. 13, once again colored by partition. For simplicity we
show only the 54 process partition and omit message lines.
In the solve, each level performs a relaxation step and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 10

(a) The first 40 processes exhibit high differential lateness
early on due to greater computational requirements. A few
MPI_Waitall operations (annotated with white circles) also
show high differential lateness.

(b) The overview on the bottom shows eleven repetitions of
the lateness profile, corresponding to the iterations of the V-
cycle. Lateness spreads from the operations of high differential
lateness in Fig. 14a.

Fig. 14: Logical structure of AMG2013 cycle on 64 processes.

one to two matrix-vector products. Our algorithm separates
these in partitioning. Initially, the partitions are short, but
as the grid gets coarser, participating processes need to
send information to more neighbors, resulting in longer
partitions representing the increased communication. At the
same time, the coarsening leaves some processes without
work, seen as white gaps (no operations) across the blue
and lavender partitions preceding the long brown one.
This behavior is expected, suggesting the logical structure
extracted by our partitioning approach is consistent with
AMG’s algorithm design.

The AMG2013 solve cycle generally uses a sequence
of MPI_Irecvs, MPI_Isends, and an MPI_Waitall. This
makes it a good candidate for isend coalescing (Section 3.3)
to examine lateness. Fig 14a shows the operations of a single
solve cycle colored by differential lateness. The coarse parti-
tions where some processes do not participate are apparent
from the white gaps in the operations across ranks 0 and 4,
as well as from the denser lines in those steps among other
processes that are sending to more neighbors. We observe
the first 40 processes exhibit high differential lateness in the
computation following the first communication volley, indi-
cating an imbalance. We also note high differential lateness
in a few MPI_Waitall operations, circled in white.

Examining lateness instead (Fig. 14b), we see the propa-
gation of lateness from the abnormal MPI_Waitalls. Note
that the lateness overview at the bottom reveals a periodic
pattern of lateness over logical time. The number of repeti-

Fig. 15: Ravel logical and physical view of an MPI_Waitall
with high differential lateness in the AMG2013 solve cycle.
Messages to the MPI_Waitall are highlighted in yellow.

Fig. 16: Logical structure of an AMG2013 solve cycle on 64
processes with an asynchronous progress thread running.
Compared to Fig. 14b, the lateness due to MPI_Waitalls is
gone, leaving only the computation lateness.

tions corresponds to the number of iterations of the V-cycle
reported by the run, indicating this is a recurrent issue.

We focus on one of these MPI_Waitall operations
in Ravel’s physical time view (Fig. 15). The operation is
selected in both the logical and physical time views with
the associated message lines highlighted in yellow. From
our logical steps and lateness metrics, we were able to
locate this aberrant∼12ms MPI_Waitall quickly and learn
that its expected behavior is like the short MPI_Waitall
calls before it, rather than the longer ones after it. When
differential lateness is high for a receiving operation, we
expect the message itself to be the cause (Fig. 7c). In this
case, all the messages come from processes on the same
node, so the network could not have contributed to the
lateness. Furthermore, other MPI_Waitall calls complete
much more rapidly. We note that the late MPI_Waitall
does not complete until the next round of MPI_Waitalls
begin on its senders. We hypothesize that this may be
an asynchronous progress issue – the MPI_Waitall oc-
curs late enough that the MPI implementation does not
handle the outstanding MPI_Isends until the next step’s
MPI_Waitalls. We run AMG2013 again, this time setting
the PAMID_ASYNC_PROGRESS environment variable, which
uses a separate thread to make asynchronous progress at
the cost of potentially greater latency. The differentially late
MPI_Waitalls are no longer present in the resulting trace
(Fig. 16), leaving only computation-based lateness.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 11

6 CONCLUSIONS AND FUTURE WORK

We have presented a new approach for analyzing the ex-
ecution traces of message passing programs. We extract a
logical structure to capture the developer’s intended or-
dering of operations. This technique uses happened-before
relationships not only on the scale of individual events,
but also on the scale of communication phases and even
concurrent send operations. We explicitly hide timing infor-
mation in our logical view. This clearly shows relationships
among operations, and we use temporal metrics mapped
onto this structure to highlight timing problems without
clutter. In particular, we calculate each operation’s delay
relative to its logical peers, providing an abstract view of
lateness. Using the happened-before relationship encoded
in the logical structure, we are able to pinpoint the cause of
a bottleneck and to study its propagation.

Through a series of case studies, we have demonstrated
that our algorithm can identify structures across a variety
of communication profiles. We have shown that our metrics
correctly identify communication delays and their sources.
We also found an example where derived structure was
not ideal (Fig. 11). In future work, we plan to improve our
heuristics for message passing programs, expand the types
of operations and dependencies handled by our structure
extraction algorithm, and further leverage logical structure
for detection of performance issues. We will further in-
vestigate how our visual approach compares to automatic
approaches in trace analysis, documenting the strengths,
limitations, and best-suited problems for each.

ACKNOWLEDGMENTS

The authors would like to thank Ulrike Yang and Aaditya
Landge for their guidance regarding AMG2013 and the
parallel merge tree application respectively.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 and sup-
ported by Office of Science, Office of Advanced Scientific
Computing Research as well as the Advanced Simulation
and Computing (ASC) program.

REFERENCES

[1] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchen-
bach, “VAMPIR: Visualization and analysis of MPI resources,”
Supercomputer, vol. 12, no. 1, pp. 69–80, 1996.

[2] K. E. Isaacs, P.-T. Bremer, I. Jusufi, T. Gamblin, A. Bhatele,
M. Schulz, and B. Hamann, “Combing the communication hair-
ball: Visualizing large-scale parallel execution traces using logical
time,” IEEE Trans. on Vis. and Comp. Graphics, Proc. InfoVis ’14,
no. 12, 2014.

[3] “Hydrodynamics Challenge Problem, Lawrence Livermore Na-
tional Laboratory,” Tech. Rep. LLNL-TR-490254.

[4] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter,
and E. A. Williams, “Filamentation and forward brillouin scatter
of entire smoothed and aberrated laser beams,” Physics of Plasmas,
vol. 7, no. 5, pp. 2023–2032, 2000.

[5] Accelerated Strategic Computing Initiative, “The SMG2000 bench-
mark,” 2001.

[6] “NAS parallel benchmarks (NPB).” [Online]. Available: https:
//www.nas.nasa.gov/publications/npb.html

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, and R. A. Fatoohi, “The NAS parallel benchmarks,” The
International Journal of Supercomputer Applications, vol. 5, no. 3, pp.
63–73, 1991.

[8] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and
Performance Analysis of Non-Blocking Collective Operations for
MPI,” in Proceedings of the 2007 International Conference on High
Performance Computing, Networking, Storage and Analysis, SC07.
IEEE Computer Society/ACM, Nov. 2007.

[9] A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla,
J. Chen, and P.-T. Bremer, “In-situ feature extraction of large
scale combustion simulations using segmented merge trees,” Proc.
ACM/IEEE Conf. on Supercomputing (SC14), SC’14. Nov. 2014.

[10] R. Falgout, J. Jones, and U. Yang, “The design and implementation
of hypre, a library of parallel high performance preconditioners,”
in Numerical Solution of Partial Differential Equations on Parallel
Computers, A. Bruaset and A. Tveito, Eds. Springer-Verlag, 2006,
vol. 51, pp. 267–294.

[11] “Collaboration of Oak Ridge, Argonne, and Livermore benchmark
codes,” https://asc.llnl.gov/CORAL-benchmarks.

[12] B. Mohr and F. Wolf, “KOJAK: A tool set for automatic perfor-
mance analysis of parallel programs,” in 9th International Euro-Par
Conference (EUROPAR), Klagenfurt, Austria, Aug. 2003.

[13] F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, W. Frings,
K. Fürlinger, M. Geimer, M.-A. Hermanns, B. Mohr, S. Moore,
M. Pfeifer, and Z. Szebenyi, “Usage of the SCALASCA toolset
for scalable performance analysis of large-scale parallel applica-
tions,” in Tools for High Performance Computing. Springer Berlin
Heidelberg, 2008, pp. 157–167.

[14] D. Böhme, M. Geimer, F. Wolf, and L. Arnold, “Identifying the root
causes of wait states in large-scale parallel applications,” in Proc.
of the 39th International Conference on Parallel Processing (ICPP), San
Diego, CA, USA. IEEE Computer Society, Sep. 2010, pp. 90–100.

[15] O. Morajko, A. Morajko, T. Margalef, and E. Luque, “On-line per-
formance modeling for MPI applications,” in Euro-Par 2008 Par-
allel Processing, ser. Lecture Notes in Computer Science, E. Luque,
T. Margalef, and D. Bentez, Eds. Springer Berlin Heidelberg, 2008,
vol. 5168, pp. 68–77.

[16] M. Schulz, “Extracting critical path graphs from MPI applica-
tions,” in Cluster Computing. IEEE International, September 2005,
pp. 1–10.

[17] D. Boehme, F. Wolf, B. R. de Supinski, M. Schulz, and M. Geimer,
“Scalable critical-path based performance analysis,” Parallel and
Distributed Processing Symposium, pp. 1330 – 1340, 2012.

[18] O. Zaki, E. Lusk, W. Gropp, and D. Swider, “Toward scalable
performance visualization with Jumpshot,” High Performance Com-
puting Applications, vol. 13, no. 2, pp. 277–288, Fall 1999.

[19] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to
visualize and analyze parallel code,” 1995.

[20] C. Schaubschläger, D. Kranzlmüller, and J. Volkert, “Event-based
program analysis with DeWiz,” in Proceedings of the Fifth Interna-
tional Workshop on Automated Debugging AADEBUG2003, 2003.

[21] T. J. LeBlanc, J. M. Mellor-Crummey, and R. J. Fowler, “Analyzing
parallel program executions using multiple views,” J. Parallel
Distrib. Comput., vol. 9, no. 2, pp. 203–217, Jun. 1990.

[22] J. Gonzalez, J. Gimenez, and J. Labarta, “Automatic detection of
parallel applications computation phases,” in Proc. of the 23rd IEEE
Intl. Parallel and Distributed Processing Symp., 2009, pp. 1–11.

[23] T. Gamblin, R. Fowler, and D. A. Reed, “Scalable methods for
monitoring and detecting behavioral equivalence classes in sci-
entific codes,” in Proc. of the 22nd IEEE Intl. Parallel and Distributed
Processing Symp., 2008, pp. 1–12.

[24] T. Gamblin, B. R. de Supinski, M. Schulz, R. J. Fowler, and D. A.
Reed, “Clustering performance data efficiently at massive scale,”
in International Conference on Supercomputing, Tsukuba, Japan, June
1-4 2010.

[25] ——, “Scalable load-balance measurement for SPMD codes,” in
Supercomputing 2008 (SC’08), Austin, Texas, November 15-21 2008,
pp. 46–57.

[26] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul.
1978.

[27] M. Casas, R. M. Badia, and J. Labarta, “Automatic phase detection
of MPI applications,” Parallel Computing: Architectures, Algorithms,
and Applications, vol. 38, pp. 129–136, 2007.

[28] ——, “Automatic structure extraction from MPI applications trace-
files,” in 13th International Euro-Par Conference, vol. 4641/2007,
Rennes, France, August 28-31 2007, pp. 3–12.

[29] J. Gonzalez, J. Gimenez, and J. Labarta, “Automatic detection of
parallel applications computation phases,” in International Parallel

https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html
https://asc.llnl.gov/CORAL-benchmarks

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, SEPTEMBER 2014 12

and Distributed Processing Symposium (IPDPS’09), Rome, Italy, May
25-29 2009.

[30] G. Llort, H. Servat, J. Gonzalez, J. Gimenez, and J. Labarta, “On the
usefulness of object tracking techniques in performance analysis,”
in Supercomputing 2013 (SC’13), Denver, CO, November 17-22 2013.

[31] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Auto-
matically characterizing large scale program behavior,” in Tenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X), San Jose, CA, Oc-
tober 5-9 2002, pp. 45–47.

[32] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Dis-
covering and exploiting program phases,” IEEE Micro: Micro’s Top
Picks from Computer Architecture Conferences, November-December
2003.

[33] D. Eschweiller, M. Wagner, M. Geimer, A. Kn upfer, W. E. Nagel,
and F. Wolf, “Open Trace Format 2: The next generation of scalable
trace formats and support libraries,” in Applications, Tools, and
Techniques on the Road to Exascale Computing, ser. Advances in
Parallel Computing, K. De Bosschere, E. H. D’Hollander, G. R.
Joubert, D. Padua, F. Peters, and M. Sawyer, Eds. IOS Press, 2012,
pp. 481–490.

[34] A. Knüpfer, C. Rössel, D. Mey, S. Biersdorff, K. Diethelm, D. Es-
chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. Nagel,
Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende,
R. Tschter, M. Wagner, B. Wesarg, and F. Wolf, “Score-P: A joint
performance measurement run-time infrastructure for Periscope,
Scalasca, TAU, and Vampir,” in Tools for High Performance Comput-
ing 2011, H. Brunst, M. S. Müller, W. E. Nagel, and M. M. Resch,
Eds. Springer Berlin Heidelberg, 2011, pp. 79–91.

[35] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel,
“Introducing the open trace format (OTF),” in Proc. of 6th Int. Conf.
on Comp. Sci., ser. ICCS’06. Springer-Verlag, 2006, pp. 526–533.

[36] TU Dresden Center for Information Services and High
Performance Computing (ZIH), “VampirTrace 5.14.2 user
manual,” http://www.tu-dresden.de/zih/vampirtrace,
March 2013.

[37] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. B. Bell,
“Interactive exploration and analysis of large scale simulations
using topology-based data segmentation,” IEEE Trans. on Visual-
ization and Computer Graphics, vol. 17, no. 9, pp. 1307–1324, 2011.

[38] J. Bennett, V. Krishnamurthy, S. Liu, V. Pascucci, R. Grout, J. Chen,
and P.-T. Bremer, “Feature-based statistical analysis of combustion
simulation data,” IEEE Trans. Vis. Comp. Graph., vol. 17, no. 12, pp.
1822–1831, 2011.

[39] J. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thomp-
son, H. Yu, F. Zhang, and J. Chen, “Combining in-situ and in-
transit processing to enable extreme-scale scientific analysis,” in
Proc. ACM/IEEE Conference on Supercomputing (SC12), 2012.

Katherine E. Isaacs is a Ph.D. candidate at the University of California,
Davis researching information visualization techniques for performance
analysis. In 2012 she was awarded a Department of Energy Office
of Science Graduate Fellowship (DOE SCGF). She completed a B.S.
in computer science and a B.A. in mathematics at San José State
University and a B.S. in physics at the California Institute of Technology.

Todd Gamblin is a Computer Scientist in the Center for Applied Sci-
entific Computing at Lawrence Livermore National Laboratory. His re-
search focuses on scalable tools and algorithms for measuring, analyz-
ing, and visualizing the performance of massively parallel applications.
He leads several projects in these areas, and has been at LLNL since
2008. Todd received the Ph.D. and M.S. degrees in Computer Science
from the University of North Carolina at Chapel Hill in 2009 and 2005.
He received his B.A. in Computer Science and Japanese from Williams
College in 2002. He has also worked as a software developer in Tokyo
and held graduate research internships at the University of Tokyo and
IBM Research. Todd recently received an Early Career Research Award
from the U.S. Department of Energy.

Abhinav Bhatele is a computer scientist in the Center for Applied
Scientific Computing at Lawrence Livermore National Laboratory. His
interests lie in performance optimizations through analysis, visualization
and tuning and developing algorithms for high-end parallel systems.
His thesis was on topology aware task mapping and distributed load
balancing for parallel applications.

Abhinav received a B. Tech. degree in Computer Science and Engi-
neering from I.I.T. Kanpur, India in May 2005 and M.S. and Ph.D. de-
grees in Computer Science from the University of Illinois at Urbana-
Champaign in 2007 and 2010 respectively. Abhinav was an ACM/IEEE-
CS George Michael Memorial HPC Fellow in 2009. He has received
several awards for his dissertation work including the David J. Kuck
Outstanding MS Thesis Award in 2009, a Distinguished Paper Award
at Euro-Par 2009 and the David J. Kuck Outstanding PhD Thesis Award
in 2011. Recently, a paper that he co-authored with LLNL and external
collaborators was selected for a best paper award at IPDPS in 2013.

Martin Schulz is a Computer Scientist at the Center for Applied Sci-
entific Computing (CASC) at Lawrence Livermore National Laboratory
(LLNL). He earned his Doctorate in Computer Science in 2001 from the
Technische Universität München (Munich, Germany) and also holds a
Master of Science in Computer Science from the University of Illinois at
Urbana Champaign. He has published over 175 peer-reviewed papers
and currently serves as the chair of the MPI forum, the standardization
body for the Message Passing Interface. He is the PI for the Office of
Science X-Stack project ”Performance Insights for Programmers and
Exascale Runtimes” (PIPER) as well as for the ASC/CCE project on
Open|SpeedShop, and is involved in the DOE/Office of Science exas-
cale projects CESAR, ExMatEx, and ARGO. Martin’s research interests
include parallel and distributed architectures and applications; perfor-
mance monitoring, modeling and analysis; memory system optimization;
parallel programming paradigms; tool support for parallel programming;
power-aware parallel computing; and fault tolerance at the application
and system level. Martin was a recipient of the IEEE/ACM Gordon Bell
Award in 2006 and an R&D 100 award in 2011.

Bernd Hamann is a professor of computer science at the University of
California, Davis. He studied mathematics and computer science at the
Technical University of Braunschweig, Germany, and received a Ph.D.
in computer science from Arizona State University in 1991. His main
teaching and research interests are data visualization, data analysis and
geometric modeling.

Peer-Timo Bremer is a member of technical staff and project leader
at the Center for Applied Scientific Computing (CASC) at the Lawrence
Livermore National Laboratory (LLNL) and Associated Director for Re-
search at the Center for Extreme Data Management, Analysis, and
Visualization at the University of Utah. His research interests include
large scale data analysis, performance analysis and visualization and he
recently co-organized a Dagstuhl Perspectives workshop on integrating
performance analysis and visualization. Prior to his tenure at CASC,
he was a postdoctoral research associate at the University of Illinois,
Urbana-Champaign. Peer-Timo earned a Ph.D. in Computer science at
the University of California, Davis in 2004 and a Diploma in Mathematics
and Computer Science from the Leibniz University in Hannover, Ger-
many in 2000. He is a member of the IEEE Computer Society and ACM.

http://www.tu-dresden.de/zih/vampirtrace

	Introduction
	Related Work
	Extracting Logical Structure
	Phase Partitioning
	Local and Global Step Assignment
	Isend Coalescing

	Temporal Metrics
	Evaluation
	MPI Collective Operations
	Massively Parallel Merge Trees
	Algebraic Multigrid

	Conclusions and Future Work
	References
	Biographies
	Katherine E. Isaacs
	Todd Gamblin
	Abhinav Bhatele
	Martin Schulz
	Bernd Hamann
	Peer-Timo Bremer

