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Abstract

Recently, there has been a move towards NURBS-based grid generation systems, where the
original geometry is given as analytically defined NURBS surfaces. The process of surface grid
generation is the computation of an algebraic grid based on the NURBS surface definition and
the computation of an elliptic grid based on the algebraic grid. The NURBS format provides a
common mathematical representation for both standard analytic shapes and free-form curves and
surfaces. The derivatives of the physical coordinates with respect to the parametric coordinates
can be evaluated directly. An improved elliptic surface grid generation method for NURBS sur-
faces is presented. New techniques for computing the control functions and imposing boundary
orthogonality are developed.

Keywords: Algebraic grid generation; Approximation; Elliptic grid generation; NURBS curve;
NURBS surface; Partial differential equations; Transfinite interpolation

1. Introduction

Elliptic methods for constructing three-dimensional surface and volume grids have
been known for many years. Recently, there has been a move towards Non-Uniform
Rational B-Splines (NURBS) in grid generation systems. This move follows current
trends in geometric modeling and Computer-Aided Geometric Design (CAGD). Since
the paper addresses the CAGD and grid generation communities, some basic definitions,
algorithms, and approaches regarding NURBS and elliptic grid generation are reviewed.
NURBS are becoming the de facto industry standard for geometry representation but
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are still a rather new “tool” to the grid generation community. NURBS allow the rep-
resentation of nearly all geometries relevant for aircraft and automobile design. They
are particularly advantageous for elliptic grid generation due to their numerical stabil-
ity and efficient (derivative) evaluation (Thompson et al., 1985; Warsi, 1986; Bartels et
al., 1987). Currently, only few grid generation systems utilize NURBS.

Grid generation is concerned with the problem of discretizing surfaces and volumes
in three-dimensional space. The National Grid Project system, which is currently under
development at the NSF Engineering Research Center for Computational Field Simulation
at Mississippi State University, utilizes a two-stage grid generation methodology. For
each NURBS surface, these two stages are (i) the initial generation of boundary curve
grids and (ii) the computation of grid points in the surface’s interior. The construction
of the desired surface grid is done in two steps. First, an algebraic grid is constructed
by interpolation from the boundary of the surface (transfinite interpolation). Second, this
grid is smoothed and possibly modified by an iterative procedure. The most successful
iterative smoothing schemes are based on elliptic systems of partial differential equations
that relate the physical (“z, y, 2”) and computational (“¢, n7”’) variables. The elliptic system
may be applied to the boundary grids, the interior grids, or both. The elliptic system may
preserve the original distribution of grid points or redistribute points, which is commonly
done in adaptive grid generation. Orthogonality of the grid may be imposed along certain
boundary components of the physical region.

The process of algebraic grid generation for a parametrically defined surface is divided
into three steps: (i) forward mapping; (ii) grid generation; and (iii) backward mapping.
The forward mapping is the mapping of the three-dimensional physical surface (i.e., a
NURBS surface) to a two-dimensional parametric rectangle. Once the forward mapping
is completed, the grid is generated in the parametric space using transfinite interpolation
(TFI) and then mapped back into physical space. It is important to understand that the
type of parametrization does not change the shape of the surface, but it does change the
distribution of the points on it. A “poor” parametrization may cause the surface grid to
be highly skewed.

Transfinite
Interpolation

(a) (x,y, z) physical space (b) (u, v) parameter space (c) (&,n)computational space

Fig. 1. Mapping from physical (“z,y, 2”) to computational (“£,n”) space via parametric (“u,v”
space.
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In classical differential geometry, a surface is viewed as a mapping from R? to R,
Consequently, parametric surfaces (physical variables) are defined in terms of parametric
variables. In grid generation, the parametric variables are defined in terms of computa-
tional variables, i.e.,

s = (z,y,2) = (z(u,v),y(u,v),2(v,v)) and (u,v) = (u(§,n),v(n) (1.1)

(see Fig. 1).

The construction of an m x n algebraic grid on a physical surface starts either with the
specification of the boundary distribution along the physical boundaries (then mapped
to the parametric boundaries) or with the distribution of grid points directly on the
parametric boundaries. The parametric values used are denoted by

My =t 2wy < By ld= 1,1} “and (1.2)
Mgade s cvr < BaR TiEim) (1.3)

The first step in constructing a parametric grid requires a correspondence between
the parametric space (u,v) and the computational space (£,n) via a distribution space
(s,t). A uniform spacing in computational space is used, ie., § = 1,2,...,m and
n = 1,2,...,n. Therefore, the computational grid, denoted by Gy, is defined by integer
coordinates (7, 7), where ¢ = £ and j = 7. In the next step, the boundary distribution
of the (u,v) space is mapped to the boundaries of the (s,t) space (see Fig. 2). This is
usually done using an arc length mapping, which is given by the values

1

Z\/(Uk,j = Uk—1,5) + (Vk,j — Vk—1,5)?

o=

m
Z\/(uw — uk—1,4)? + (Vh,j — Vk-1,5)?
ka2

(1.4)

Sz)j =

;1) (1, 1D (1,n) (m, n)

u 0,0 s 1,0 (Kl 5 (m, 1)

parametric grid dustribution grid computational grid

Fig. 2. Mapping from parametric (“u,v”) to computational (“£,n”) space via distribution (s, t”)
space.
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fori=2 .. om, 3=l wand

9
Z\/(ui,k =ty P ¥ (v — vat)
_ k=2

tig = —= (1.5)
Z\/(ui,k — U 1)? + (Vi = Vipig)?
=2
fori—1 m, j=2,... ;n It mustbe noted that s;; — 0 and ;.1 — 0.
Let
Ms={0=51,j<82,j<-'-<3m,j=1|j=1,’n,} —\(16)
be a partitioning of the s-domain [0, 1] and
Mi=dBetiy<tis s el =1li=1m}) (1.7)

a partitioning of the ¢-domain [0, 1]. The distribution grid G5y = M, ® M, partitioning
[0,1] x [0, 1] is generated by solving for the interior points using

Haee + t1(s2 — 51)

1— (82— S1)(t2 —t1)
it sty = 1)
el ($2 — 51)(t2 —t1)
(see Fig. 3).

Once the distribution grid is generated, by some standard technique such as tensor
product interpolation or TFI (Farin, 1992), the parametric grid Gy, = M, ® M, is con-
structed, where the parametric values (u;,;, v;, ;) correspond to the computational nodes
(si,j,ti,;). Finally, the surface grid G, is constructed using the physical coordinates of
the NURBS representation, 1.¢.,

and (1.8)

t

(1.9)

Hi=8msail =4, .om j=2l0000 (1.10)

The most difficult and least developed area in elliptic grid generation is the computation
of surface grids. Not only needs the grid to be smoothed but the grid points must stay on

©, 1) (53, 1) a, 1

,1)) (1,2,)

(01 0) (SI’O) (ls 0)

Fig. 3. Construction of distribution grid.
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the surface. The simplest technique to create a grid is to work in parametric space rather
than in the physical variables of the surface. There are some disadvantages associated
with this approach. The differential equations become more complicated and contain two
sets of derivatives, the derivatives of the physical variables with respect to the parametric
variables (“Zy, T, Yuy Yvs Zus vy Tuus Tuvy Lo, - - - ) and the derivatives of the parametric
variables with respect to the computational variables (“u¢, uy, vg, Up, Uge, Ugn, Uny, - - 7).

The advantage of using a NURBS-based geometry definition is the ability to represent
both standard analytic shapes (e.g., conics, quadrics, surfaces of revolution, etc.) and free-
form curves and surfaces. Therefore, both analytic and free-form shapes are represented
precisely, and a unified database can store both. Also, the derivatives of the physical
coordinates with respect to the parametric values can be evaluated analytically using the
NURBS definition.

This paper discusses some of the current problems in elliptic grid generation on sur-
faces and describes new features and enhancements that have recently been developed.
Grid orthogonality is of particular interest. Although orthogonal grids are generally not
necessary for numerical algorithms, there must be some upper bound on the skewness
of the grid to limit numerical errors of simulations. Boundary orthogonality is desirable
whenever it is necessary to impose Neumann-type boundary conditions on one or more
of the physical variables of the problem. Some of the popular ways of treating Neumann
boundary conditions are not accurate when the grid is not orthogonal, and others become
unstable if the grid is extremely skewed near the boundary (Thompson et al., 1985).

B-spline and NURBS curves and surfaces are described in (Bartels et al., 1987;
Piegl, 1991; Farin, 1993). Fundamental concepts of numerical grid generation can be
found in (Mastin and Thompson, 1984; Takagi and Miki, 1985; Thompson et al., 1985;
Warsi, 1986; George, 1991). Finite difference schemes for the solution of partial differ-
ential equations are discussed in (Strikwerda, 1989).

2. Definition and evaluation of NURBS curves and surfaces

It is assumed that the surfaces for which grids are to be constructed are given as
NURBS surfaces. This kind of surface/geometry representation has emerged as a de facto
industry standard over the last years. Since elliptic grid generation requires positional as
well as derivative information of surfaces, a short overview regarding the definition of
NURBS curves and surfaces is given. For a more detailed discussion of NURBS curves
and surfaces, it is referred to (Bartels et al., 1987; Piegl, 1991; Farin, 1993).

2.1. NURBS curves
A NURBS curve s(u) = (z(u), y(u), 2(u)) is a piecewise rational curve given as
m
ZwidiNik(u)
(u) i=0

s(u) ~ qu(’U,) = ' ) LS [uk—laum-i—l]; (21)

m
Ewi N1k (u)
1=0
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d;
k=3
Do e )
TG N e e R (OUR Bs i
0 et Ups1 Utk
Fig. 4. Control information of NURBS curve.
defined by

e an order k,
e conttolpoints dy =t 4., %), 1=0,. .., m,
e real weights w;, i =0,...,m,

e a set of real knots {ug, ..., Umtk | Ui < Uig1, 1=0,...,(m+k—1)},
e B-spline basis functions Nf(u), 4 € [tu;,uipk], 1 =0,...,m, where
k U — Uy 2eec] Uitk — U k—1
i (B —eecsmimes N (U] + esmleer VT (1),

Uit le—1 — Uq Uik — Ui

1 ifU'<’U,<U'+1
N-’(u)z . e i n=—10.. " m:and
0, otherwise,

e curve segments 8;(u), u € [u;, uit1), ¢ = (k—1),...,m, (see Fig. 4).
2.2. NURBS surfaces

A NURBS surface s(u,v) = (z(u,v),y(u,v), z(u,v)) is a piecewise rational surface
given as

z(u,v)
s(u,v) raes
> wij dij NE(u)N}(v)
_j=01=0
>0 wiiNEu)Ni(v)
7=013=0
u € [uk—-l)um-{—l]) Ve ['U),'_],’Un+1], (22)
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Fig. 5. Control information of NURBS surface.
defined by
e two orders k and [,
e control points d; ; = (%s,5,Yi,5, %i,5), 1 = 0,...,m, j =0,...,n,
e real weights w; j,1=0,...,m,j=0,...,n,
e a set of real u-knots, {ug, ..., Umk | Ui € Uiy, £ =0,...,(m+ k- 1)},
e a set of real v-knots, {vp,...,Vn4t | Vj S V541, 5=0,...,(n+1-1)},
e B-spline basis functions N*(u), u € [ui, uitk), i =0,...,m,
e B-spline basis functions NJL-(’U), v.€ Wi, vi], 3 =0, 5., n and
o surface segments 8;;(u,v), v € [u;,%it1), 1 = (kK —1),...,m, v € [v;,vj41],
fe= -1 0
(see Fig. 5).

The indexing scheme for NURBS curves and surfaces follows the notation used in
(Bartels et al., 1987). Very often, it is convenient to represent the rational expression for
a 3D NURBS curve/surface in the corresponding homogeneous, 4D representation. This
requires an evaluation scheme for the 4D representation.

2.3. The homogeneous de Boor algorithm

Representing a NURBS curve in its homogeneous form introduces a fourth coordinate.
The homogeneous form of a NURBS curve is given as

s*(u) = (z*(u), y* (u), 2*(u),w(u)) = Zd: NEw), u€ [up—1;8ms1], (2.3)
i=0

where df = (w;z;,w;y;,wiz;,w;) is a 4D control point of a 4D B-spline curve. Instead of
using the recursively defined basis functions N} (u) for the computation of a curve point,
one commonly uses the numerically more stable “de Boor algorithm” (Farin, 1993). This
is an elegant algorithm based on repeated linear interpolation of line segments of the
original control polygon. The algorithm can be used to compute a 4D curve point s*(u):
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Algorithm ‘“‘de Boor”

Input: 4D control points, set of knots, parameter value u € [ur, usr41)
Output: Point on the 4D NURBS curve, s*(u) = d;_k(zl_l)

forr=1to (k—1)do
fori=1—-(k—1)to (I —r)do

P Uitk — U d* r—1 3 U— Uity X A 1.
Uitk — Uitr : Uitk — Uity el 2
Here, we set d} ° = d. The desired 3D point on the NURBS curve is
w(u) * w(u) wlu)

This algorithm can be utilized in a similar way to compute 4D surface points. The
de Boor algorithm must be applied to all control point rows in the 4D control net and
then once to the set of “intermediate” curve control points (one column). This tensor
product evaluation scheme is explained in (Farin, 1993). At the end, a 4D surface point
is projected into 3D space.

2.4. Derivatives of NURBS curves and surfaces

Derivative information is required for the generation of smooth grids. Therefore, the
relevant NURBS curve and surface derivatives are listed. The first and second derivatives
of a NURBS curve s(u) are given by

d " ey (u)w(u) — z(u)wy(u)
aS(’U,) = Su('U-) = wz(u) (2.5)

and

2
d%s(u) = su(w) = () @ (@)0(u) — 2(u)ou(v))
— 2wy () (g (w)w(u) — w(u)wu(u))w—3(u) (2.6)

One can use the de Boor algorithm to compute the terms appearing in these equations
by considering the expression for the first derivative of a B-spline curve

s(u) = ) _ diNf(u),
=0

which is
m—

d
55w = Z (dl+1 di)NES (u), € [ue—1, Ume1]. 2.7)

u — Ui+
=0 i+k

The required partial derivatives of a NURBS surface s(u,v) are given by
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0 Ty — TWy
—8(u,v) =8y = —————,

ou w?
Tyw — TWy
Wy = g
w

W(Lyuw — TW — 2wy (Tyw — zW

Suu e ( uu uu)w3 u( u u)’ (2.8)
W( Ty — BWyy) — 2wy (Tyw — W

8y = ( v vv)w3 'v( v 'u), and
W(TyoW + TyWy — TyWy — TWyy) — 2wy (Tyw — Twy,)

S — 2 ;

o
Several properties of algorithms for NURBS curves and surfaces are discussed in detail

in (Piegl, 1991). This brief overview of NURBS curves and surfaces is sufficient for
algebraic and elliptic grid generation.

3. Elliptic grid generation

A general method for constructing curvilinear structured grids is based on partial dif-
ferential equations (Takagi and Miki, 1985; Thompson et al., 1985). The grid points are
the solution of an elliptic partial differential equation system with Dirichlet boundary
conditions on all boundaries. The use of elliptic systems has a number of advantages.
The theory of partial differential equations guarantees that (for some elliptic systems)
the mapping between physical and transformed regions will be one-to-one. Another im-
portant property is the inherent smoothness in the solution of elliptic systems. As a
consequence, the smoothing tendencies allow grids to be generated for any physical con-
figuration without any “overlapping” grid lines. Another advantage is the fact that slope
discontinuities on the boundaries are not propagated into the field.

3.1. Elliptic surface equations

The elliptic equations for surface grids are a generalization of Laplace equations for
harmonic mappings of planar regions. Let S be a simply-connected surface defined by
the parametric equation

s=8uv) - DSuvsl 3.1

Further, let © and v be functions of the computational variables £ and 7. A rectilinear grid
in the computational square generates a curvilinear grid in the parametric square which
maps to a curvilinear grid on the surface. Thus, a uniform grid in the computational space
generates a curvilinear grid on the surface. The elliptic system of partial differential equa-
tions, which defines the transformation between computational variables and parametric
variables, is related to conformal mappings on surfaces (Mastin and Thompson, 1984).
The derivation is based on conformal mappings. This approach utilizes the intrinsic
orthogonality and uniformity properties that are inherent to a grid generated by a confor-
mal mapping. Another advantage of using conformal coordinates on parametric surfaces
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is the fact that they allow solutions of differential equations on surfaces with the same
ease as on a rectangle in the cartesian plane.

A surface grid generated by the conformal mapping of a rectangle onto the surface
S is orthogonal and has a constant aspect ratio. These two conditions can be expressed
mathematically by the system of equations

8¢+-8, =0 and (3.2)

M|se| = |8y], (3.3)
where M is the grid aspect ratio. These two equations can be rewritten as

ZeZy + YeYn + 2e2p =0 and (3.4)

M2(m§ +y§+z§) — 9:72,+y;7‘7 +z,27. (3.5)

Using the chain rule for differentiation, the above system of equations can be expressed
in the form

Mug¢ = avy, — bu, and (3.6)
Muve = bv, — cuy, (3.7
where
a——-gi—z-, b=—-gl—2, c:gg,
J/ J J

g11 = Su * Su, G12 = Su * Su, §22 = 8y '8y, and

J= \V/ 911922 — 912

If the parametric and computational variables are exchanged in (3.6) and (3.7) so that
the parametric variables become the independent variables, the system becomes

—Mn,, = b&,, + c€& and (3.8)
Mmn, = a&y + b&s. (3.9)

This first-order system is analogous to Beltrami’s system of equations for the quasi-
conformal mapping of planar regions. It follows that the computational variables £ and

7 are solutions of the following second-order linear homogeneous elliptic system (& =
¥ = 0):

T226uu — 20128uv + T116vw + (A2u)éu + (A2v)éy, =P and (3.10)
922w — 29120 + G11Two + (Aqu)ny + (Agv)my = V. (3.11)
The Beltramians Ayu and Apv are given by
= =0 (9n 0 (G
Azu—J(au—Fbv)—J[au(j) av(j) and (3.12)
= =0 (39, 0 (Tn2
dro =T+ )= T () - 5o (%) 6.13)

This system is the basis for elliptic methods generating surface grids. The source terms
(or control functions) @ and ¥ are added to allow control over the distribution of grid
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points on the surface. Typically, the points in the computational space are given, and the
points in the parametric space must be computed. Therefore, it is convenient to exchange
variables again so that the computational variables £ and 7 are the independent variables.
The transformation given by (3.10) and (3.11) is reduced to the following system of
equations for which the parametric variables u and v are solutions of the following
quasi-linear elliptic system:

gzz(ugg + 'Pu5) — 2g12Ugqy + 911 (um, + Qun) — J2A2u and (3.14)
gzz(vgg + 'P’UE) = 2g12'l)§n o gn(vm, -+ Q’Un) = J2A2U, (3.15)
where

g = ?11“% + 27, ueve + §22U§,
912 = 11 Ugtn + G1o(Ugvy + Unve) + Gpyvevn,
= 511”127 + 2g1unvy + §22v7277
JJI2 JJ*
P=—=D Q=—0 and J=ugv;— tnv;.
922 g1
The functions P and Q are used to control the grid point distribution.

The use of conformal mappings for mapping rectangular regions onto surfaces and
deriving the elliptic generation system ((3.14) and (3.15)) has been discussed. Solving
the generation system is accomplished using a finite difference discretization and an
iterative method. For a more detailed discussion about this approach, it is referred to
(Khamayseh, 1994). Some of the theoretical results from harmonic mappings of planar
regions can be verified for solutions of the above system. The same generation system
can be derived from a differential geometric point of view (Warsi, 1986). The system
of partial differential equations may be solved with either Dirichlet- or Neumann-type
boundary conditions, depending on whether the grid points on the boundary of the surface
are to remain fixed or are allowed to move.

3.2. Control functions

The control functions P and Q must be selected so that the grid has the required
distribution of grid points on the surface. Using P = Q = 0 tends to generate a grid with
a uniform spacing. In most cases, there is a need to concentrate points in a certain area
on the surface such as along particular boundary segments. The first step of computing
control functions is the estimation of P and Q from some initial grid. The derivative terms
in the elliptic system can be computed from given grid points, leaving two unknowns, P
and @, which can be determined from the two equations (3.14) and (3.15). These control
function values are smoothed so that the final elliptic grid will be smoother as well as
“more orthogonal” than the initial grid.

The control functions can be computed from an initial grid only if the Jacobian of
the transformation from computational to parametric space is nonvanishing. Since this
may not always be the case for interpolated grids, there is the option of computing the
control functions from the boundary distribution. The appropriate values for the control
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functions on the boundary can be derived by assuming that the grid lines are orthogonal
to the boundary and the spacing normal to the boundary is uniform. The development
follows that for two-dimensional planar regions (Thompson et al., 1985). The formulas
for P and Q in the surface equations (3.14) and (3.15) are

]

P=——4 S¢K1 and (3.16)
S¢

G g (.17)
Sn

The variable s is the arc length along the boundary of the surface, and x; and x, denote
the curvatures of the boundary curves ¢ = constant and 7] = constant, respectively. The
curvatures are

K1 = —, /%Tzlz and kK = ‘/—‘2—1’121,
922 911

where the Christoffel symbols % are given by

1 0 0 0
i = —[911(2ﬂ 5 —g'ﬂ) —glzﬂJ,

2g 9§ on GJ3

1 0912 09 092
L 9 Sl g Svee d
I, 29 [922( an o¢ ) g12 o |’ an

9=91192 — (912)2-

The arc length derivatives for P are evaluated on the 7 = constant boundary curves
and then interpolated in the interior of the computational region, while the arc length
derivatives of Q are evaluated on ¢ = constant and then interpolated in the interior. In
a similar manner, the curvature of each control function can be computed on opposite
boundaries and then interpolated. The curvatures cannot be computed solely from infor-
mation on the boundary curves. They also depend on information off the boundaries. All
arc length derivatives and curvatures, and therefore P and Q, can be computed through-
out the computational region in this manner. This second control option can be used to
determine the distribution of grid points on a surface, even if the initial grid is of such
poor quality that it cannot be used itself to generate appropriate control functions.

3.3. Boundary orthogonality

Imposing boundary orthogonality for the physical surface grid allows grid points to
move along the boundary. The appropriate boundary conditions must be imposed on the
elliptic system in the parametric region so that the grid is orthogonal on the surface. Two
grid lines will be orthogonal on the surface if the inner product 8¢ - 8y vanishes. This
can be expanded using the chain rule yielding the equation

11UgUy + GpaVeVy + §12(u5vn + upve) = 0. (3.18)
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The orthogonality condition is used to formulate derivative boundary conditions for the
elliptic system. If the boundary curves © = 0 and w = 1 are considered, the orthogonality
condition reduces to

Jnve + Jipue = 0. (3.19)
Similarly, orthogonality for the curves v = 0 and v = 1 is imposed by
T11un + G1avn = 0. (3.20)

The elliptic system, the given u and v values on the boundary, and the orthogonality
conditions form a mixed boundary value problem. Equation (3.19) determines the values
for v along the boundary, where © = 0 and u = 1, and equation (3.20) determines the
values for u, where v =0 and v = 1.

The above discussion shows how derivative boundary conditions can be used to impose
orthogonality. This requires “moving” grid points along the boundary of the surface.
Orthogonality can also be imposed by adjusting the control functions near the boundary
and keeping the boundary points fixed. Since there are two control functions, not only
can the angle at the boundary be chosen but the distance to the first grid line from the
boundary as well. Assuming that the grid lines are orthogonal, the values for P and Q
can be determined from the elliptic system (3.14) and (3.15) along a boundary segment,
where a specified grid spacing is desired. The distance is used for the value of g;; or g.
Some of the other derivatives in the equations for P and Q can be computed from the
fixed values of u and v on the boundary. The derivatives that must be computed using
interior values are updated during the iterative solution procedure of the elliptic system.
At each iteration, the boundary control functions are smoothly blended with the interior
control functions to generate a smooth grid that is orthogonal and has a specified spacing
along assigned boundary segments.

4. Examples

Five examples are presented to demonstrate the method. The first three examples
(Figs. 6, 7 and 8) show an arbitrary bicubic NURBS surface, a torus (periodic case), and
a cone (singular case). Each figure contains the shaded NURBS surface with its defining
control points and the algebraic and elliptically smoothed surface grid. The algebraic
grids are constructed using transfinite interpolation of the boundary curves. The elliptic
grids are generated using the algebraic grids and solving the elliptic system. Clearly, the
elliptic grid is smoother and “more uniform”.

The next two examples show algebraic and elliptically smoothed surface grids on real-
world geometries. The first geometry (Fig. 9) shows the space shuttle. The elliptic grid
is generated using control functions P = Q = 0, and the boundary points are allowed
to move so that the grid is orthogonal on the boundary. Thus, the initial spacing on
the boundaries is not maintained. The second geometry (Fig. 10) shows an F15 aircraft
having a degenerate boundary (edge collapsed to a point). The elliptic grid has been
generated using control functions computed from the algebraic grid by solving equations
(3.14) and (3.15) for P and Q. Orthogonality is achieved on the boundaries by using
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Fig. 6. Bicubic surface (shaded surface (top), algebraic grid (bottom-left), and elliptic grid (bot-
tom-right)).

the second type of orthogonality, where grid lines are orthogonal to the boundaries and
the grid points distribution on the boundaries remains unchanged. Orthogonality is not
applied on the singular boundary.

Unfortunately, the described grid generation strategy has one drawback when applied
to NURBS surfaces directly. If the number of grid points to be generated on a NURBS
surface is significantly smaller than the number of control points d; ;, convergence prob-
lems may arise. In the implementation, this problem is solved by first evaluating the given
NURBS surface at a resolution similar to the number of grid points to be computed. A
bicubic B-spline surface is determined interpolating the points on the original NURBS
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Fig. 7. Torus (shaded surface (top), algebraic grid (bottom-left), and elliptic grid (bottom-right)).

surface. A surface grid is then computed for the B-spline surface, and the values for u
and v are finally used to evaluate the original NURBS surface. It has been found that
this approach works well for all practical applications that have been tested.

5. Conclusion

This paper shows how grid generation can be applied directly to NURBS surfaces and
how the derivative information of NURBS is utilized. The elliptic generation system is
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Fig. 8. Cone (shaded surface (top), algebraic grid (bottom-left), and elliptic grid (bottom-right)).

solved using a finite difference discretization and the successive-over-relaxation (SOR)
method. The control function and orthogonality techniques allow a great degree of free-
dom in designing surface grids. Orthogonality on the boundaries is enforced by checking
if the boundary is regular, degenerate, or periodic. The two techniques for achieving or-
thogonality are applied on regular boundaries and are applied on one boundary at a time.
If the boundary is degenerate, orthogonality is not applied, but if a periodic boundary
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.

Fig. 9. Space shuttle (algebraic grid (top) and elliptic grid (bottom)).

Fig. 10. F15 aircraft (algebraic grid (top) and elliptic grid (bottom)).

is encountered, the SOR method is also applied on the common boundary to ensure a
smooth transition along the common boundaries.
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