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Abstract
We present a novel feature-based approach to surface generation from point clouds in three-
dimensional space obtained by terrestrial and airborne laser scanning. In a first step, we apply
a multiscale clustering and classification of local point set neighborhoods by considering their
geometric shape. Corresponding feature values quantify the similarity to curve-like, surface-
like, and solid-like shapes. For selecting and extracting surface features, we build a hierarchical
trivariate B-spline representation of this surface feature function. Surfaces are extracted with a
variant of marching cubes (MC), providing an inner and outer shell that are merged into a single
non-manifold surface component at the field’s ridges. By adapting the iso-value of the feature
function the user may control surface topology and thus adapt the extracted features to the noise
level of the underlying point cloud. User control and adaptive approximation make our method
robust for noisy and complex point data.
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1 Introduction

The exploration of point data sets, like environmental LiDaR (Light Detection and Ranging)
data, is a challenging problem of current interest. Besides the vast amount of points obtained
from terrestrial and airborne scanning, data complexity is increased by e.g., noise, occlusion,
alternating sample density and overlapping samples. Despite of the high scanning resolution,
undersampling occurs at small and fractured components like fences and leaves of trees.

In this research we introduce a new surface reconstruction approach that allows to recover
surface meshes from relative complex point data sets. Since most reconstruction methods
do not distinguish between surface and non-surface related point structures, they rather
assume the input points always originate from surface structures, applying them to noisy
and complex point data would not lead to reliable results. To perform a reliable surface
reconstruction a feature-based reconstruction approach taking into account the structural
composition of the acquired point cloud is proposed. It adapts the mesh reconstruction
in a way that only surface-related point structures are extracted. This is accomplished by
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first performing a structural analysis of the point cloud that filters the point data based
on a classification of local point set neighborhoods. The feature values assigned to the
individual points are used to define whether a point corresponds to a surface or not. The
proposed approach constructs a feature field function approximating these feature values
from which an initial surface representation is extracted. The locus of points associated with
the local extrema of this implicit “feature function“ most probably represents the underlying
surface structures. Thus, moving the initial surface toward these local extrema, incorporating
operations adapting the topology of the surface meshes, yields the final surface approximation.
Since the proposed approach is meant to complement the visualization of raw laser-scanned
data, it provides a mesh-representation exhibiting a user specified topology. The topology
can be controlled, similar to choosing a radius for alpha shapes in 3D space [11], in a way
that the extracted surfaces adapt to the point cloud specific properties. A further advantage
is that the extracted surface representation is continuous and thus can be used for further
post-processing.

The remainder of this paper is structured as follows: Section 3 provides an overview
about the steps of the proposed method. In Section 4, Section 5, Section 6 and Section 7
we discuss the individual steps of the reconstruction approach in detail. The results are
presented in Section 8. The conclusions are provided in Section 9.

2 Related Work

Many methods exist for the construction of surfaces from scattered point data. The existing
methods can be divided into explicit and volume-based reconstruction methods.

2.1 Volume-based (implicit) surface reconstruction
These reconstruction techniques transfer the input point cloud into volumetric representations
implicitly defining the underlying surfaces. Using methods like the marching cubes algorithm
(MC) [21] enables us to extract explicit surfaces representations in form of polygonal meshes.
One of the first reconstruction methods within this field was introduced by Hoppe et al. [16].
The basic idea is to combine local signed distance functions (SDF) into a global representation
from which the surface can be extracted by contouring. Following this idea the methods
discussed in [33], [5] and [24] are based on defining SDFs whose zero level sets represent the
desired surfaces. More recently, scattered data approximation with radial basis functions
(RBF) is described in [30] [7] [6] to construct SDFs. Othake et al. [26] extended the original
RBF construction to multi-scale RBFs increasing approximation quality. Shen et al. [29]
improved the original method by incorporating additional normal information in the RBFs
allowing a more stable reconstruction. Another possible technique for surface reconstruction
concerns the usage of level set methods [31] [33]. This technique defines a function attracting
the level set surface toward the data points. However, the application of these techniques is
limited when working with noisy unfiltered point clouds like environmental LiDaR data.

2.2 Explicit surface reconstruction
Another possible way to obtain surfaces from unorganized point clouds is to fit parametric
surface patches to the input points. The approach of Eck and Hoppe [10] fits a network
of B-Spline patches in a way allowing them to reconstruct surfaces of arbitrary topology.
Alexa et al. [2] introduced an approach based on moving least squares (MLS) also used in
[1] [25] [12] [9] which fits polynomial surface patches to local point neighborhoods. In [22]
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the authors propose an MLS reconstruction scheme which takes into account local curvature
approximations to obtain meshes of higher quality. One of the main problems associated
with the MLS-based techniques is that they have to adapt in order to capture the correct
underlying topology. Depending on the structure of the input data this can be hard to achieve.
Another drawback is that the MLS-technique in general is not capable of constructing surfaces
having sharp features. One approach for solving this problem was published by Fleishman et
al. [12]. Alternative methods like the power crust (PC) algorithm introduced by Amenta
et al. [3] the 3D Alpha Shapes method from [11], the Cocone algorithm [8] as well as some
other approaches [23] [17] also produce good results concerning surface reconstruction from
point data.

Most of the existing techniques make the assumption that the point cloud exclusively
contains points corresponding to surface-like structures. In cases the point cloud includes
objects having non-surface character, like trees or bushes as is the case in environmental
point clouds featuring vegetation, most of the existing methods would fail. We propose an
approach able to extract surfaces even from these types of point clouds. We do not make
any assumptions on the structural composition of the point clouds in advance. This allows
us to apply our method to nearly any type of point data. The provided results suggest
that our method holds great promise in the field of surface reconstruction from unorganized
environmental point cloud data.

3 Overview

The proposed method aims at generating an implicit representation of the underlying
surface(s) in form of a 3D scalar field, named feature field. From this feature field the final
surface representation is extracted using a MC-based approach. The proposed feature-based
surface reconstruction consists of the following steps:

1. Pre-processing. This step includes the organization of the input points into an octree-
based voxel structure as well as the determination and assignment of feature values to
the individual points. These feature values in a certain sense express the likelihood that
a point is part of a surface structure by measuring the ”planarity” of a point’s local
neighborhood.

2. The approximation/interpolation of the computed feature values using 3D (trivariate)
hierarchical B-splines provides the scalar-valued feature field function.

3. The extraction of an initial surface mesh, associated with an user-specified iso-value by
using the MC-algorithm.

4. The adaption of the initial surface representation to approximate the meta-surface which
represents the local maxima of the corresponding feature field. This includes additional
refinement strategies increasing the quality of the final surface representation.

4 Pre-Processing

4.1 Hierarchical Point Cloud Decomposition
For purposes of efficient data processing the proposed reconstruction method applies the
octree-based data organization scheme. Considering the applied surface reconstruction
algorithm, this form of data management has several advantages: Besides the efficient
handling and visualization of point clouds as well as the acceleration of certain point
operations like k-nearest neighbor searches, it facilitates the construction of the feature field
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function since it makes possible applying the hierarchical B-spline approximation scheme. It
also supports a straightforward MC-based iso-surface extraction by incorporating the edges
of the multi-level voxel grid;

4.2 Determining Feature Values
The determination of the feature values expressing the correspondence of individual points
to surfaces is based on a former approach described in [18]. The feature values are defined in
a way that they measure the ”planarity” of the local neighborhood N(p) of a point p ∈ P ,
whereas N(p) either can be defined by the set of k-nearest neighbor points of p, or the set
of points lying within a specified radius r of p. In principle, we want the feature value of
p to be high, if N(p) corresponds to a smooth surface and low otherwise. This is achieved
by analyzing the geometric shape of N(p) by relating the eigenvalues λ0 ≤ λ1 ≤ λ2 of
the covariance matrix C of N(p) amongst each others. It holds that N(p) has a spherical
shape if λ0 ≈ λ1 ≈ λ2, a planar shape if λ0 � λ1 ∧ λ1 ≈ λ2 and a cylindrical shape if
λ0 ≈ λ1 ∧ λ1 � λ2. We combine this information and define the surface feature value f of a
point p to be

f(p) = λ1 − λ0

λ2
. (1)

The size of N(p) has major impact on the obtained value f and is an important influence
factor controlling the quality of the final surface representation. Choosing N(p) to be small
compared to the noise ratio or the point density results in strongly varying feature field
interfering with the reconstruction process. Forcing N(p) to be too large will degrade the
quality of the extracted surface. This effect is discussed more detailed in Section 8.

5 Scattered Data Approximation

We consider the approximation of the introduced feature values fi ∈ R assigned to the input
points pi ∈ P ⊂ R3. Obtaining a smooth global feature function F approximating the given
feature values fi becomes a scattered data problem. This problem can be formalized as
follows: Given a finite set of scattered data points {(pi, fi)|p ∈ R3, fi ∈ R}, construct a
function F : R3 → R that minimizes the residuals ‖F (pi)− fi‖. There are several possible
ways for accomplishing this task like using approximation schemes based on, e.g., RBFs
[13] [27] or spline fitting techniques [19] [15]. Good overviews of existing scattered data
interpolation/approximation techniques are provided in [14] [20] [27] [28]. The introduced
method follows the ideas presented in [4] [32] using hierarchical B-splines defined over the
rectangular regions of a corresponding quadtree. This approach is able to provide a smooth
and adaptive approximation of the feature field by a set of hierarchical trivariate B-spline
functions. Extended to the 3D case, starting from the original bounding voxel enclosing the
entire point cloud, the approximation scheme consists of the following steps:

1. The initial approximation of the determined feature values associated with the individual
points by triquadratic Bernstein-Bézier polynomials.

2. Joining the individual Bernstein-Bézier polynomials into one continuous B-spline repres-
entation by applying the knot removal scheme proposed by Bertram et al. [4].

3. The refinement of the approximation by performing above steps to the voxel grid at the
next finer octree level.

Recursively applying these steps provides a hierarchical approximation of the feature values.
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5.1 Initial Bézier Fitting
Let Pi = {(pj , fj)} be a set of n scattered data points associated with the voxel Vi. Pi is
approximated by a trivariate Bernstein-Bézier polynomials of the form

Fi(pj) =
l∑

i=0

l∑
j=0

l∑
k=0

ci,j,kφ
l
i,j,k(pj), (2)

where φl
j,j,k(pj) are the corresponding trivariate basis functions of degree l. The solution for

Fi is found by solving Equation (5.1) according the basis coefficients ci,j,k. In the case that
an overdetermined system is given, Fi is determined by minimizing the sum of the squared
residuals ϕ with respect to the basis coefficients ci,j,k

ϕ =
n∑

j=0
‖Fi(pj)− fj‖2. (3)

To deal with an under-determined system we add additional constraints forcing Fi to
become zero in regions where no scattered data samples are given. The additional term has
the form

ψ =
l∑

i=0

l∑
j=0

l∑
k=0

(ci,j,k)2 . (4)

Minimizing

ε = ϕ+ ψ −→ min (5)

requires solving a relatively small linear system of equations yielding the desired function Fi.
Since we are interested in obtaining a continuous representation we apply further processing.

5.2 Global B-spline Approximation

(a) (b)

Figure 1 (a) Initial distribution of the basis coefficients defining corresponding biquadratic
B-spline functions within an adaptive quad-grid consisting of empty and non-empty quadrilateral.
Blue points represent zero-valued basis coefficients located at the domain boundaries of the data set
having knot multiplicity three, black and white points are basis coefficients having knot multiplicity
one. The white points are zero-valued basis coefficients of empty quadrilaterals. (b) quad-grid after
knot removal.

To obtain a continuous approximation, we merge the individual Bernstein-Bézier poly-
nomials Fi into a global B-spline representation F . The Bernstein-Bézier polynomials of
degree l associated with the individual voxels can be represented as one global piecewise
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continuous B-spline function in which the control points at the voxel boundaries (faces, edges,
vertices) have multiplicity l. The multiplicity of the knots associated with control points at
the inside of a voxel is one. Figure 1a shows a 2D example that illustrates the distribution
of the control points corresponding to a biquadratic B-spline over a quadrangular domain.
The grid consists of empty (white) and non-empty (blue) quads. If a basis coefficient is
located on the domain boundary of the point data set, its value is forced to be zero. The
domain boundary of the data set in the 3D case is defined by the vertices, the edges and
the faces of the smallest voxel enclosing the entire point set. In regions where voxels are
classified as empty the control points are set to zero (depicted white). Removing knots
at the voxel boundaries that are not located on the domain boundaries, yields the desired
B-spline representation (see Figure 1b). In the triquadratic case the resulting B-spline is C1

continuous. The knot removal may affect the quality of the approximation and thus demands
re-fitting the remaining coefficients ci,j,k. This is accomplished by sequentially readjusting
each coefficient

ci,j,k =

∑
p∈Vi

(
fp −

∑l
x=0,x 6=i

∑l
y=0,y 6=j

∑l
z=0,z 6=k cx,y,zφx,y,z(~p)

)
∑

p∈Vi
φi,j,k(~p) , (6)

where ~p ∈ R3 denotes the coordinates of the points p ∈ Vi in parameter space, and fp ∈ R
terms the feature value associated with p. Each adjustment of ci,j,k again has impact on the
quality of the approximation in the neighbor voxel. Hence, the re-fitting becomes an iterative
process. The process is terminated if the local approximation error |

∑
p∈Vi

F (p)− fp| falls
below a given error bound or a maximum number of iterations has been performed. The
resulting function F represents a continuous approximation of the feature field function
getting zero at the point clouds domain boundaries.

Problems arise in cases, where the least squares residual is small, but the slopes or
curvatures of the trivariate B-spline functions are extremely high. This, especially, occurs
in regions where the distribution of the points or the function values is one-sided. For
example, in ”empty” voxel regions the function values may take arbitrarily large values
which results in a poor representation. To encounter this problem, additional constraints are
incorporated forcing the final representation to be smooth. The enhanced approximation
scheme incorporates the minimization of the first principal derivatives of the B-spline
representation F at the positions of the individual points.

5.3 Recursive Refinement
Let Lj = {(P j

i , F
j
i ), · · · } be a set where P j

i are the scattered point sets associated with
the individual voxels at octree level j and F j

i be the corresponding approximating B-spline
functions. Starting at octree level j we determine F j

i for each Pi 6= ∅. The subsequent
merging of adjacent functions F j

i is performed by applying the above introduced knot removal.
This leads to a globally C1 continuous representation F j at level j. In order to obtain Lj+1
we recompute the feature values

∆f j+1(p) = ∆f j(p)− F j(p) (7)

for each point, where ∆f0
p = fp are the initial feature values assigned to p. This yields the

basis for the subsequent approximation step performed at level j + 1. Again, applying the
least squares fitting procedure and merging the individual Bernstein-Bézier polynomials at
level j+ 1 results in the continuous representations ∆F j+1

i of the underlying residuals ∆f j+1
i .

The final approximation is defined by

F j+1 = F j + ∆F j+1. (8)
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Figure 2 Two-dimensional example illustrating the extraction of the base mesh Sα via the MC
algorithm regarding a specified iso-value α. The locus of the local maxima of F to be approximated
by Sα is represented by the curve Smax.

(a) (b) (c) (d)

Figure 3 Example data set illustrating the effects of varying the iso-value at the initial extraction
procedure. (a) Input point cloud of a simple test cube data set with points colored from blue to red
according the correspondence of points to surface-related structures. (b)-(d) extracted base meshes
obtained for iso-values (b) 0.4, (c) 0.6 and (d) 0.9.

The choice of the level at which the approximation is started and terminated has major
impact on the performance and the quality of the final approximation.

For example, starting the computation at a low-resolution level e.g., on the root of the
octree, and performing a large number of refinement steps would be computationally expensive.
Otherwise, performing too few refinement steps may result in low-quality approximations.
The B-spline refinement can be stopped, if a specific maximal refinement level is reached or
the approximation error |

∑
p∈Vi

F j(p)− fp| approaches a predefined limit.

6 Initial Surface Extraction

Given a continuous function F approximating or interpolating the feature values assigned
to the individual points, the first step aims at the extraction of a base mesh from F using
the MC-algorithm [21]. The quality of the extracted mesh depends on the resolution of the
voxel as well as on the quality of F . In general, the MC algorithm generates two-manifold
meshes reflecting the topology of the iso-surface at the given extraction level (see Figure 2).
Varying the iso-value results in base meshes having different topological characteristics. At
this point the user has to control the surface topology by choosing the iso-value, such that
the extracted mesh reflects the desired topology. This approach is inspired by the alpha-
shape reconstruction method by Edelsbrunner and Mücke [11], where a Delaunay-complex is
constructed for a point set, erasing all simplices whose circumscribed hypersphere exceeds a
predefined radius alpha. Figure 3 shows some examples regarding a simple test data set. It
illustrates the variation in topology, for extracting an initial surface from a precomputed
feature function F , by varying the iso-value from low to high.
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(a) (b)

Figure 4 Examples illustrating the principles of approximating the meta-surface Smax representing
the locus of local maxima of F . (a) Initial approximation Sα with vertices vi and corresponding
gradient vectors di, before the vertex displacement is applied. (b) Resulting mesh after the
displacement of the vertices vi along the vectors di toward Smax.

7 Approximation of Local Maxima

Next, the generated base is adapted to approximate the meta-surface representing the locus
of local maxima of F . The set of points associated with this meta-surface is defined by Smax.
In a sense, Smax represents ”ridge-lines” within the feature field.

The locus of the local maxima of F is defined by

Smax = {p ∈ Ω|∇F (p) = 0 ∧∇2F (p) < 0 ∧ F (p) > α}, (9)

where Ω ⊆ R3 defines the support domain of F defined by the bounding voxel enclosing the
point cloud and α denotes the iso-value chosen for the the initial base mesh extraction.

Depending on the topological characteristics of F the subsets of Smax can be associated
with surfaces, lines or isolated points. As mentioned above, the function F approximates
feature values assigned to the points P within the interval [0, 1] where the value 1 (0) is
associated with points assumed to be represent surface (non-surface) related structures.
Based on this, the surface related subsets of Smax most probably represent the point clouds
inherent surfaces. The following procedure is intended to approximate these structures.
Using the extracted base mesh, the meta-surface Smax is obtained by iteratively applying
the following steps:

1. We move the mesh toward the local maxima of the feature field F by displacing the mesh
vertices (cf. Figure 4).

2. In addition, an adaptive strategy for updating the mesh connectivity, to improve the
quality of the final representation, is applied.

7.1 Vertex Displacement
Moving the mesh toward Smax is achieved by displacing the vertices along the vector field
∇F . Let ~d be the corresponding displacement vector of vertex v, then v is relocated by
iteratively moving v along ~d toward Smax. Since F approximates the local trend of the
feature values assigned to points distributed in 3D space, the maximum values of F most
probably occur in regions the corresponding point cloud has high feature values. Hence,
projecting the vertices along ~d into these regions is obvious. The new position ~vnew of v is
defined by

~vnew = ~v − ~d · (~d · (~v − ~c)), (10)
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where ~v ∈ R3 denotes the position of vertex v, and ~c represents the weighted centroid of the
proximate point neighborhood N(v) of v determined by

~c =
∑

p∈N(v)

fp∑
q∈N(v) fq

~p, (11)

where fp denotes the feature value assigned to the point p. The size of the neighborhood
N(v) is determined by the radius of the one-star neighborhood of vertex v. The one-star
neighborhood of v is given by all vertices that are directly connected to v. Let r be the range
to the most distant vertex corresponding to the one-star neighborhood of v, then N(v) is
defined to be N(v) = {p ∈ R3|‖v − p‖ < r}.

7.2 Adapting Mesh Connectivity

This step becomes necessary when triangles corresponding to different mesh regions converge
or intersect each other. To obtain the final surface representation we collapse vertices of
affected triangles. The collapsing criterion depends on the size of the involved triangles.
Collapsing two vertices v and w, not connected, is allowed, if the following condition holds:

‖~v − ~w‖ < rmin, (12)

where r = min{· · · , ri, · · · } with ri representing the radius of the smallest sphere enclosing
the triangle ti ∈ Tv ∪ Tw. The sets Tv and Tw consist of the triangles connected to v and w.
If condition (12) is satisfied, the vertices v and w are collapsed and substituted by a new
vertex vnew. The position of vnew is computed by ~vnew = 1

2 (~v+ ~w). The collapsing operation
takes into account additional rules preventing the mesh to break or to collapse. Additional
operations are incorporated maintaining the mesh consistence e.g., by removing duplicated
triangles. As a consequence of the vertex collapse, the resulting mesh is no longer guaranteed
to be two-manifold.

After repositioning the vertices the resulting mesh might not approximate Smax in an
optimal way. One possible reason is that the resolution of the mesh in some regions is too
coarse. Subdividing selected triangles introduces new vertices at the centers of the triangles.
Again, forcing these vertices toward Smax further increases the quality of the surface mesh.
The decision whether a triangle is subdivided or not depends on the error measure

ε =
(
f − fc

‖∇Fc‖

)2

, (13)

where f denotes the average feature value of the vertices of the considered triangle, fc

and ∇Fc represent the feature value and the gradient at the triangles center. We allow
subdividing a triangle if ε > r2, with r being the radius of the smallest sphere enclosing the
corresponding triangle. Subdividing triangles introduces new vertices w at the center of the
triangles. Those vertices, in a subsequent step, are moved toward Smax following the rules of
vertex displacement (cf. Section 7.1). On the other hand, triangles are collapsed if they have
a bad edge-to-edge aspect ratio.

Since the subsets of Smax in some cases represent points or curves, it may happen that
the vertex displacement forces the mesh to collapse into point- or a curve-like structures. In
this case the corresponding mesh structures are deleted.
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(a) (b)

(c) (d)

Figure 5 (a) original point cloud showing an environmental scene. (b) feature values, computed by
the applied point classification scheme, which are mapped in form of color values to the corresponding
points (red indicates surface-related, blue non-surface related points). (c) reconstructed initial mesh,
(d) final surface representation.

8 Results

This section provides some results obtained by applying the proposed method to different
point data sets. The used data sets are well-suited to demonstrate the ability of the method
to reconstruct surfaces from complex and noisy point data sets.

Figure 5a presents the raw input point cloud showing an environmental scene (having
about 50,000 points) consisting of quite complex structures. Applying the proposed point
classification scheme delivers feature values for each point. The classification was performed
using the local point neighborhood N(p) determined by all points lying within a given range
r of the considered point p. In the following, r is specified in terms of percentage of the
diagonal of the smallest sphere enclosing the entire point cloud. Figure 5b visualizes these
values by mapping colors ranging from blue to red to the points. Red colors indicate points
in near-planar regions, whereas blue colors indicate points that are not assumed to be part of
surfaces. In this example r was chosen to be 0.02. As the image shows, mainly the points at
the ground are identified as surface-related structures, but also some isolated point structures
at the crowns. This is due to the fact that the local neighborhoods of the isolated points are
rather planar and thus the points misleadingly are assumed to lie on a surface. Figure 5c
shows the base mesh extracted for the iso-value 0.6. Besides capturing the ground structure
the initial mesh also captures the identified structures at the crowns. Figure 5c shows the
final mesh after the application of the vertex displacement and the adaption of the mesh
connectivity. The ground surface is almost completely recovered, except for a small part
located at the tree trunk in the middle. Since the point cloud does not exhibit surface-like
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(a) (b)

Figure 6 (a) Visualization of the feature values for a chosen neighborhood size r = 0.016. (b)
the final surface representation.

character at the area at which the trunk merges with the ground, the local point environment
rather has cylindrical or spherical character, the affected region is not captured by the final
surface.

The reconstruction process strongly depends on the choice of the neighborhood size
considered for performing the point classification. Figure 6a demonstrates the effect of
choosing the neighborhood size to be to small with respect to the density of the points
located at the ground. In this example the radius determining the neighborhood N(p) was
chosen to be r = 0.016. The generated surface mesh, depicted by Figure 6b, does not capture
the entire ground. The points in the front at which the feature values are low (blue colors)
are not approximated by the surface. Due to the small neighborhood size chosen the points
are not assumed to be part of the ground surface and thus not part of the final surface mesh.

In both examples the chosen parameters are equal, except for r. The B-spline based
approximation of the feature values was started at octree level five and terminated at level
ten. The Cartesian grid used for the MC-based extraction was determined by partitioning
the original bounding voxel into 40× 40× 40 cubes.

The next example demonstrates the stability of the reconstruction approach by applying
it to a modified point set. Figure 7a shows the point cloud of the Stanford bunny data
set where noise is added in form of randomly distributed point samples. In this case, the
boundary voxel, considered for adding the additional samples, is centered at the centroid
of the point cloud and has the diagonal length of two times the length of the most distant
point to the centroid. The number of additional noise samples in this example equals
80, 000 points, the original number of points of the bunny data set is approximately 35, 000.
Figure 7b shows the color-coded point cloud indicating the computed feature values. Again,
blue represents non-surface like, red represents surface like point structures. The chosen
neighborhood size equals r = 0.01. It is observable that the classification process identifies
most points corresponding to the original point cloud. Applying the approximation scheme
followed by the MC mesh extraction delivers the initial base mesh depicted in Figure 7c. The
approximation was started at level six and was terminated at octree level ten. Here, the cube
grid used for the MC-based mesh extraction was determined by partitioning the original
bounding voxel into 80× 80× 80 cubes. The final mesh after performing several repositioning
and smoothing steps is depicted in Figure 7d. This example shows that the method provides
reliable results in cases the point cloud becomes extremely noisy. Several experiments have
been performed using an increased number of additional noise samples. The reconstruction
provides acceptable results up to 100, 000 noise samples. Theoretically, the reconstruction is
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(a) (b)

(c) (d)

Figure 7 (a)-(d) examples illustrating the surface reconstruction from a point cloud enriched with
80, 000 noise samples. (a) original point cloud containing the Stanford bunny data set consisting of
approx. 35, 000 points, (b) point cloud featuring color values indicating the estimated strength of
the correspondence of points to surface-related structures (blue indicates low, red indicates high
correspondences). (c) the extracted base mesh, (d) the final surface mesh.

possible as long as the density of the points, corresponding to underlying surfaces, locally is
higher than the density of the proximate noise samples. However, if the noise samples form
surface-related point structures close to the original point samples the reconstruction might
fail at these regions.

The average computational complexity of the proposed algorithm is estimated to be
O(k2 · n · log(n)), where k is the average number of points within N(p) and n is the number
of input data points. In case that k << n the complexity O(n · log(n)) rather holds. The
complexity of the mesh extraction is estimated to be O(m · log(n)) and primarily depends on
the number of extracted mesh vertices m and the number of input points. Computationally
most expensive are the approximation of the feature values by F and the vertex displacement.
Hence, it was decided to perform the determination of feature values and their approximation
in a pre-processing step. This allows the user to perform the actual surface reconstruction
more efficiently. Table 1 presents the computation times for the results depicted by Figure 5
and Figure 7. The processing was performed on a desktop computer equipped with an Intel
Core2 Duo Processor and 4GB main memory.

9 Conclusions

We have presented a novel approach to feature classification and selective surface reconstruc-
tion from large scale point clouds. Our method is used to complement visualization of raw
data sets obtained from terrestrial and airborne laser scanning. The main problem when
visualizing such vast amounts of points is that the user may not recognize structures of interest
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Table 1 Computation times for each step of the algorithm concerning the two example data sets.
The approximation was performed using four iterations at each processed octree level.

Computation step Time [sec.] Time [sec.]
environmental modified bunny

data set data set
(50,000 points) (115,000) points

Computation
of feature values 46.95 72.34

Performing
approximation 145.11 1107.84
Extracting
base mesh 13.2 141.39
Vertex

displacement 7.65 415.12
(1st iteration) (3,900 vertices) (26,000 vertices)

without additional visual cues. Therefore, we classify point neighborhoods into different
feature groups by assigning corresponding feature values. These values assigned to surface
features are approximated by a hierarchical trivariate B-Spline function which is the basis of
our surface reconstruction approach. Topological and geometric detail can be controlled by a
user-defined parameter. Future work will be directed at choosing these parameters locally
and accelerating the approach further by more sophisticated data structures for streaming
and view-dependent querying.
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