Towards Corner Matching for 2D and 3D

T.J. Jankun-Kelly; Bernd Hamann, Kenneth 1. Joy
{kelly,hamann, joy}€cs.ucdavis.edu

University of California, Davis

Image resectioning is the process of taking 2D images of a
3D model and mapping those images back onto the model so
the images can be viewed in 3-space. Consider photographic
images of oil-slick tests on an airplane wing; image resec-
tioning allows a scientist to take the images of the wing, shot
at different locations and orientations, and visualize them as
a continuous, 3-dimensional model. We aim to develop algo-
rithms to automate the image resectioning problem with as
little human interaction as possible. This abstract describes
one of the steps toward that goal—finding points in the im-
age and model that we can use for matching.

Finding Corner Points

Our algorithm focus on corner points as the key feature to
find correspondences. Finding corner points in 2D images is
a classical computer vision and image processing problem;
we use standard techniques to find corners in images (see
[2, 4, 1]). Given the 2D image, the algorithm produces a
set of corner points from the decimated boundary (Figure 3)
by merging points along the boundary until only lines with
certain corner angles are left.

The second part of our algorithm calculates feature cor-
ners in the 3D model. The definition and extraction of cor-
ner/edge information in 3D triangulated surfaces is based on
the'method described in [5]. Starting with a triangular mesh
(either provided directly or obtained as a result of a triangu-
lation of an analytical surface), we define features of interest
as follows:

Feature Edge. A feature edge is present between two adja-
cent triangles when the angle between the outward nor-
mals exceeds a given threshold value.

*This was supported by NASA Ames Research Center through a sum-
mer internship in 1998 via NASA contract NAS2-14303. At UC Davis, this
work was supported by the National Science Foundation under contract ACI
9624034 (CAREER Award), the Office of Naval Research under contract
N00014-97-1-0222, the Army Research Office under contract ARO 36598-
MA-RIP, the NASA Ames Research Center through an NRA award under
contract NAG2-1216, the Lawrence Livermore National Laboratory through
an ASCI ASAP Level-2 contract under W-7405-ENG-48 (and B335358,
B347878), and the North Atlantic Treaty Organization (NATO) under con-
tract CRG.971628 awarded to the University of California, Davis. We also
acknowledge the support of Silicon Graphics, Inc., and thank the members
of the Visualization Group at the Center for Image Processing and Integrated
Computing (CIPIC) at the University of California, Davis and the members
of the Numerical Aerospace Simulation group (NAS) at NASA Ames.

Samuel P. Uselton
uselton€éllnl.gov
Lawrence Livermore National Laboratory

Boundary Edge. A boundary edge is an edge that belongs
to only one triangle.

Corner Point. A corner point occurs at vertex where three
or more feature edges meet. Optionally, any vertex of a
boundary edge can be considered a corner point.

Figure 1 illustrates these definitions. For a given vertex v

Boundary Edges Comer Point

Figure 1: Feature edge, border edge, and corner point defini-
tions.

in a mesh, we examine each edge emanating from v. If two
triangles share the edge, we compare the angle between the
outward, unit triangle normals; if the angle is greater than a
specified “corner angle”, the edge is added to a feature edge
list for that vertex. After examining all edges, we declare
v a corner point if and only if there are three or more fea-
ture edges emanating from v. This process is repeated for
each vertex in the mesh until all corners (and, optionally, all
feature and border edges) are extracted.

The algorithms we have presented are efficient. For the
2D case, once an initial boundary pixel is discovered, the al-
gorithm described for extracting the boundary is linear in the
number of boundary pixels, while line merging complexity
is quadratic. For the 3D case, each vertex is examined only
once and each edge is examined at most twice (once for each
end-point).

Implementation and Analysis

We have implemented the corner extraction algorithm for
both 2D and 3D in Java using Java3D. Figures 2, 3 and 4
demonstrate the corner finding algorithms. The model is
a triangulation of a non-uniform rational B-Spline surface
(NURBS) [3].

The 2D corner finding algorithm is sufficient for our
needs. However, the 3D corner finder is not yet robust

4l



enough for image resectioning. Though it finds corners eas-
ily for objects with sharp edges (i.e. cubes), it fails on objects
with smoother variation. Even more important, the corners
found by this method may have no correspondences to the
points found by the 2D algorithm. For example, the corner
points belonging to the nadir of the Figure 2 are not found
by the 2D algorithm (Figure 3) as they are internal to the
boundary. In addition, 3D corners that are obscured by faces
or vertices lying in front of them are not found by the 2D al-
gorithm since they are not visible from the camera position.

Conclusions

We have described a method for corner finding for automated
image resectioning of multi-source data. Though we can au-
tomatically find corners in 2D images, classifying 3D cor-
ners is still problematic. Currently, our solution requires a
user to intervene and position a given 3D model in such a
way that our 2D algorithm can be used to find corners in
projected image. If an efficient search of possible model ori-
entations can be found, then an automated solution to our
problem may be feasible. Using a 2D algorithm for both
model projections and images has the advantage that the gen-
erated points should be similar enough to facilitate matching
for projecting the images back into 3-space. The approach
we have presented is a possible path toward more automa-
tion to deal with general multi-source data problems.

References

[1] Dana H. Ballard and Christoper M. Brown. Computer
Vision. Prentice Hall, 1982.

[2] Richard O. Duda and Peter E. Hart. Pattern Classifica-
tion and Scene Analysis. John Wiley & Sons, 1973.

[3] Gerald Farin. Curves and Surfaces for Computer Aided
Geometric Design: A Practical Guide. Academic Press,
4th edition, 1997.

[4] Theo Pavlidis. Algorithms for Graphics and Image Pro-
cessing. Computer Science Press, 1982.

[5] W.Schroeder, J. Zarge, and W. Lorensen. Decimation of
triangle meshes. Computer Graphics (SIGGRAPH ’92),
26(2), August 1992. '

Figure 3: The 16 extracted 2D corners (white dots) and
boundary (cyan/grey line).

Figure 4: The eight extracted 3D corners (grey spheres) and
feature edges (white lines).

4-4



(a) Original PSP digital image. (b) Extracted corners obtained after edge decimation.

Figure 4: Results of 2D corner extraction algorithm for wind tunnel data.

(a) Original triangulated surface model. (b) Extracted 3D corners. 16 corners (c) Extracted 2D corners from image (a).
were found using a 45 degree corner an- 10 corners were found with a 135 degree
gle. corner angle.

Figure 5: Results of 3D and 2D corner extraction for triangulated surface model.

(a) Original image of triangulated (b) Extracted 3D corners. Eight corners (c) Extracted 2D corners from image (a).
NURBS surface. were found with a corner angle of 23 de- 16 corners were found with a 135 degree
grees. corner angle.

Figure 6: Corner extraction for a parametric NURBS surface.



