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Abstract. We present a user-assisted approach to extracting and vi-
sualizing structural features from point clouds obtained by terrestrial
and airborne laser scanning devices. We apply a multi-scale approach
to express the membership of local point environments to corresponding
geometric shape classes in terms of probability. This information is fil-
tered and combined to establish feature graphs which can be visualized
in combination with the color-encoded feature and structural probabil-
ity estimates of the measured raw point data. Our method can be used,
for example, for exploring geological point data scanned from multiple
viewpoints.

1 Introduction

Exploration of environmental point data sets is a challenging problem of recent
interest. The LiDaR (Light Detection and Ranging) technology makes it possible
to capture fast and accurate point data over large regions. As a consequence,
LiDaR data sets are typically very large containing diverse and highly com-
plicated objects. Occlusion, semi-transparent and reflecting objects, structures
with small fractured and under-sampled surface components like trees, as well
as scanning error due to motion of cars, humans, animals, etc. make the data
difficult to interpret. While the raw data contains scientifically relevant struc-
tural information, this information, unless proper filtering and pre-processing
methods are applied to the raw data, remain ”hidden” in most direct visual
representation due to data over-load and noise.

A possible way to explore point data is based on surface reconstruction [4, 9,
10]. Building consistent triangular meshes from such data is a difficult and often
ambiguous task. Point-based approaches [1, 24] operate directly on the sample
points without requiring the computation of mesh-based connectivity informa-
tion. These approaches often use surface elements (surfels), assuming that point
sets define smooth surfaces with well-defined normal vectors. For LiDaR data
sets, this assumption may not always hold and the surfel-based approach may
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also hide topological ambiguities and, as a consequence of smooth interpola-
tion schemes, eliminate structural artifacts, due to discontinuities in the original
scanned geometry, that might be important. To avoid these drawbacks, we use
a probability-based classification of the point cloud into subsets having different
structural characteristics. Depending on this classification and a user’s choices
of parameter values we perform the extraction of feature graphs describing the
structural composition of the point cloud. We obtain an explicit structural de-
scription of the whole data which can be used for further processing (e.g., iden-
tification and classification of objects in environmental data) or for exploration
and visualization.

For geologists, our approach is of special interest since it makes possible the
detection and visualization of features like creases in structures caused by earth-
quakes or rapid and automatic identification of key features in environmental
data such as ridge lines, stream beds, and edges of terraces. When combining
data from multiple scans, registration errors make feature detection and visual-
ization even more challenging. Our goal is to provide a user with effective tools
for the identification and interactive exploration of structural features in LiDaR
data sets.

In section 2, we review related work on point set rendering and surface re-
construction. Section 3 discusses the specific problems of analyzing LiDaR data
and proposes a classification of features used in our algorithm. The construction
of feature graphs is discussed in section 4.

2 Related Work

The potential of point-based methods has been demonstrated in different ap-
plications [2],[19]. However, algorithms to process point sets are still in their
infancy when compared with algorithms for common mesh-based approaches.
In computer-aided design (CAD), point sets may be used as underlying repre-
sentation for surface editing [24] (like the Pointshop 3D framework proposed
by Zwicker et al. [28]). Several authors based their segmentation and surface
recognition algorithms directly on point sets, [6],[7]. Concerning surface recon-
struction from laser-scanned point sets, much research has been done following
the approach by Eck and Hoppe [13].

In the context of complex geology-driven applications, besides the problem
of correctly recovering surface topology, sharp feature lines like ridges/ravines or
crest lines [17], [27], [25] need to be identified. Concerning point sets, there have
been several efforts for robust feature detection [15][5][8]. Neal [23] provided an
instructive survey of such techniques. However, these approaches do not differ-
entiate between the structural types a feature might belong to, which makes
them inappropriate for data sets of arbitrary topology especially point clouds
resulting from environmental scans. Some of these methods perform feature ex-
traction based on the estimation of curvature values obtained from surfaces that
are approximated based on a local point neighborhood via methods like mov-
ing least-squares (MLS) [20]. The principal curvatures and curvature directions
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carry important information about local surface behavior, but their estimation
is numerically sensitive to noise present in the data, and many estimation meth-
ods have been proposed [11], [16], [18]. Hamann [12] [16] approximated principal
curvature values based on considering a local, triangulated point neighborhood
and determining a least-squares quadratic bivariate polynomial. Feature lines
also produce important landmarks for constructing meshes [14], [21] or for rec-
ognizing shapes like buildings [3]. Regarding the post-processing of laser range
data, a variety of techniques improving the quality can be applied [22], [26].

3 Feature Detection in LiDaR Data

Our work represents a first step toward the over-arching scientific goal of identi-
fying and extracting regions in LiDaR data sets matching individual structural
characteristics. One long-term goal was to be able to automatically differentiate
from natural and man-made objects (e.g., trees and buildings). Detecting and
joining objects corresponding to similar structural classes is another task we
wish to accomplish. To reach these goals it is necessary to provide methods for
detecting and extracting special structural features like corners, border-, crease-
or ridge-lines in the form of a feature graph which can be used to perform fur-
ther processing. In general, feature detection in environmental LiDaR data is a
complicated task due to the nature of this kind of data. LiDaR data are gener-
ally collected either on the ground, using tripod-mounted scanners, from the air,
using airplane mounted scanners or from satellites. These acquisition methods
produce data sets typically exhibiting substantial noise levels since the measure-
ment is taken from great distance. Under-sampling, occlusion and movements in
the scanned environment are just a few more problems to mention.

Hence, we must assume that the resulting point cloud data in general does
not provide a reliable base to directly perform feature extraction. We introduce
a method that classifies points by considering whether they are part of a surface,
a curve or a junction of either one. This approach allows us to adapt the feature
graph extraction to the proper point class. By using stochastic and multi-scale-
based means when processing the raw point cloud (especially for processing huge
data sets) we introduce a rather stable approach capable of handling robustly
relatively high noise levels in a data set. Our method combines the following
steps:

1. Pre-processing of the 3D point cloud (sec. 3.1). This step includes an hier-
archical decomposition of the point cloud into an octree-based voxel grid as
well as the elimination of outlier points (sec 3.1).

2. Likelihood-based point classification depending on the characteristics of the
local point neighborhood as well as computation of feature-specific values
based on multiple scales (sec. 3.2).

3. Post-processing by smoothing the obtained feature values (sec. 3.4 ).
4. Feature graph construction (sec. 4).
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3.1 Pre-processing

Hierarchical Point Cloud Decomposition: Since we are primarily dealing with
environmental LiDaR data sets that are typically the result of several high-
resolution scans (several million or even billion points) efficient data handling
is important. Organizing the points into an octree-based voxel structure allows
us to speed up frequently used operations like k-nearest neighbor search. To be
able to visualize large-scale data, we follow an additional level-of-detail (LOD)
approach. We modify point sets of each octree level to match a level-specific
resolution and store them on disc. This approach allows us to dynamically reload
point sets of a certain resolution if necessary.

Outlier Removal: Environmental LiDaR scans do not distinguish between the
significant or irrelevant components; everything is scanned. In particular we
under-sampling of small objects like leaves in environmental data sets includ-
ing trees and other vegetation. Weyrich et al. [26] proposed a method assuming
that potential outliers draw their local neighborhood from a larger vicinity than
points within a well-sampled environment. Instead of using a graph-based ap-
proach we compute the mean distance of a point to its k-nearest neighbors and
filter out all points whose mean distance exceeds a given threshold. This thresh-
old has to be chosen carefully to avoid loosing important structural information.

3.2 Stochastic Point Classification

The goal of point classification is to decompose the point cloud P into subsets
of points having different structural properties. We determine whether a point
p ∈ P is part of a curve- or a surface-like structure or is treated as a so-called
critical point. We call those points critical points that are not part of a surface or
a curve. This point type represents junctions of features lines (e.g., at corners) or
borders/intersections between surfaces and/or curves. In general they are meant
to represent discontinuities not associated with these structures. Hence, critical
points are not suitable for directly performing methods of feature-line extraction
but are used in the context of graph extraction (sec. 4) to represent underlying
discontinuities.

In order to identify the type of a point p we determine the “shape“ of the
local point neighborhood Nr(p) of p. within a sphere of radius r centered at p.
The radius is specified by the user and depends on the features being focused on.
Determining the shape of Nr(p) is accomplished by comparing the distribution of
Nr(p) in each dimension. The distribution is measured by using the eigenvalues
of the covariance matrix C of Nr(p). Let λ0 ≤ λ1 ≤ λ2 be the eigenvalues of
C. It is a well-known fact that Nr(p) has a spherical shape if λ0 ≈ λ1 ≈ λ2, a
disc-like shape if λ0 ≪ λ1 ∧ λ1 ≈ λ2 or a cylindrical shape if λ0 ≈ λ1 ∧ λ1 ≪ λ2.
Using this information allows us to establish three point classes by defining the
following sets:
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Pcp = {p ∈ P |λ0/λ2 ≥ ε} (1)

Pc = {p ∈ P |λ1/λ2 < ε} (2)

Pd = {p ∈ P |λ0/λ2 < ε} (3)

Here, Pcp,Pc,Pd define the points with spherical, cylindrical and disc-like
neighborhood (with Pcp ∩ Pc = ∅, Pcp ∩ Pd = ∅ and Pc ⊆ Pd ).The variable
ε is a feature-specific value and determines when a point becomes a critical
point. Usually ε is chosen to be 1

2 but it can be adapted to meet a user’s needs.
For example, reducing ε increases the sensitivity of a point for being classified
as a critical point, causing some points of Pc and Pd to migrate to Pcp. This
effect can be geometrically interpreted as extending the boundaries around a
discontinuity (e.g., an intersection). This form of point differentiation implies
Pc ⊆ Pd, since in some cases surfaces collapse to line-like structures. However,
this characterization heavily depends on the size of the local neighborhood Nr(p)
and would not lead to reliable shape evaluation results in presence of noise.Thus,
we allow the neighborhood Nr(p) to vary in size by a given percentage of its
original magnitude. We compute probability estimates by measuring the number
of times Nr(p) can be assigned to one of the classes defined by (1), (2), (3) by
evaluating

Lcp,c,d(p) =
1

n + 1

n
∑

j=0

ϕrmin+jδ
cp,c,d (p), (4)

ϕs
cp(p) =

{

1 if λs
0 ≥ ελs

2

0 else
, ϕs

c(p) =

{

1 if λs
1 < ελs

2

0 else
,

ϕs
d(p) =

{

1 if λs
0 < ελs

2

0 else

Here rmin (rmax) denotes the minimum (maximum) radius and n represents
the number of considered neighborhoods. Hence, δ = (rmax − rmin)/n and λs

i

being the eigenvalues of Cs of Ns(p). Lcp,Lc and Ld defining the likelihood of
a point p corresponding to the shape classes defined by Pcp,Pc and Pd. We now
divide the original point cloud based on the likelihood values into subsets of dif-
ferent character. For graph extractionwe use additional feature values capturing
the strength of an underlying feature. The feature values Icp, Ic and Id for the
points of the classes Pcp,Pc and Pd are

Icp,c,d(p) =
1

n + 1

n
∑

j=0

f rmin+jδ
cp,c,d , (5)

fs
cp = λs

0λ
s
1/(λs

2)
2 (6)

fs
c = (λs

2 − λs
1)λ

s
0/(λs

2λ
s
1) (7)

fs
d = κs (8)
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represent the feature values for the different point neighborhoods Nj(p). κs

denotes the maximum absolute curvature of polynomial patches fitted to Ns(p).
Since we are also interested in feature extraction from surface-related structures,
using curvature is an obvious approach. The feature values Icp, Ic and Id express
the strength of a feature associated with a point p by a value averaged over
multiple scales. The values fs

cp, f
s
c increase when the shape of Ns(p) approaches

the ideal form of a sphere, a line and decrease otherwise. fs
d increases as the

curvature increases.

3.3 Estimating Curvature

There are several approaches concerning the approximation of curvature esti-
mates from point clouds [11], [16], [18]. Our curvature estimation process is based
on computing curvature values from polynomials fitted MLS to point neighbor-
hoods Nr(p). We use the root mean squared (RMS) curvature to approximate
the “feature strength“. There are several other curvature measures like mean,
Gaussian or maximal curvature we have considered and tested. For our purposes
the RMS curvature was most appropriate and produced best results.

3.4 Post-processing

We are interested in strengthening feature values corresponding to selected fea-
tures and smoothing out remaining feature values. A Gaussian like filter applied
on the local point neighborhood Nr(p) ensures that noise caused by small arti-
facts is eliminated.

4 Generating the Feature Graph

The structural features are detected and extracted following the idea of [8], [29]
and [25] of identifying initial seed nodes and performing an edge-growing ap-
proach to connect related nodes. The seed nodes for a graph are represented
by all points having a minimal type probability. It remains difficult to define
connections between seed nodes such that the resulting graph reflects the under-
lying feature-lines. Most methods start by connecting seed nodes by proximity.
However, this can cause a variety of branches inducing perturbations in further
propagation. Therefore, controlling the propagation direction plays an important
role.

Several extraction methods determine the derivatives of extracted feature val-
ues, like curvature, to identify and follow the direction of its minimal descend.
Since these values vary considerably due to noise this differential approach would
lead to poor results. Instead, we propose defining the propagation direction of a
node by applying PCA to a set of surrounding nodes. This approach is more sta-
ble assuming that the local environment of the actual node is of sufficient size.
In contrast, critical points are not subject to this graph extraction procedure
since they represent discontinuities. These points are used to establish critical
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nodes to recover junctions of feature lines. The final step consists of graph sim-
plification aiming at a simpler visual representation. We summarize the basic
principles of our method.

4.1 Selecting Seed Nodes

(a) (b) (c)

Fig. 1. Principle of graph extraction for a simple test cube data set (3000 points): (a)
Initial seed nodes (blue), (b) corresponding critical nodes (black), (c) extracted edges
after propagation.

(a) (b) (c)

Fig. 2. Principle of graph extraction for surface-related features using a curved sheet
data set (10000 points): (a) Initial seed nodes (orange) of the underlying surface (blue),
(b) seed nodes with corresponding critical nodes (black), (c) critical nodes together with
the extracted edges after propagation.

The seed nodes defining the basis of the individual graphs are identified by
using the probability values computed according to the equations in sec. 3.2.
A graph G = (V, E) formally consists of a set of nodes V and set of edges
E ⊆ V ×V connecting the nodes of V . The initial graph for representing curve-
related features is defined by G0

c = (Vc, ∅) with

Vc = {p ∈ P |Lc(p) = max(Lcp(p),Lc(p),Ld(p))}. (9)

Figure 1a) shows an example for identified seed nodes for a simple test data
set. The graph for representing surface-related features is set up differently.
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The user specifies curvature-related thresholds σmin and σmax restricting the
strength of the features to be extracted, balancing critical and feature-specific
nodes among the points of Pd. For example, σmin separate features like creases
and non-creases appearing on a surface. The parameter σmax controls the transi-
tion between creases and corners. The initial graph representing surface-related
features is G0

d = (Vd, ∅) with

Vd = {p ∈ P |Ld(p) = max(Lcp(p),Lc(p),Ld(p)) ∧ σmin < Id(p) ≤ σmax}. (10)

Fig. 2a) shows an example concerning surface-related features. The critical
nodes corresponding to G0

c and G0
d are defined as

CVc = {p ∈ P |Lcp(p) = max(Lcp(p),Lc(p),Ld(p))} (11)

CVd = CVc ∪ {p ∈ Vd|σmax < Id(p)} (12)

with Lcp(p),Lc(p),Ld(p) determined according (4)Figs. 1b) and 2b) show an
example of extracted critical nodes for the cube data set and the sheet test set.
The nodes of the graph G0

c and G0
d are not yet connected. A subsequent edge

propagation step, discussed in the next section, produces a first approximation
of the underlying features.

4.2 Edge Propagation

Edge propagation is performed sequentially starting from the nodes having the
highest feature values. Propagation is the process of connecting two nodes of the
graph G = (V, E) by an edge. Principally, each seed node v ∈ V is allowed to
propagate into two directions d and −d. We determine d by applying PCA to
the local node neighborhood Mr(v) = {w ∈ V ∪CV |‖v−w‖ ≤ r} with r being
the user-specified neighborhood size. The vector d is the eigenvector with the
largest eigenvalue of the covariance matrix of Mr(v). Provided that no other
node u is connected to v with d · ( u−v

|u−v| ) > 0, v is connected to w ∈ Mr(v)

whereas w = minw∈Mr,d
(v) (‖projd(w − v) · d + v − w‖/‖w − v‖).

The nodes w ∈ Mr,d(v) ⊆ Mr(v) satisfy the inequality
(

w−v

‖w−v‖

)

· d > 0.

To prevent unwanted edges all disconnected nodes w ∈ Mr(v) lying closer to v
than the most distant connected neighbor are forbidden to propagate. Moreover,
connections establishing acute angles with d are forbidden. Examples of resulting
graphs are shown on Figs. 1(c) and 2c). Rather than using a minimal spanning
graph as proposed by Pauly et al. [29], this approach provides greater consistency
between edges and feature directions.

4.3 Connecting Critical Nodes

We have to connect the critical nodes to the already established edges of G.
Assume CV to be the set of critical nodes defined by (11) and (12). To recover
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junctions the nodes of CV have to be connected or merged with nodes of G.We
start clustering the nodes of CV by grouping neighbored critical nodes. The
resulting clusters are defined by D = {. . . , Di, · · · } with cluster Di = {w ∈
CV | v ∈ Di ∧ ‖v − w‖ < r} and Di ∩ Dj = ∅ for i 6= j. The initial cluster set
is given by D0 = {· · · , {v}, {w}, · · · } with v, w ∈ V and v 6= w. We proceed by
determining the nodes d ∈ Di of greatest feature values. These nodes represent
the centroids of Di ∈ D. Depending on the user-specified radius r and the shape
of Di a cluster can have several centroidal nodes d ∈ Di.

Next, we connect all nodes v ∈ V to surrounding critical nodes w ∈ CV with
‖v − w‖ < r. This step is performed in a way forcing the graph not to develop
unwanted branches. In a subsequent step all nodes w ∈ Di connected to a node
v ∈ V are merged with the centroidal node d ∈ Di. Should there exist more than
one centroidal node in a cluster Di we force w to connect to the centroidal node
closest to w. Finally, we delete all unconnected critical nodes producing the final
graph representation. Fig. 2(c) shows an example with the critical node cluster
shown in black. The remaining connected critical/centroidal nodes are shown in
Fig. 3(c).

4.4 Graph Simplification

We note that Gc and Gd possess certain unwanted structures like short branches,
loops etc. To get rid of these artifacts we have developed the following framework.

Graph Simplification: In our context, simplification refers to the process of col-
lapsing nodes that are closer to each other in order to reduce complexity of an
extracted graph. We collapse nodes v and w of a graph G if the following criteria
are fulfilled:

a) ‖v − w‖ ≤ r
b) (v, w) ∈ E and ν(v) > 1 and ν(w) > 1

Here, ν(v) defines the number of edges incident to v. Since Gc and Gd are
intended to reflect structural features we force the position of the resulting graph
node to agree with the position of the node possessing the highest feature value.
In case of participation of critical nodes the rules are adapted to preserve critical
nodes. The entire collapse procedure is performed sequentially in accordance with
ascending distance between the node pairs.

Additional Pruning: The remaining graph still exhibits features irrelevant or
unwanted for visual exploration. To reduce visual clutter and direct the user to
the regions of interest we prune small branches by cutting off all edges e = (v, w)
of v, w ∈ G with ‖v − w‖ < r and valence ν(v) = 1 ∧ ν(w) 6= 2 which are not of
immediate interest.

Smoothing: Finally, we enhance the visual appearance of the final graph set G
by applying common graph smoothing.
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5 Results

(a) (b) (c) (d)

Fig. 3. Results of graph extraction for the cube data set (a) without and (b) with
5% noise. Images (c) and (d) show the resulting graphs for the curved sheet data set
without and with 5% noise.

Our method provides a highly effective means for exploring the underlying
structural characteristics in environmental LiDaR point data sets. The graph-
based approach represents user-specified features of two different types in an
efficient and reliable way, driven by a few pre-defined input values. Most impor-
tant are the radius r of the feature size and the values σmin and σmax confining
the type of the considered surface-related features. The radius r has to be cho-
sen in a way that noise does not interfere with the classification process but also
that the extraction of structural information is maintained. Generally, σmin and
σmax are less crucial to determine. Once the radius is found the remaining fea-
ture extraction can be performed rather fast in an interactive way. Our method
distinguishes features of three different types and allows classification of points
in terms of probability. Moreover, we are able to identify junctions of feature
lines not only by means of graph processing but using implicit information in-
herited from the initial point cloud. Structural discontinuities are represented in
the final graph by critical nodes.

Our multi-scale approach also reduces the influence of noise. It produces
reliable results up to a noise level of 5-8%. Fig. 3 shows the resulting graph related
to curve-like structures without and with 5% noise relative tothe diagonal of the
smallest bounding box containing the given point cloud. The examples show that
all resulting graphs of the test data set reflect the correct underlying topology.
Since determining likelihood and feature values is computationally expensive
we de-couple this step from the graph extraction process and perform it in a
pre-processing step. This allows the user to extract feature graphs in an nearly
interactive manner.

We have applied our method to several other environmental data sets. The
data was collected using a LiDaR scanner mounted on a tripod, a method that
enables fully three-dimensional scans of engineered structures. For example, Fig.
4(a) through Fig. 4(c) show the results of processing a more complex struc-
ture. In Fig. 4(a) we see the original point cloud of a water tower consisting of
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approximately 1.7 million points. Fig. 4(b) shows the computed feature values
regarding curve-related features for each point. The extracted feature graph is
presented in Fig. 4(c). More detailed parts of the graph are presented in Fig.
5. Fig. 5(a) shows a relative complex under-sampled object which is part of the
tower. In this example the underlying feature lines and junctions were almost
completely recovered. The second object shown in Fig. 5(b) is a crosspiece of the
main pole of the lower part of the tower having mounted stiffeners. The extracted
feature graph exhibits critical nodes colored in green representing discontinuities
between surface- and curve-like structures.

The environmental point cloud shown in Fig. 6 is a part of the San Andreas
Fault in California, USA. Since the scan was performed airborne the resulting
point cloud contains a relatively higher level of noise. The edges of the ex-
tracted surface-related graph depicted in red represent the underlying ridges of
the landscape. The critical nodes depicted as green points represent either under-
lying discontinuities or features having curvature values which exceed the user-
specified limit σmax. In this example the parameter values were chosen to capture
ridges associated with relatively high feature/curvature values. Those parts of
the landscape with high curvature values (tapered ridges or acute hills) are rep-
resented by critical nodes. For this example we chose σmin = 0.2, σmax = 1.5
and r ≈ 0.0046% of the length of the data set diagonal of the smallest bounding
box containing P .

In order to allow the user to perform the feature extraction interactively we
have divided the whole approach into two steps. We provide a computational
expensive pre-processing step concerning the point classification and the actual
graph extraction step. The time complexity for the point classification is esti-
mated to be O(k2 · n · log(n)) (with n number of input points, k the average
neighborhood size). The complexity of the graph extraction is assumed to be
O(m · log(m) · n) (with m being the number of identified seed nodes). This has
been validated by our observations. For example, the point classification per-
formed at the finest resolution for the water tower point cloud (see Fig. 4(a))
having about 1.7 million points has last 3h29m. The subsequent graph extraction
was performed in approximately 116 secs. Computing the point classification for
the geographic data set in Fig. 6 was completed after 72 minutes. The final
graph was constructed after 29 secs. These results confirm that our approach
holds great promise for feature detection and extraction for LiDaR data pro-
cessing, analysis and understanding.

6 Conclusions

We have introduced a novel approach for extracting and visualizing features
from LiDaR data sets. Our examples demonstrate the benefits of this method
for extracting feature graphs from point clouds representing surface components
like ridges and creases as well as curve-like components. As our method was
designed as an interactive, user-controlled method offering also a high degree
of automation, one specific strength is the ability for a user to influence the
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(a) (b) (c)

Fig. 4. (a) original point cloud of a water tower consisting of 1.7 million points; (b) color
coded feature values of each point regarding curve-related features( blue represents low,
red high feature values); (c) corresponding feature graph (blue lines) for ε = 0.5 and
r ≈ 0.038% of the bounding box diagonal.

analysis process and obtain instant visual feedback. This work is fundamental for
future research, for example to detect and measure deformation of environmental
structures such as buildings and bridges exposed to terrestrial influences. Future
work will be directed at feature-based segmentation of terrestrial data classifying
objects of different type, such as trees, buildings, streets, etc. One next goal is
to be able to extract topological information from landscapes by extracting and
comparing ridge lines from multiple scans taken at different times to identify
deformations by a comparative visualization method.
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