
ARTICLE IN PRESS
0097-8493/$ - se

doi:10.1016/j.ca

�Correspond
E-mail addr

(P. Renzulli), k

edu (B. Haman

edu (O.G. Staa
Computers & Graphics 30 (2006) 610–618

www.elsevier.com/locate/cag
Technical Section

3D warp brush modeling

Yong Joo Kila,b, Pietro Renzullic, Oliver Kreylosb, Bernd Hamanna,b,
Guiseppe Monnoc, Oliver G. Staadta,b,�

aDepartment of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA
bInstitute for Data Analysis and Visualization, University of California, Davis, One Shields Avenue, Davis CA 95616, USA

cDepartment of Mechanical Engineering, Politecnico di Bari, Viale Japigia 182, 70126 Bari, Italy
Abstract

We introduce 3D warp brush, a new method for interactive shape modeling in an immersive virtual reality environment. 3D warp

brushes are implicitly defined tools that operate on triangle meshes. We combine the efficiency of explicit mesh representations with

intuitive implicit modeling operators. The area of influence of a 3D warp brush can be of arbitrary shape since it has an associated

distance field. We define different warp functions including drag, explode, and whittle. A unique feature of our framework is the ability to

convert meshes into 3D warp brushes at run time. Thus, we can easily expand our set of brushes based on a small set of base brushes,

such as spheres or ellipsoids. Our underlying split-edge mesh data structure supports adaptive refinement and efficient rendering with on-

the-fly triangle strip generation. 3D warp brushes only operate on mesh vertices, hence, underlying mesh processing is transparent to the

modeling operations. The use of a Responsive Workbench and two-handed interaction allows the user to exploit the full potential of the

modeling system by intuitive and easy modification of a base surface into a desired shape. We present several models, which have been

created and modified using 3D warp brushes, to demonstrate the usefulness of our framework.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Free-form modeling; Virtual reality; Human-computer interaction
1. Introduction

Three-dimensional surface modeling is a research area of
particular interest in computer graphics, computer-aided
design (CAD), and computer-aided geometric design
(CAGD). 3D surface models are being used in diverse
application areas ranging from industrial and car-body
design to 3D character animation and computer games.
Traditional surface modeling methods—including para-
metric surface representations such as Bézier and NURBS
surfaces—achieve high-quality results, but require manip-
ulation of control meshes to influence surface shape. This
indirect manipulation metaphor requires the designer to
e front matter r 2006 Elsevier Ltd. All rights reserved.

g.2006.03.014

ing author. Tel.: +1530 752 4821; fax: +1 530 752 4767.

esses: kil@cs.ucdavis.edu (Y.J. Kil), rufusgufus@libero.it

reylos@cs.ucdavis.edu (O. Kreylos), hamann@cs.ucdavis.

n), gmonno@poliba.it (G. Monno), staadt@cs.ucdavis.

dt).
change control vertices using either a mouse or a tablet.
Even though input devices with higher degrees of freedom
have become more widely available, it is unclear how they
can be successfully utilized in such settings.
Free-form deformation (FFD) techniques support nat-

ural interaction with the surface object. They support the
use of powerful tools to manipulate the model in a direct
fashion, without using control meshes. Especially in the
context of implicit (i.e., volumetric) representations, tools
can easily be defined to operate on the surface. Unfortu-
nately, memory requirements of complex implicit surface
representations are high, and rendering involves extraction
of the surface using marching-cubes-like methods or direct
volume visualization. On the other hand, explicit surface
representations (i.e., meshes) can be rendered efficiently
using commodity graphics hardware.
Virtual reality (VR) has over the years proved to be an

excellent medium for the above-mentioned modeling
techniques. Specifically the large amount of research on

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2006.03.014
mailto:rufusgufus@libero.it
mailto:hamann@cs.ucdavis.edu
mailto:staadt@cs.ucdavis.edu
mailto:staadt@cs.ucdavis.edu


ARTICLE IN PRESS
Y.J. Kil et al. / Computers & Graphics 30 (2006) 610–618 611
VR interaction, such as [1–3] carried out in the past and the
technical improvement of the relative hardware, make VR
suitable for applications such as conceptual shape model-
ing, where the real-time 3D visual feedback and two-
handed interaction are fundamental for the success of the
creative and iterative mental processes involved.

We propose a hybrid free-form modeling framework
that uses a VR interface and combines implicitly defined
tools—3D warp brushes—that operate on adaptively
refined triangle meshes. We present data structures and
algorithms that support 3D warp brushes with arbitrary
shape and a variety of associated warp functions that
determines how the shape of the model is changed. Our
underlying mesh representation is based on a split-edge
data structure that allows for dynamic refinement and fast
rendering. A powerful feature of our framework is the
ability to convert a surface model to a 3D warp brush. In
other words, we can model complex tools within our
system and extend the library of warp brushes. Basic warp
brushes can be created from pre-existing distance fields,
e.g., procedurally defined ones such as spheres or cylinders.

The result is a modeling system that in conjunction with
the 3D VR interface, makes conceptual free-form shape
modeling simple and intuitive. In particular, this system
provides the user with a means of rapidly generating,
modifying, and visualizing conceptual shapes in an iterative
manner until the desired result is achieved. This result may
then be used as a starting point for the aesthetic,
ergonomic, and functional evaluations typical of the later
stages of the design process.

The capabilities of our modeling framework are illu-
strated in Fig. 1. It depicts a sequence of models created
using 3D warp brushes, starting from a spherical base mesh.
Fig. 1. Sequence of snapshots from an interactive modeling session. An initial

warp operations.
This paper is a detailed and expanded description of the
3D warp brush modeling framework that has been
presented as a poster in [4].
2. Related work

Shaw et al. [5] introduced a rectangular-mesh editor that
uses 6 degree-of-freedom (6DOF) input devices. By
selecting different tools the mesh can be refined, can have
other quads added to it, and vertices can be moved.
Various refinement levels can be used to subdivide the
mesh. The user can restrict the selection to certain quads
representing a certain level of refinement. This forces the
user to think in terms of the underlying mesh structure,
which may make the modeling process non-intuitive.
The 3D styling system described by Wesche and Droske

[6] and Wesche and Seidel [7] features a Responsive
Workbench display and two-handed interaction. They
support curve and surface deformation using a variational
approach based on an underlying B-spline representation.
The modeling system developed by Matsumiya et al. [8] is
based on implicit surface representations. The user wears a
data glove and deforms the surface using a finger, but the
system does not support more complex deformation tools.
Schkolne et al. [9] describe a free-form modeling

technique for VR environments. Hand movements are
used to generate free-form triangulated surfaces in 3D
space. Cybergloves are used to get the information
regarding the hand position and orientation. The authors
mention that their mesh creation algorithm generates
cracks in the mesh and non-manifold topology about one
percent of the time. A Laplacian smoothing operator is
surface (a sphere) is warped into a complex bust using several brushes and



ARTICLE IN PRESS

Fig. 2. Setup of the 3D warp brush modeling system.

Y.J. Kil et al. / Computers & Graphics 30 (2006) 610–618612
applied in a post-process to eliminate of unwanted
‘‘bumps’’ on the surface.

Bill and Lodha’s [10] sculpting system uses geometric
objects called virtual tools, described by super-quadratic
equations, which define an area of influence which when in
contact with the mesh can adaptively refine, smooth or
deform it in different ways. Decay functions define how the
influence of a tool applied to a point in the mesh decays
and effects the neighboring points. The size of the tools can
be changed by scaling along the principal axis.

Based on the kind of geometric representation used to
describe the modeled object, various shape modification
techniques can be used. In general, the simplest way of
editing explicit polygonal meshes, parametric representa-
tions, and subdivision surfaces entails inserting, moving,
and deleting single control vertices or groups of these. A
more elegant technique of deforming surfaces is via the use
of FFD [11,12], which involves warping a space that
contains the object to be modeled. FFD methods are
independent on the underlying data structure and, hence,
can be used with any parametric, polygonal, or point-based
representation. However, this approach to modeling has
the problem that the control lattice used to manipulate
space is not directly related to the object.

An approach to FFD in a more direct manner has been
proposed in [13]. An interesting alternative to volumetric
FFD is the one presented by Botsch et al. [14], which is
based on constrained shape optimization. This modeling
framework allows users to choose between different
abstract basis functions, controlled by virtual 9DOF
manipulator objects, which are used to perform shape
editing of unstructured triangle meshes. A very effective
way to generate new shapes with implicit surfaces or
distance field representations is by blending one or more of
these representations via Boolean operations [15]. Another
commonly used technique for shape modeling using
implicit representations involves generating a skeleton
[16] of the intended shape around which a smooth implicit
surface is generated. Llamas et al. [17] have recently
presented a two-handed editing system that supports FFD
by using point-displacement constraints that must be
interpolated by the deformation.

In general, explicit surface modeling [5,9,10,18] using
polygonal meshes has the advantage that polygon render-
ing is supported efficiently in modern graphics hardware.
However, when modeling complex surfaces, a large number
of polygonal primitives may be necessary to represent fine
surface details, making real-time interaction no longer
possible.

3D warp brush, the free-form modeling system described
in this paper, is similar in nature to the polygonal sculpting
system described in [10]. However, to overcome the
limitation of a 2D environment and to make the interaction
as intuitive and easy as possible, we use a VR environment
with 6DOF input devices. Moreover, we allow the area of
influence of the tools to be of any shape. In fact, since each
tool has a distance field [15,19] associated with it, any
modeled shape, represented as a mesh, can be turned into a
tool and used to deform another mesh. In other words, the
area of influence of a tool can be changed via another tool
into any desired shape, hence greatly enhancing the
modeling capabilities of the system.
A similar approach to ours that uses distance fields is the

one described by Angelidis et al. [20]. They focus on
guaranteeing a surface from self intersection by integrating
the function defining the deformation over small time
steps. Although the results are very effective, user interac-
tion is limited to a 2D interface.

3. System overview

We use a similar setup to the one described in [2] with a
Responsive Workbench display (see Fig. 2) that utilizes
active stereo shutter glasses. A Polhemus Fastrak 6DOF
tracking sensor is attached to the shutter glasses, allowing
the system to display correct perspective image for the
viewer at any location. For two-handed interaction we
employ two Fakespace Pinch Gloves with 6DOF sensors
and one Polhemus stylus.
A high-level overview of our software architecture is

depicted in Fig. 3. At the core of our system is a self-
adapting triangle mesh (see Section 5) representing the
surface of the object currently being modeled. Modeling is
performed by direct free-form manipulation of the
represented surface, using one or more surface manipula-
tors associated with the 6DOF input device(s) present in
the virtual environment. A surface manipulator combines
the effects of a brush and a warp operation (see Section 6).
Brushes define the spatial shape of a manipulator and are
defined by distance fields. Warp operations define how a
manipulator modifies surface vertices and are defined by
vector fields.
An important contribution of our modeling system is the

ability to extend the set of available brush shapes from
within the system. The brush generator can ‘‘clone’’ a part



ARTICLE IN PRESS

Brush
Generator

Brush
Set

Current Brush

Brush 1 Brush nBrush k

Warp
Operations

Drag

Whittle

Current Warp

Explode
Surface

Manipulator

Surface
Triangle Mesh
Representation

Distance
Fields

Fig. 3. Overview of the system architecture.

pi

x
brush

pi-1

pi+1

d(x)

h

Fig. 4. A brush at position pi interacts with a model. Vertex x on the

model’s surface is within the region of influence h of the brush. As the

brush moves through space, the surface vertices within this area are

translated according to the warp function.

Y.J. Kil et al. / Computers & Graphics 30 (2006) 610–618 613
of the current surface and convert it into a distance field to
be added to the set of available brushes. This allows
starting from a set of pre-defined brushes loaded as existing
distance fields or generated from analytical representations,
e.g., spheres and ellipsoids, and generating successively
more complex brushes which are finally used to model a
desired shape.

4. The 3D warp brush

Our core modeling tool, the 3D warp brush, employs a
brush-like paradigm with a limited area of influence in a
local region of space, defined by a distance field and several
user-defined parameters such as region of influence and
pressure. As a warp brush moves through space, a vector
field is defined locally around the brush. This is realized
through warp operators f :R3! R3. As the brush comes
into contact with the model, the warp operator is modified
by weight functions calculated from the brush’s distance
field and applied to the vertices of the model.

4.1. Input data

During interactive modeling, we focus on the model and
the brush. Input to our system is a sequence of positions
and orientations ððpi; oiÞÞ, which is updated by the 6DOF
tracking system at every frame (see Fig. 4). The brush is
associated with a tracking device and the current measure-
ment ðpi; oiÞ defines the relative position of the brush and
the current model. Some warp operations are based
on motion. Thus, we derive a sequence of measurement
increments ððDpi;DoiÞÞ using backward differencing:
Dpipi ¼ pi�1, and Doi ¼ oi=oi�1.

To give users better control, we create an interface for
parameters such as scale and pressure. Scaling factors for
models and brushes are maintained separately, allowing the
user to change their size relative to each other. This simple
but important feature allows the user to work at different
levels of detail. Pressure is utilized to define the overall
sensitivity of the warp operators.

4.2. Distance field

To define the effect of a brush through warp operators,
we utilize the concept of distance fields. A distance field
dSðxÞ is a scalar field that represents the minimum distance
between a point x and a given surface S. In our case, S is
known as the current brush’s surface, and we express the
distance field as dðxÞ. In Euclidean space, the value of dðxÞ

can be interpreted as the Euclidean distance between x and
the point s on the surface that is closest to x:
dðxÞ ¼ kx� sk. A signed distance field can be defined for
oriented surfaces or solid models, and assigns negative
distances to points inside the surface or model.
Our warp operators also use the gradient rd of the

distance field, which is a vector in the direction of
maximum change:

rd ¼
qd

qx
;
qd

qy
;
qd

qz

� �
.

In Euclidean space, krdk ¼ 1, and rdðxÞ is parallel to the
difference vector x� s, where s is again the point on the
surface closest to x. Thus,

rdðxÞ ¼
x� s

kx� sk
.

For fast access to the distance field and its associated
gradient field, we pre-compute both on a regular grid. This
is efficiently calculated using the closest point transform



ARTICLE IN PRESS
Y.J. Kil et al. / Computers & Graphics 30 (2006) 610–618614
[21]. For higher accuracy, but slower acquisition, adaptive
distance field can be used [15], or a hierarchical decom-
position of the triangle mesh can be pre-computed [22].

4.3. Weight functions

We use distance fields to calculate weight functions for
the application of warp operators to surface vertices.
Weight functions have a value of one on the brush’s surface
ðdðxÞ ¼ 0Þ, and decrease to zero as dðxÞ approaches the
brush’s user-defined influence region size denoted by h (see
Fig. 5). Writing normalized distance as dnðxÞ ¼ dðxÞ=h, we
can define a linear weight function (see Fig. 5, left)

w1ðxÞ ¼ 1� dnðxÞ,

or a smooth third-degree polynomial weight function (see
Fig. 5, right)

w2ðxÞ ¼ 1d2
nðxÞð3� 2dnðxÞÞ.

The linear weight function w1 has the advantage of more
intuitive warp behavior, especially for rotational transfor-
mations, while the smooth weight function w2 better
preserves surface smoothness. Additionally, weight func-
tions are defined to be one for negative distance values (in
the case of signed distance fields), and to be zero for
distance values larger than h. This ensures that surface
vertices outside a brush’s influence region are not affected
by warp operators.

To give a user overall control over the effect of a warp
operator, we add a pressure parameter r 2 ½0; 1� to either
weight function to calculate the final wðxÞ ¼ wiðxÞ � r, for
i 2 f1; 2g.

4.4. Warp operators

Warp operators are defined as vector fields that impose
movements on surface vertices inside the influence region
of a brush. At each frame, the position x of a surface vertex
v is adjusted by multiplying the weight wðxÞ with the warp
operator value f ðxÞ, and adding the result to the current
value x:

x0 ¼ xþ wðxÞ � f ðxÞ.
w1(x) w2(x)

d(x)=h
0

1

0

1

x d(x)=hx

Fig. 5. Weight functions are used to modulate the effect of warp operators

on surface vertices and to localize brush effects. Vertices close to a brush’s

surface have high weights, and weight values decrease to zero as vertices

move towards the border of a brush’s user-defined influence region size h.
Warp operators can be arbitrary vector fields, and they can
depend on a vertex’ position, on the brush position, on the
brush motion, or on any combination of these. Our current
modeling system comprises three different warp operators:
drag, explode and collapse, and whittle.
(1) Drag: Drag is a simple yet powerful way of

manipulating the model by allowing pushing, pulling, and
twisting of regions of its surface. This operator’s vector
field is based on brush motion only.
A measurement increment ðDpi;DoiÞ generated from the

stream of 6DOF tracker measurements is converted into a
(implicit) vector field by calculating the movement of each
point in space as if it were rigidly attached to the moving
tracker coordinate frame. A position increment Dpi is a
vector, and an orientation increment Doi is a rotation, to be
performed around the current position pi (Doi can be
represented, for example, as a matrix or a quaternion).
Thus, the new position of a point x under the incremental
transformation is

x0 ¼ pi þ Doi � ðx� piÞ þ Dpi,

and its offset vector is

f dragðxÞ ¼ pi þ Doi � ðx� piÞ þ Dpi � x.

(2) Explode and collapse: Explode and collapse has the
effect of moving the model’s surface towards or away from
the brush’s surface. The effect can be thought of as blowing
up, or sucking the air out of, a balloon containing the
brush; or as stamping the brush into the model’s surface.
The explode and collapse operator always moves vertices in
the direction of the gradient field of the brush’s distance
field. Its behavior is modified by an additional parameter d:
if do0, surface vertices move towards the brush (collapse),
if d40, surface vertices move away from the brush
(explode). Thus, the explode and collapse operator is
defined as

f explodeCollapseðxÞ ¼ h � rdðxÞ � d.

(3) Whittle: The whittle operator is used to locally
smooth the surface of a model. This is important since the
6DOF tracker measurements typically contain some
amount of noise, which introduces noise into the model’s
surface while editing. Our system uses Laplacian smooth-
ing to modify the positions of surface vertices inside the
brush’s influence region.
Laplacian smoothing is a discrete operation that replaces

the position of each vertex in a mesh with the centroid of its
neighboring vertices. In other words, if v is a mesh vertex
with neighbors fv1; v2; . . . ; vng, then v’s new position x0 is
defined as x0 ¼ 1=n

Pn
i¼1 xi, where the xi are the positions

of the neighbors vi. To apply Laplacian smoothing locally,
and in a more controlled fashion, we convert it into a warp
operator by defining a vector at each mesh vertex’s position
as the offset from the vertex’s current position to its new



ARTICLE IN PRESS

model distance field

Fig. 6. Custom brushes can be created by converting existing or modified

models into distance fields. The custom brush can then be used to

manipulate other surfaces.

Fig. 7. Part of a surface before and after manipulation. Left: initial mesh.

Right: mesh after local deformation. Note the uniform triangle shapes

even in regions where large stretching occurred.

Y.J. Kil et al. / Computers & Graphics 30 (2006) 610–618 615
position if Laplacian smoothing were applied:

f whittleðxÞ ¼
1

n

Xn

i¼1

xi

 !
� x.

This discrete set of vectors can be extended to a vector field
in an arbitrary way, since it will only be evaluated at the
positions of mesh vertices.

4.5. Brush generator

As described above, our system represents brush shapes as
distance fields dðxÞ. These distance fields can be generated in
several ways. They can be given analytically, e.g., for
spherical or ellipsoidal distance fields, or they can be loaded
as pre-computed regular grids. This generates distance fields
for brushes directly from the surface of our models, which
allows intuitive creation of complex brush shapes using the
same modeling tools that are used for surface modeling. This
concept is illustrated in Fig. 6, where we used a fork-shaped
model to generate a fork-shaped brush which is subsequently
used to manipulate a spherical surface.

5. Surface representation

The main goal in developing our surface representation
was to strike a compromise between the ease of rendering of
polygon meshes, and the ease of manipulation of point set
surfaces, especially when inserting/removing points. The
result is a triangle mesh data structure, with built-in
operations for point insertion and point removal. The
surface is rendered just like a triangle mesh, but it behaves
like a point set under manipulation. When the mesh is
stretched, and local point density becomes too low, new
points are inserted automatically; when the mesh is
condensed, and local point density becomes too high, points
are removed automatically. Additionally, the point insertion/
removal operations are implemented such that the shape of
triangles in the mesh is as uniform as possible, preferring
isosceles triangles over long and skinny ones (see Fig. 7).

5.1. Triangle mesh data structure

Our surfaces are represented as triangle meshes, im-
plemented using a split-edge data structure [23]. We chose
this data structure for its straightforward representation of
mesh connectivity, its Oð1Þ traversal time between adjacent
triangles, and its ability to (temporarily) represent meshes
containing arbitrary polygons during point insertion/
removal.
In a split-edge data structure, internal mesh edges are

represented as pairs of oriented half-edges originating at
one mesh vertex and ending at another. Each half-edge
contains a pointer to its opposingly oriented sibling half-
edge. Mesh faces (in our case, triangles) are represented
implicitly, as closed loops of half-edges. For this purpose,
each half-edge also contains a pointer to the next half-edge
around the same mesh face.

5.2. Mesh rendering

In the most straightforward implementation, a triangle
mesh is rendered by traversing the list of triangles twice. In
the first pass, each triangle’s plane equation is computed,
and a triangle’s normal vector is accumulated in each of the
triangle’s vertices. In the second pass, each triangle’s half-
edge loop is traversed exactly once, and each half-edge’s
start vertex (with its previously computed normal vector
and other attributes) is passed to the OpenGL pipeline in
GL_TRIANGLES rendering mode.
The Oð1Þ traversal of neighboring triangles provided by

the split-edge data structure enables a more efficient
rendering technique that generates triangle strips on the
fly during the second traversal pass. While traversing the
list of triangles, each triangle that has not yet been rendered
serves as a seed for a triangle strip. A strip is extended until
it runs into a boundary edge, or a triangle that has been
rendered already. Triangle strip vertices are passed to the
OpenGL pipeline as they are encountered. Even with this
unoptimized, ‘‘random’’ mesh traversal, the generated
triangle strips are typically long enough to improve
rendering performance compared to the naive rendering
method.



ARTICLE IN PRESS

Fig. 8. Increasing mesh resolution inside an area of interest using longest-

edge bisection. Left: initial mesh and area of interest (shaded). Center:

refined mesh with longest-edge bisection. Right: refined mesh with

recursive longest-edge bisection.

Fig. 9. Reducing mesh resolution inside an area of interest using shortest-

edge collapse. Left: initial mesh and area of interest (shaded). Right:

coarsened mesh.

Fig. 10. The interaction interface in the virtual environment. At the center

is the shaded mesh representing the model. Around this is a series of

toolboxes and sliders to control the interaction.

Y.J. Kil et al. / Computers & Graphics 30 (2006) 610–618616
5.3. Mesh resolution adaptation

One of the main benefits of point set surfaces is the ease
which with one can insert additional points to locally
increase the resolution of a surface representation in areas
of manipulation (see Fig. 7). To achieve the same flexibility
for triangle meshes, we implemented automatic mainte-
nance of mesh resolution into the split-edge data structure.
Whenever a surface is manipulated, all triangles that
changed shape in the manipulation are checked against a
pair of resolution thresholds: if a triangle’s longest edge
is longer than the max-edge-length, that edge will be
split, thereby inserting a new point into the mesh. If a
triangle’s shortest edge is shorter than the min-edge-length,
that edge will be collapsed, thereby removing a point from
the mesh.

(1) Edge split: Insertion of new points into a triangle
mesh is achieved by recursive longest-edge bisection [24] (see
Fig. 8). If a triangle’s longest edge is longer than the max-
edge-length, the edge is split by inserting a new point at its
center. To avoid hanging nodes, the other triangle sharing
the same (interior) edge is split as well. Additionally, to
maintain desirable triangle shapes, we first recursively split
the other triangle’s longest edge if the shared edge is not the
other triangle’s longest edge (see Fig. 8, right).

(2) Edge collapse: Removal of points from a triangle
mesh is achieved by shortest-edge collapse (see Fig. 9). If a
triangle’s shortest edge is shorter than the min-edge-length,
the edge is collapsed by moving both of its endpoints to the
edge’s center, and then removing one point and two
triangles from the mesh. It is worthy of note that our used
edge collapsing method does not invert a previously
performed edge bisection, and vice versa. It turns out that
the combination of the two methods, when applied
consecutively to a mesh under manipulation, results in
uniform point density and desirable triangle shapes (see
Fig. 7).

6. User interaction

When immersed in the virtual environment, a user can
use toolboxes (arrays of 3D boxes containing an icon of a
brush) and menus that can be positioned anywhere in the
virtual workspace (see Fig. 10), to select a deforming brush
with the relative actions to be applied to the mesh. Other
widgets such as sliders, which are accessible via either the
stylus or the Pinch Gloves, are used to set the properties of
the brushes such as size of the distance field and the scale of
the shape of the brush.
Once a brush is instantiated it is associated to the button

of the input device that was used to select it from the menu
or toolbox. In the case of the gloves, a different brush or
deformation can be associated to each of the four fingers.
The movement of the input device (with the respective
button pressed) can be used to bring the distortion field
associated with the brush in contact with the mesh to
deform it.
In order to best utilize two input devices, we employ the

two-handed interaction paradigm [2] and use the left hand
for orienting the model and the right hand for modifying
the model; scaling of the model and of the brush is done
similarly by measuring the relative distance between the
two hands. This is an invaluable tool which frees us from
the constraints of the physical world, and allows us to
freely orient the model and at different scales.



ARTICLE IN PRESS
Y.J. Kil et al. / Computers & Graphics 30 (2006) 610–618 617
7. Results

We have implemented the software components of our
system in Cþþ on a Pentium 4 2.8GHz, with 2Gbyte
memory and NVIDIA Quadro FX 1000 graphics. The
system has been informally tested with users who had no
technical knowledge of the application. The feedback has
been very positive and the ease with which the users learned
to use the application indicates that the aim of creating an
easy to use conceptual shape design application has been
achieved. We implemented a way of undoing modeling
actions and a means to recreate such actions so that the
user could feel free to change the model, preview the
change and go back to the previous step if the result was
not the desired one. Stereoscopic vision and the 3D input
devices have proven to be very important in making the
application intuitive and easy to use. In fact when the
application is run on a desktop computer with a monitor,
and mouse and keyboard as input devices, the creative
process slows down considerably. The possibility of
modeling the shape of the brushes on the fly has proven
Fig. 11. Effects of a spherical brush and the drag warp operator applied to a

rotation, complex combination.

Fig. 12. A ‘‘fork’’ tool (a) and the result of applying it to a square slab (b), a

Fig. 13. Sequence of snapshots from an interactive modeling session from the
very useful since the user can potentially generate any
shaped brush to deform the mesh.
Fig. 11 show simple examples of a spherical brush.

Fig. 12 shows tools that were generated and then used to
modify the surface. The bust seen in Fig. 1 bottom left was
made by visually referencing a low res model of a head.
This allows an artist to easily reference relative positions of
features. The modeling of the sphere to the bust took less
than two hours. Fig. 13 depicts additional steps of
modeling the bust from Fig. 1, which took about 10min.

8. Conclusions and future work

We developed a new system for free-form modeling of
triangle meshes using 3D warp brushes. Defining the shape
of warp brushes using signed distance fields along with
different warp function allows us to create new brushes in
an efficient and flexible manner. The use of this system in
immersive VR environments together with two-handed
interaction using 6DOF input devices, enables direct
manipulation of surface shapes in an intuitive and creative
square slab. From left to right: original slab, simple translation, simple

nd a ‘‘triangle’’ tool (c) and the result of applying it to a square slab (d).

left model to the resulting right model. The process took less then 10min.



ARTICLE IN PRESS
Y.J. Kil et al. / Computers & Graphics 30 (2006) 610–618618
fashion. Our results demonstrate the capabilities of our
system with several example models.

We plan to extend the current system with the ability to
apply interactively textures to a model’s surface. This will
allow us to manipulate not only the shape, but also the
appearance of meshes. In addition, we will make available
this system to artists and designers to further explore its
capabilities. We expect valuable feedback from them that
will guide us to improve the framework.

Acknowledgements

This work was supported by the National Science
Foundation under contracts ACI 9624034 (CAREER
Award), through the Large Scientific and Software Data
Set Visualization (LSSDSV) program under contract ACI
9982251, and a large Information Technology Research
(ITR) grant. We thank the members of the Visualization
and Computer Graphics Research Group at the Institute
for Data Analysis and Visualization (IDAV) at the
University of California, Davis.

References

[1] Mine M. Exploiting proprioception in virtual-environment interac-

tion. Technical Report TR97-014, UNC Chapel Hill, CS Depart-

ment; 1997.

[2] Cutler LD, Fröhlich B, Hanrahan P. Two-handed direct manipula-

tion on the responsive workbench. In: Symposium on interactive 3D

graphics; 1997. p. 107–14.

[3] Bowman D, Johnson D, Hodges L. Testbed evaluation of virtual

environment interaction techniques, 2001.

[4] Kil Y, Renzulli P, Kreylos O, Hamann B, Monno G, Staadt O. 3D

warp brush: interactive free-form modeling on the responsive

workbench. In: Proceedings of IEEE virtual reality 2005 (Poster);

2005.

[5] Shaw C, Green M. THRED: a two-handed design system. Multi-

media Systems 1997;5(2):126–39.

[6] Wesche G, Droske M. Conceptual free-form styling on the responsive

workbench. In: Proceedings of the ACM symposium on virtual

reality software and technology. New York: ACM; 2000. p. 83–91.

[7] Wesche G, Seidel H. FreeDrawer: a free-form sketching system on

the responsive workbench. In: Proceedings of the ACM symposium

on virtual reality software and technology (VRST), Banff, Alberta,

Canada, November 2001. p. 167–74.

[8] Matsumiya M, Takemura H, Yokoya N. An immersive modeling

system for 3d free-form design using implicit surfaces. In: Proceedings

of the ACM symposium on virtual reality software and technology.

New York: ACM Press; 2000. p. 67–74.
[9] Schkolne S, Pruett M, Schröder P. Surface drawing: creating organic

3D shapes with the hand and tangible tools. In: Proceedings of the

SIGCHI conference on human factors in computing systems, Seattle,

WA, March 2001. p. 261–68.

[10] Bill JR, Lodha S. Computer sculpting of polygonal models using

virtual tools. In: Technical Report UCSC-CRL-94-27, Baskin Center

for Computer Engineering and Information Sciences, University of

California, Santa Cruz, US, July 1994.

[11] Sederberg TW, Parry SR. Free-form deformation of solid geometric

models. Computer graphics (Proceedings of SIGGRAPH 86), vol. 20,

no. 4, 1986. p. 151–60.

[12] Singh K, Fiume EL. Wires: a geometric deformation technique. In:

Proceedings of SIGGRAPH 98, Computer graphics proceedings,

annual conference series, 1998. p. 405–14.

[13] Kobayashi K, Ootsubo K. t-FFD: free-form deformation by using

triangular mesh. In: Proceedings of symposium on solid modeling

and applications; 2003. p. 226–34.

[14] Botsch M, Kobbelt L. An intuitive framework for real-time freeform

modeling. In: Proceedings of ACM SIGGRAPH 2004. New York:

ACM Press; 2004.

[15] Frisken S, Perry R, Rockwood A, Jones T. Adaptively sampled

distance fields: a general representation of shape for computer

graphics. In: Proceedings of SIGGRAPH; 2000. p. 249–54.

[16] Markosian L, Cohen JM, Crulli T, Hughes JF. Skin: a constructive

approach to modeling free-form shapes. In: Siggraph 1999, computer

graphics proceedings, Los Angeles, US; 1999. p. 393–400.

[17] Llamas I, Kim B, Gargus J, Rossignac J, Shaw C. Twister: a space-

warp operator for the two-handed editing of 3D shapes. ACM

Transactions on Graphics 2003;22(3):663–8.

[18] Parent RE. A system for sculpting 3-D data. Computer graphics

(Proceedings of SIGGRAPH 77), vol. 11, no. 2, July 1977. p. 138–47.

[19] Perry R, Frisken S. Kizamu: a system for sculpting digital characters.

In: Proceedings of the 28th annual conference on computer

graphics and interactive techniques, Los Angeles, CA, August 2001.

p. 47–56.

[20] Angelidis A, Wyvill G, Cani M-P. Sweepers: swept user-defined tools

for modeling by deformation. In: Proceedings of shape modeling

applications; 2004. p. 63–73.

[21] Mauch S. Efficient algorithms for solving static Hamilton-Jacobi

equations. PhD thesis, California Institute of Technology, Pasadena,

CA; 2003.

[22] Guéziec A. ‘meshsweeper’: dynamic point-to-polygonal-mesh dis-

tance and applications. IEEE Transactions on Visualization and

Computer Graphics 2001;7(1):47–61.

[23] Joy KI, Legakis J, MacCracken R. Data structures for multi-

resolution representation of unstructured meshes. In: Farin G, Hagen

H, Hamann B, editors. Hierarchical approximation and geometric

methods for scientific visualization. Heidelberg, Germany: Springer-

Verlag; 2002. p. 143–70.

[24] Duchaineau M, Wolinskey M, Sigeti DE, Miller MC, Aldrich C,

Mineev-Weinstein MB. ROAMing terrain: real-time optimally

adapting meshes. In: Proceedings of IEEE visualization ’97. Silver

spring, MD: IEEE Computer Society; 1997. p. 81–8.


	3D warp brush modeling
	Introduction
	Related work
	System overview
	The 3D warp brush
	Input data
	Distance field
	Weight functions
	Warp operators
	Brush generator

	Surface representation
	Triangle mesh data structure
	Mesh rendering
	Mesh resolution adaptation

	User interaction
	Results
	Conclusions and future work
	Acknowledgements
	References


