
On Simulated Annealing and the Construction
of Linear Spline Approximations for Scattered

Data

Oliver Kreylos∗ Bernd Hamann∗

April 2, 2001

Abstract

We describe a method to create optimal linear spline approximations
to arbitrary functions of one or two variables, given as scattered data
without known connectivity. We start with an initial approximation
consisting of a fixed number of vertices and improve this approxima-
tion by choosing different vertices, governed by a simulated annealing
algorithm. In the case of one variable, the approximation is defined by
line segments; in the case of two variables, the vertices are connected
to define a Delaunay triangulation of the selected subset of sites in
the plane. In a second version of this algorithm, specifically designed
for the bivariate case, we choose vertex sets and also change the trian-
gulation to achieve both optimal vertex placement and optimal trian-
gulation. We then create a hierarchy of linear spline approximations,
each one being a superset of all lower-resolution ones.

1 Introduction

In several applications, one is concerned with the representation of complex
geometries or complex physical phenomena at multiple levels of resolution.

∗Center for Image Processing and Integrated Computing (CIPIC), Department of
Computer Science, University of California, Davis, CA 95616-8562, USA; {kreylos,
hamann}@cs.ucdavis.edu

1



In the context of computer graphics and scientific visualization, so-called
multi-resolution methods are crucial for the analysis of very large numerical
data sets, see [2, 3, 4, 5, 6, 7]. Examples include high-resolution terrain data
(digital elevation maps), laser scans of mechanical models, see [8, 9], and
high-resolution, three-dimensional imaging data (e.g., magnetic resonance
imaging data).

We present an approach for the construction of multi-resolution repre-
sentations of very large scattered data sets using the principle of simulated
annealing, see [10, 11, 12]. Our goal is the computation of several optimal
linear spline approximations to a given scattered data set. This approach is
a generalization of data-dependent triangulation algorithms, see, for exam-
ple, [13].

We assume that the given data sets are samples of a real function of one
or two variables1, with the samples randomly distributed in the function’s
domain and no known connectivity between the samples. Each individual
linear spline approximation is defined by the set of its control points and by
the way these points are connected forming a triangulation (simplex mesh).

When representing high-resolution data sets with low-resolution linear
spline approximations, one has to be careful where to place the spline’s con-
trol points and how to connect them in order to achieve a faithful represen-
tation of the data set, see Figures 1 and 2.

f(x)

x

f(x)

x

Figure 1: Uniform versus optimal control point placement for univariate data.

To find the optimal linear spline approximation with a given number of
control points, we employ an iterative optimization algorithm that attempts
to improve the quality, measured by an appropriate error norm, of an ini-
tial approximation by moving the spline’s control points. This iteration is
governed by the simulated annealing algorithm, an optimization technique

1The algorithm works for arbitrary numbers of variables, but in this paper we deal with
the cases of one and two variables only.

2



x

f(x,y)

y

Figure 2: Uniform versus optimal control point placement for bivariate data.
Left: graph of function to be approximated; center: uniform control point
placement; right: optimal control point placement.

well fit for high-dimensional problems where the desired global minimum is
hidden among many, poorer, local minima.

Since the functions we approximate are only defined at discrete, randomly
distributed sites in the domain, we will restrict our algorithm in the following
way: We only place control points at the given sites and only use the supplied
function values at those sites. The main advantage of such an approach lies
in the fact that no additional geometrical or function information needs to
be stored. The problem of placing an approximating spline’s control points
is hereby reduced to choosing a subset of samples and connecting them in an
appropriate way; and the process of “moving a control point” is really defined
by removing one sample from the chosen subset and inserting another one
instead. Thus, control points do not “move,” we just select different samples.

1.1 Basic Definitions

To make the discussion of our algorithm easier and to allow describing the
algorithm for the univariate and multivariate cases together, we define some
special terms we use throughout this paper. Some of them originated in the
field of computational geometry, while others are special uses of well-known
mathematical terms.

• A site is a point in a function’s domain. Considering functions of n
(real) variables, a site is a point s = (x1, . . . , xn) ∈ Rn.

• The convex hull of a set S ⊂ Rn of sites is the “smallest” closed, convex
subset CH (S) ⊂ Rn that contains all of S’ sites, i.e., S ⊂ CH (S).

3



For all dimensions, CH (S) is bounded by a convex polyhedron whose
vertices are a subset of S. We call a site s ∈ S interior, if it is not an
element of the vertex set defining CH (S)’s bounding polyhedron. In
other words, a site s is interior, if and only if its removal would not
change the convex hull, i.e., if CH

(
S \ {s}

)
= CH (S), see Figure 3.

non-interior site

interior site

x

y

Figure 3: Interior and non-interior sites in the bivariate case.

• A vertex is a pair consisting of a site and the corresponding function
value. Considering functions f :Rn → Rm of n variables and m func-
tion values, a vertex is defined by an (n + m)-tuple v =

(
s, f(s)

)
=(

(x1, . . . , xn), (f1, . . . , fm)
)
∈ (Rn×Rm), see Figure 4. We call a vertex

interior vertex, if its site is an interior site.

• Scattered data define a representation of a function f :Rn → Rm by a
finite set of vertices, with all vertices having pairwise different sites.

• A vertex placement is an ordered set of vertices, with all vertices having
pairwise different sites. For N vertices and a function f :Rn → Rm it

is an element V =
((

s1, f(s1)
)
, . . . ,

(
sN , f(sN)

))
∈

(
(Rn ×Rm)

)N
.

• A connectivity is a set of n-dimensional simplices which connect all
sites in a vertex placement and overlap only on their boundaries. In
the case of one variable, a connectivity is simply a set of adjacent
intervals; for two variables it is a triangulation; and for three variables
it is a tetrahedral mesh (or tetrahedrization).

The (n− 1)-dimensional simplices seperating adjacent simplices in the
connectivity will be called edges, regardless of dimension. A vertex’
platelet is the union of all simplices that share this vertex’ site. In the
case of one variable, a platelet is an interval, and for two variables it is
an area bounded by a star polygon, see Figure 4.

• A configuration is the pair consisting of a vertex placement and the
underlying connectivity.

4



f(x,y)

y

x

v

P
v.s

Figure 4: A vertex v, its site v.s and its platelet’s boundary polygon P in
the bivariate case.

1.2 Visualizing Large Data Sets

When visualizing functions that are discretized in terms of large scattered
data sets, one would like to render images of these functions in real time. To
achieve this, one has to approximate a given function with a small enough
number of graphical primitives, i.e., line segments or triangles, to render the
function at interactive frame rates. To allow adjusting the approximation
quality, a hierarchy of approximations with increasing numbers of primitives
is highly desirable.

More specifically, at each hierarchy level k we choose Nk vertices from an
original scattered data set, i.e., we only choose sites contained in the original
set and only use the original function values at those sites. Furthermore,
we ensure that the set of vertices of any hierarchy level j < k is a subset
of level k’s vertex set. After having decided which vertices to select for a
hierarchy level k, that level’s vertices are connected in an appropriate way
to form a linear spline’s control mesh. The resulting linear splines then
define a hierarchy of approximations to the function defined by the provided
scattered data. An example of such a hierarchy in the univariate case is
shown in Figure 5.

x

f(x)f(x)

x

f(x)

x

Figure 5: A hierarchy of approximations in the univariate case. New vertices
are inserted at the sites marked by solid triangles.

If the number of vertices for an approximation level is prescribed, one has
to address two problems:

5



1. Which vertices should one choose for the approximation, i.e., how
should one create the vertex placement?

2. How should one connect the chosen vertices, i.e., how should one create
the connectivity?

In the special case of a function of one variable, we only have to address the
first problem, since in the univariate case the connectivity is defined by the
chosen sites’ numerical order.

1.3 Finding Optimal Approximations

Our approach to finding an optimal linear spline approximation for a given,
fixed number of vertices Nk is based on an iterative optimization algorithm.
First, we create an initial configuration, then we attempt to improve this
configuration by changing its vertex placement and its connectivity in every
step. Since this optimization problem is high-dimensional and generally in-
volves local minima in abundance, the algorithm of simulated annealing, see
section 2.1, is well suited to construct “good” linear spline approximations.

During the iteration process, we will restrict our algorithm to use only
vertices that are elements of the original data set. This approach has two
major advantages:

1. Since the function to be approximated is only known at discrete sites,
we would have to estimate function values for sites that are not included
in the original data set, i.e., we would have to define some appropriate
scattered data interpolant or approximant.

2. By only using original vertices, each approximation is a subset of the
original data set. To represent a particular approximation we only have
to maintain a list of indices referring to this superset instead of a list of
vertex positions. For the definition of a hierarchy of approximations at
different resolutions we only need to store one integer for each original
vertex: the integer that indicates the hierarchy level at which a vertex
becomes active.

However, in the case of two, or more, variables the quality of a config-
uration depends on both vertex placement and connectivity. There are two
different ways to proceed:

6



1. One can ignore the connectivity and treat a function of n variables like a
univariate function by enforcing a certain type of connectivity through-
out the iteration process; in the bivariate case, an obvious candidate is
the Delaunay triangulation, see [14, 15]. Under this constraint, a vertex
placement implies its connectivity (up to negligible ambiguities2), and
the algorithm can proceed exactly as in the univariate case.

Once the iteration process has terminated, one could use the optimal
vertex placement as input for a data-dependent triangulation algorithm,
which attempts to find the best possible connectivity for a given vertex
placement, see [13]. The drawback of this two-step algorithm is that
the final vertex placement may not be optimal for the final connectivity,
since both parts were optimized independently.

2. One can attempt to optimize both parts of the configuration, namely
vertex placement and connectivity, in parallel. For example, before
each step one could randomly decide which part to change, and then
either move a vertex or change the connectivity, which could include
swapping a common edge of two adjacent triangles. The probability
for deciding which part to change could either be constant throughout
the algorithm, or it could change to favor connectivity changes in later
stages. The drawbacks of this parallel algorithm are twofold: One has
to treat the univariate case differently from the general case, and the
optimization process will take even longer to finish.

We discuss both ways simultaneously, since the respective algorithms differ
only slightly, and we will compare the results, see section 4.2.

2 Background and Related Work

2.1 The Simulated Annealing Algorithm

Simulated annealing is an iterative minimization technique suitable for op-
timization problems of large scale, especially those where a desired global
extremum is “hidden” among many, poorer local extrema, see [11, 12, 13].
Unlike “greedy” iterative optimization techniques, which always take the best

2These ambiguities arise when a set of sites is not in general position or is degenerate,
meaning that more than three sites are co-circular [16, 17, 18].

7



possible step from any configuration, simulated annealing sometimes takes
a “bad” step and can hence overcome being stuck in a local minimum, see
Figure 6. Thus, the chances of finding a global minimum are increased.

E(t)

kT(t)

t

E(t)

t

Figure 6: Sketch of error value over time for greedy optimization methods
(left) and simulated annealing (right). As the temperature kT decreases,
positive changes of E become less probable.

The simulated annealing algorithm was inspired, and received its name,
by the process of metal crystallizing from the liquid phase back to the solid
phase while its temperature slowly decreases. This process can be viewed
as an minimization process: One defines a configuration as an n-tuple of
the positions of n atoms and the function to be minimized as the liquid’s
internal energy. In spite of this being a large-scale optimization problem with
local energy minima in abundance, the natural annealing process manages to
reach the global energy minimum of a single crystal, as long as the liquid’s
temperature is lowered slowly enough. This is due to the fact that the natural
annealing process allows steps decreasing the liquid’s internal energy as well
as steps increasing the energy. In fact, the probability prob(∆E) for an
increase ∆E in energy is determined by Boltzmann’s law of thermodynamics,
stating that prob(∆E) = e−∆E/kT , where ∆E is the energy increase in Joule
(J), T is the liquid’s current temperature in Kelvin (K) and k = 1.38 ×
10−23 J/K is Boltzmann’s constant.

The simulated annealing algorithm is an adaption of the natural annealing
process for arbitrary optimization problems. In this adaption, a configuration
is no longer the n-tuple of atom positions but a variable of arbitrary type;
the liquid’s internal energy is replaced by the function to be minimized; the
movement of atoms is replaced by a relation that transforms one configuration
into another one; and the term kT from Boltzmann’s law is replaced by
an arbitrary (positive, real) number called “temperature.” We note that

8



the temperature is independent from the function to be minimized: The
former can have an arbitrary value and defines the probability of accepting
an increase in the latter during the optimization process, see Figure 6.

The generic simulated annealing algorithm, also known as the Metropolis
algorithm, see [12], is shown in Algorithm 1:

Parameters:
• A space X of configurations.
• An initial configuration C ∈ X.
• A (non-deterministic) function changeConfiguration: X → X which

transforms one configuration into the next one.
• A function targetFunction: X → R which is to be minimized.
• An annealing schedule kT :N → R+.

Local Variables:
• An integer n ∈ N.
• A configuration newC ∈ X.
• A number ∆E ∈ R.
• A function prob: [0, 1] → {0, 1}, p 7→ r, with the property that the

probability P (r = 1) = p.

Results:
• A final configuration C ∈ X.

n = 0; /* iteration counter */
while iteration not finished do

begin
newC = changeConfiguration(C);
∆E = targetFunction(newC )− targetFunction(C);
if ∆E < 0 then

C = newC ; /* accept all good steps */
else if prob

(
e−∆E/kT (n)

)
then

C = newC ; /* accept some bad steps */
n = n + 1;
end

return C; /* return final configuration */

Algorithm 1: Generic simulated annealing.

The initial temperature and the decrease of temperature over the course
of iteration are described by a decreasing function kT :N0 → R+, called

9



“annealing schedule.” Since the annealing schedule can be an arbitrary de-
creasing function and since it influences both the speed of optimization and
the “optimality” of the result, its choice is another optimization problem: If
the temperature is chosen to decrease too quickly, the algorithm might “get
stuck” in a local minimum; on the other hand, if the temperature decreases
too slowly, the algorithm usually requires a long time to converge to a min-
imum. Various heuristics have been developed that have proven useful for
common problems, see [11, 13].

2.2 An Error Measure for Linear Spline Approxima-
tions to Scattered Data

To optimize an approximation to a given function, one has to define some
quality measure, which describes how well a current configuration approx-
imates a target function. When both the target function and the approx-
imation are defined analytically, mathematics provides several well-defined
function space metrics. However, in our case, the target function is defined
by scattered data, which means that its behaviour is unknown between the
provided sites. Nevertheless, if one uses a metric which is defined by an in-
tegral of some difference measure between the two functions, such as the L2

metric, given by

L2(f1, f2) =

√∫ (
f1(x)− f2(x)

)2
dx ,

it is possible to calculate a reasonable estimation to this metric.
If we assume that the given sites are randomly distributed in the target

function’s domain, we can approximate an integral by a variation of Monte-
Carlo-integration and thus obtain a reasonable quality measure, see [11]. The
method to calculate the L2 distance between an approximation and a target
function for the application we discuss in this paper is shown in Algorithm 2:

10



N = number of original vertices;
A = area of original sites’ convex hull;
dist = 0; /* distance value */
for each original vertex v do

begin
Find simplex s in connectivity that contains v’s site v.s;
Interpolate the simplex’ value f at site v.s;
dist = dist + (f − v.f)2;
end

return
√

dist · A/N ; /* return L2-distance */

Algorithm 2: Distance calculation.

Figure 7 illustrates how vertices contribute to the error value for functions
of one and two variables.

������������������

���
���
���
���

y

x

f(x,y)f(x)

x

Figure 7: Vertices influencing the error measure.

In the case of one variable there is another appropriate scheme: We inter-
pret the original vertices as control points of a linear spline f and interpret
the current vertex placement as control points of a linear spline a. Then one
can calculate the L2 distance between f and a by algebraically integrating
the functions’ difference over the interval defined by the original sites’ convex
hull.

3 The Optimization Algorithm

We now describe the individual steps of our algorithm. Algorithm 3 is a
high-level description. The subsequent sections describe the important steps
in more detail.

11



Create initial configuration (vertex placement and connectivity);
Determine initial temperature and create annealing schedule;
while iteration is not complete do

begin
Change configuration;
Calculate change in error norm;
Undo iteration if rejected by simulated annealing;
end

return current configuration;

Algorithm 3: Optimal linear spline approximation.

The algorithm’s main loop terminates when “the iteration is complete.”
Depending on a user’s needs, this condition can be specified in two ways:

1. The loop can be terminated after a prescribed number of iterations.
This guarantees a certain runtime of the algorithm, but it does not
guarantee the final configuration to be a minimum. Using this ter-
mination condition, the algorithm can be classified as a Monte-Carlo
method.

2. The loop can be terminated when the annealing algorithm can no longer
perform any iteration steps. This means the final configuration is a
minimum, at least a local one. Since there is no upper bound on the
number of iteration steps the algorithm will perform before reaching
this condition, it can be classified as a Las-Vegas method.

In our experiments, we decided to use the Monte-Carlo termination con-
dition. (In all examples, the number of iterations performed is stated in the
respective error graphs.)

3.1 Creating an Initial Configuration

Our approximations are defined over the original sites’ convex hull. There-
fore, we include all non-interior vertices, as defined in section 1.1, in all
approximations. Other vertices are then added to this set.

In the univariate case, we cover the convex hull by choosing the leftmost
and the rightmost original vertices and spread the rest of vertices nearly
uniformly between them, always choosing the nearest original site from a

12



calculated site. The connectivity is naturally defined by sorting the chosen
vertices by their sites and connecting adjacent vertices by line segments.

In the multivariate cases we cannot distribute the vertices over a regular
grid, because the original sites’ convex hull can be arbitrarily shaped. In-
stead, we select all non-interior original vertices, thereby covering this convex
hull, and we choose the rest of vertices randomly from the original data set.
The initial connectivity is no longer determined by the initial vertex place-
ment. In the bivariate case, we define the initial connectivity by a Delaunay
triangulation of the initial vertices’ sites. Since the Delaunay property max-
imizes the minimum angle in a triangulation, it is a reasonable first choice
to approximate unknown functions. Furthermore, if we decide to ignore the
problem of connectivity throughout the optimization, as mentioned in sec-
tion 1.3, the Delaunay property is easy to maintain when moving vertices.

To create a Delaunay triangulation, we employ the iterative algorithm de-
scribed by Guibas et al., see [19], inserting one site at a time into the current
triangulation and restoring the Delaunay property afterwards by swapping
diagonals of convex quadrilaterals that violate it. This might not be the
fastest possible algorithm, though Knuth points out its expected runtime is
O(n log n), but we only have to do this once and it is fairly easy to imple-
ment. Furthermore, most parts of this algorithm can be re-used for moving
vertices, which is needed in the iteration algorithm described in section 3.3.

3.2 Creating an Annealing Schedule

There are two steps one has to perform to create the annealing schedule:

1. One has to define the initial temperature.

2. One has to decide how fast to decrease the temperature over the course
of iteration.

A reasonable heuristic to define the initial temperature is to apply some
(say, 100) steps of the iteration scheme and to calculate the mean error norm
increase of all “bad” steps. After that, we define the initial temperature
as (1/ loge 2) times the mean error norm change. Since the probability for
accepting a “bad” step is defined as p = e−∆E/kT , where ∆E is the (posi-
tive) error norm change and kT is the current temperature, the annealing
algorithm initially accepts an “expected bad” step with a probability of one
half.

13



Next, we lower the temperature in steps, leaving it constant for a fixed
number of iterations and scaling it by a fixed factor afterwards, resulting in
a geometric decrease in temperature. The number of iterations per tempera-
ture step and the scaling factor, smaller than one, can be chosen arbitrarily.
These two parameters have an influence on both the algorithm’s speed and
the final result’s quality: If the temperature is lowered too rapidly, the series
of configurations might converge towards a far-from-optimal local minimum;
if the temperature is lowered too slowly, the series might require a long time
to converge.

3.3 Changing the Current Configuration

The simulated annealing algorithm’s core is its iteration step. In principle,
one can use any method to change the current configuration, but we have
found out that the “split” approach, shown in Algorithm 4, works very well.

if prob(moveProbability) then /* move a vertex */
begin
Choose an interior vertex v;
Estimate v’s contribution vE to the error measure E;
if vE < errorFactor · E then /* v is in flat region */

Move v globally;
else /* v is in high-curvature region */

Move v locally;
if moveProbability = 1 then /* only moves allowed */

Restore the Delaunay property;
end

else /* rotate an edge */
begin
Choose an edge e which is the diagonal of a convex quadrilateral;
Rotate e;
end

Algorithm 4: Changing the current configuration.

The constant moveProbability is used to control the behaviour of the op-
timization process for bivariate functions. If this constant’s value is one, the
algorithm moves a vertex in every step, and after each vertex movement the
current triangulation is updated to satisfy the Delaunay property. Thus, the

14



algorithm maintains a Delaunay triangulation of the current sites throughout
the optimization process, ignoring the problem of optimizing the triangula-
tion and concentrating on finding an optimal vertex placement instead. If
moveProbability is smaller than one, the algorithm can either move a vertex
or swap an edge, thereby optimizing both vertex placement and triangu-
lation simultaneously. In this case, we do no longer enforce the Delaunay
property after vertex movements. Section 1.3 discusses both approaches. In
the case of moveProbability being zero, the algorithm swaps an edge in each
step and becomes a data-dependent triangulation algorithm. For univariate
functions, moveProbability is always one, since the problem of connectivity
does not arise.

The variable E holds the current distance between the scattered data set
and the approximating spline, and the constant errorFactor determines the
maximum error contribution which still classifies a vertex as being located
in a flat region of the approximated function.

3.3.1 Estimating a vertex’ error contribution

To estimate how much the removal of an interior vertex v would increase the
current error measure, we estimate the “volume” of v’s platelet: We construct
an approximating least squares hyperplane H for all vertices surrounding v,
and calculate the point p having the same site as v and lying on H. Then we
define h as the distance between v and p, and A as the area of v’s platelet.
Figure 8 illustrates this for the univariate and bivariate cases.

H

A

v
h

v.s

p

y

x

f(x,y)f(x)

h

xA

p

v.s

H

v

Figure 8: Estimating a vertex’ error contribution.

A possible and reasonable definition of v’s error contribution is the volume
of the “hyperpyramid” having base A and height h. This volume is given
by A · h/2 in the univariate case and by A · h/3 in the bivariate case. In
order to make this estimation comparable to our L2 error measure, we define

15



a vertex’ error contribution vE in the univariate case as
√

A · h2/2 and in

the bivariate case as
√

A · h2/3.

3.3.2 Global vertex movement

If v’s error contribution is smaller than a constant times the current error,
we assume that v is currently located in a “flat” region of the function and
should be moved away from this region. We move v globally to a randomly
chosen new site not already being part of the current configuration. By
doing this we assure that vertices get driven away from nearly flat regions of
a function in early stages of the iteration.

To actually “move” a vertex globally we (1) remove it from the configu-
ration; (2) we fill the resulting hole in the connectivity (in the bivariate case
by re-triangulating the vertex’ platelet); and (3) we insert the vertex into
the configuration at the new site by splitting the simplex that contains this
site. If we decided to ignore the optimization of the connectivity by defin-
ing moveProbability as one, we would have to update the connectivity after
moving a vertex by performing edge swapping until the Delaunay condition
is satisfied, which is described in [19]. Figure 9 illustrates this process for the
bivariate case.

1)

4) 5)

2) 3)

Figure 9: Moving a vertex globally in the bivariate case. 1) initial state;
2) removing the vertex; 3) filling the hole; 4) inserting new vertex; 5) restoring
the Delaunay property (optional).

There is one special case to consider when moving a vertex: A new site

16



lying on an edge that is currently part of the connectivity must be treated
differently, since the simplex, or simplices, covering this site cannot be split in
the usual way. (Usually, we insert a new vertex by removing the simplex that
covers its site and inserting edges connecting the new vertex to all vertices
defining that simplex.) Considering the bivariate case, if the edge is part
of the boundary of the original sites’ convex hull, the triangle covering the
new site is split into two triangles. If the edge is interior, i.e., it is shared
by two triangles, both triangles sharing this edge are split into two triangles.
(However, if one decides to use a Delaunay triangulation throughout the
optimization process, the latter case can be ignored: One can split any of
the two triangles in the usual way, thereby introducing a degenerate triangle,
and the edge swapping step will generate the correct result.)

3.3.3 Local vertex movement

When a vertex’ error contribution is larger than errorFactor · E, we assume
it is currently located in an “important,” high-curvature region of the target
function, and we attempt to find a better site for this vertex by moving it
locally to a new, unoccupied site in its platelet. The maximum distance a ver-
tex can be moved locally is also bounded by a constant called localDistance.
This increases the probability of making a “good” step in later stages of
the iteration. Since the given vertices are randomly distributed, it would be
difficult to first select a subset of “near” vertices and then to choose one of
them randomly. Instead, we employ a probabilistic method: We randomly
select an original vertex w lying inside the platelet of the vertex v to be
moved, calculate the Euclidian distance d between v and w, and accept w
with the probability e−(d/localDistance)2 . If w is rejected, we choose other ver-
tices until one is accepted or until more than a fixed number of vertices has
been rejected. This ensures that the distance a vertex is moved locally is dis-
tributed in a bell-shaped manner, with the probability of accepting a small
displacement being close to one. We do not use a normal distribution for the
distance, because the probability of accepting even a very small displacement
would be considerably smaller than one in that case.

However, if we applied the global movement algorithm to a small displace-
ment, the connectivity surrounding the moved vertex could change drasti-
cally, which would probably increase the error value. This is due to the fact
that the vertex’ platelet is re-triangulated before the vertex is inserted again,
see Figure 10.

17



2) 3)1)

Figure 10: Drawbacks of moving a vertex a small distance by the global
method in the bivariate case: 1) initial state; 2) result after global move as
shown in Figure 9 (without enforcment of the Delaunay property); 3) desired
result.

It is desirable to change the connectivity as little as possible when ad-
justing a vertex’ position by a small displacement, see Figure 10, parts 1
and 3. To achieve this, we use a different method to move a vertex locally.
Conceptually, we “slide” the vertex on the line from its old to its new site,
dragging the edges connecting it to all surrounding vertices along. When-
ever a surrounding simplex becomes degenerate during the vertex’ motion,
we swap one edge of the affected simplex before moving the vertex any fur-
ther, see Figure 11. This method of swapping edges while moving the vertex
also works for moving a vertex over arbitrary distances, and out of its initial
platelet, but it changes the connectivity between the vertex’ old and new
site, and it can result in the vertex’ new platelet containing both the old and
the new site.

2)

e

3)1)

e
T

Figure 11: Moving a vertex locally in the bivariate case for a non-convex
platelet: 1) initial state; 2) swapping edge e to prevent triangle T from
becoming degenerate; 3) resulting state.

18



4 Examples and Results

4.1 Univariate Scalar-valued Functions

1. The first test case is the function f(x) = 3 sin(x2), x ∈ [0, 4
√

π ], and
a linear spline approximation with 18 vertices, see Figure 12. Though
it is hard to prove, our algorithm finds an approximation that looks
globally optimal.

2. The second test case is the function

f(x) =


2(1− x) if x < 1

4(1− x)(x− 2) if 1 ≤ x < 2
2(x− 2) if 2 ≤ x < 3
2(x− 3)2 if 3 ≤ x

, x ∈ [0, 4],

and a linear spline approximation with 14 vertices, see Figure 13. Our
algorithm finds a very good approximation, although the function has
discontinuities in both the zeroeth and first derivatives. In the two
quadratic sections [1, 2] and [3, 4] the sites are uniformly distributed;
we thus assume that the resulting approximation is globally optimal.

3. The third test case is the function

f(x) = 4
3∑

n=0

sin
(
(2n + 1)x

)
2n + 1

, x ∈ [0, 4π],

the fourth-order Fourier approximation of a square wave, and a linear
spline approximation with ten vertices, see Figure 14. The number
of vertices is too small to capture all details of the function, but the
algorithm still finds a very good approximation.

4. The fourth test case is the same function as in the third, but using a
linear spline approximation with 30 vertices, see Figure 15. Now all
the function’s important features are present in the approximation –
the graph of the original function does not show in Figure 15 because
it is completely overlayed by the approximating polyline.

19



t

1.13

5.58

10,000

E(t)

f(x)

x x

f(x)

Figure 12: First experiment. Upper-left: initial vertex placement; upper-
right: final vertex placement; bottom: error measure over time.

t
0.03

0.71

10,000

E(t)

f(x)

x x

f(x)

Figure 13: Second experiment. Upper-left: initial vertex placement; upper-
right: final vertex placement; bottom: error measure over time.

20



t

1.04

5.16

10,000

E(t)

f(x)

xx

f(x)

Figure 14: Third experiment. Upper-left: initial vertex placement; upper-
right: final vertex placement; bottom: error measure over time.

t

0.33

2.82

20,000

E(t)

f(x)

xx

f(x)

Figure 15: Fourth experiment. Upper-left: initial vertex placement; upper-
right: final vertex placement; bottom: error measure over time.

21



4.2 Bivariate Scalar-valued Functions

5. The fifth test case is the function

f(x, y) =


0.3 if x2 + y2 ≤ 0.3

−0.5x if x2 + y2 > 0.3 and x < 0
x2 if x2 + y2 > 0.3 and 0 ≤ x

, x, y ∈ [−1, 1],

and a linear spline approximation with 100 vertices and general triangu-
lation, see Figure 16. Our algorithm finds a very good approximation,
although the function has discontinuities in both the zeroeth and first
derivatives.

6. The sixth test case is the same function as in the fifth, but this time
using a linear spline approximation with 100 vertices and a Delaunay
triangulation, see Figure 17. Not only is the final error measure twice
as large as for a general triangulation, but the resulting vertex place-
ment is also completely different from the result of experiment eight.
This shows that a post-processing step of applying a data-dependent
triangulation algorithm, see 1.3, would lead to a sub-optimal result,
since the vertex placement cannot be changed by the post-processing
step.

7. The seventh test case is the function

f(x, y) = 2
2∑

i=0

2∑
j=0

sin
(
(2i + 1)x

)
2i + 1

·
sin

(
(2j + 1)y

)
2j + 1

, x, y ∈ [0, 2π],

the third-order Fourier approximation of a bivariate square wave, and a
linear spline approximation with 50 vertices and a general triangulation,
see Figure 18. The number of vertices is too small to capture all details
of the function, but the algorithm still finds a decent approximation.

8. The eigth test case is the same function as the seventh, but this time
using a linear spline approximation with 250 vertices and a general tri-
angulation, see Figure 19. Due to the increased number of vertices the
approximation takes much longer to converge, but the result captures
all details of the target function.

9. The ninth test case is a scattered data set consisting of 37,594 vertices,
resulting from a laser scan of a Ski-Doo hood and a linear spline approx-
imation with 1,000 vertices and a general triangulation, see Figure 20.

22



This case shows that our algorithm can be used in surface reconstruc-
tion, as long as the source data can be interpreted as a bivariate, scalar
valued function. In the general case of a two-manifold surface, the al-
gorithm can be used to approximate locally functional pieces of a given
surface, as described in [8].

23



0.11

100,000

0.004

E(t)

t

Figure 16: Fifth experiment. Top row: initial and final configurations and
flat-shaded rendering; bottom row: error measure over time.

0.12

100,000

0.010

E(t)

t

Figure 17: Sixth experiment. Top row: initial and final configurations and
flat-shaded rendering; bottom row: error measure over time.

24



5.71

100,000

0.88

E(t)

t

Figure 18: Seventh experiment. Top row: initial and final configurations and
flat-shaded rendering; bottom row: error measure over time.

1.89

200,000

0.30

E(t)

t

Figure 19: Eigth experiment. Top row: initial and final configurations and
flat-shaded rendering; bottom row: error measure over time.

25



1.88

200,000

0.24

E(t)

t

Figure 20: Ninth experiment. Top row: initial and final configurations and
flat-shaded rendering; bottom row: error measure over time.

26



4.3 Bivariate Vector-valued Functions

In this section we apply our method to the approximation of RGB images,
interpreting them as bivariate vector-valued functions of the form

f :R2 → [0, 1]3, (x, y) 7→
(
r(x, y), g(x, y), b(x, y)

)
.

To judge an approximation’s quality, our L2 error measure algorithm requires
a function

dist2:
(
[0, 1]3

)2 → R+ .

We define this as the squared Euclidian distance between two color values
c1 = (r1, g1, b1) and c2 = (r2, g2, b2):

dist2(c1, c2) := (r1 − r2)
2 + (g1 − g2)

2 + (b1 − b2)
2 .

10. The tenth test case is a photograph of Golden Gate Bridge in San Fran-
cisco, resampled to a resolution of 329× 222 pixels, see Figure 21, and
a linear spline approximation with 400 vertices and a general triangu-
lation, see Figure 22.

11. The eleventh test case is the same function as in the tenth case, but this
time approximated by a linear spline with 800 vertices and a general
triangulation, see Figure 23. The resulting linear spline is a superset
of the result of experiment ten, as defined in section 1.2.

12. The twelvth test case is again the same function, but approximated
by a linear spline with 1,600 vertices and a general triangulation, see
Figure 24. Again, the resulting linear spline is a superset of the result of
experiment eleven. It is hard to see in these low-quality reproductions,
but the resulting linear spline approximation is very close to the original
image.

27



Figure 21: A color photograph of Golden Gate Bridge in San Francisco,
resampled to a resolution of 329× 222 pixels.

200,000

47.3

16.4

E(t)

t

Figure 22: Tenth experiment. Top row: initial and final configurations; bot-
tom row: final approximation and error measure over time.

28



16.6

200,000

12.0

E(t)

t

Figure 23: Eleventh experiment. Top row: initial and final configurations;
bottom row: final approximation and error measure over time.

12.1

200,000

9.41

E(t)

t

Figure 24: Twelvth experiment. Top row: initial and final configurations;
bottom row: final approximation and error measure over time.

29



5 Conclusions

We have presented a method to calculate optimal linear spline approxima-
tions to functions defined by scattered data, using an iterative optimization
technique governed by the simulated annealing algorithm. Our method is a
generalization of data-dependent triangulation methods.

We have demonstrated that our method performs well for univariate and
bivariate scalar-valued functions and for bivariate vector-valued functions.
Our method yields good approximations in a reasonable time, and in sim-
ple cases it often finds a globally optimal approximation. Furthermore, we
have found that our algorithm finds very good approximations to RGB im-
ages even when using only a small number of vertices. Our technique pro-
vides an interesting alternative way to transform images to a storage-efficient,
resolution-independent representation.

6 Future Work

The main areas for future research are the generalization of our algorithm to
functions of three and more variables and the application of our method to
image and video compression. There is no reason to believe that our method
would not work for higher-dimensional functions. The only problems might
be representing higher-dimensional linear splines and defining an appropriate
iteration step. Even dealing with time-varying d-dimensional data sets is
possible; one could either interpret them as (d + 1)-dimensional functions,
or one could calculate independent d-dimensional approximations for the
function at discrete times. Taking advantage of time coherence, one could
improve the speed of the iteration and the quality of the results by using
the final configuration from time t as initial configuration for time t + ∆t.
For use of our method in image compression, one would have to investigate
methods for efficient storage of linear splines; and one could also research
the use of different error measures to achieve more visually pleasing results
or special effects like edge enhancement. The remarks about time-varying
functions apply to video data as well, and since especially video streams in
tele-conferencing exhibit strong frame coherence, our algorithm might lead
to a real-time video compression method for this kind of video streams.

30



7 Acknowledgements

This work was supported by the National Science Foundation under con-
tracts ACI 9624034 and ACI 9983641 (CAREER Awards), through the Large
Scientific and Software Data Set Visualization (LSSDSV) program under
contract ACI 9982251, and through the National Partnership for Advanced
Computational Infrastructure (NPACI); the Office of Naval Research un-
der contract N00014–97–1–0222; the Army Research Office under contract
ARO 36598–MA–RIP; the NASA Ames Research Center through an NRA
award under contract NAG2–1216; the Lawrence Livermore National Lab-
oratory under ASCI ASAP Level–2 Memorandum Agreement B347878 and
under Memorandum Agreement B503159; and the North Atlantic Treaty
Organization (NATO) under contract CRG.971628 awarded to the Univer-
sity of California, Davis. We also acknowledge the support of ALSTOM
Schilling Robotics, Chevron, General Atomics, Silicon Graphics, and ST Mi-
croelectronics, Inc. We thank the members of the Visualization Group at
the Center for Image Processing and Integrated Computing (CIPIC) at the
University of California, Davis. This work would not have been possible
without the encouragement of Hartmut Prautzsch, Institut für Betriebs- und
Dialogsysteme, Fakultät für Informatik, Universität Karlsruhe (TH), Karls-
ruhe, Germany, and without the generous grant from the Rational Solutions
company.

References

[1] Kreylos, O. and Hamann, B. On simulated annealing and the construc-
tion of linear spline approximations for scattered data, in: Gröller, E.,
Löffelmann, H. and Ribarsky, W., eds., Proc. “EUROGRAPHICS-IEEE
TCCG Symposium on Visualization”, Data Visualization ’99 (1999),
Springer Verlag, Vienna, Austria, pp. 189–198

[2] Bonneau, G.-P., Hahmann, S. and Nielson, G.M., BLaC-wavelets: A
multi-resolution analysis with non-nested spaces, in: Yagel, R. and Niel-
son, G.M., eds., Visualization ’96 (1996), IEEE Computer Society Press,
Los Alamitos, CA, pp. 43–48

31



[3] Eck, M., DeRose, A.D., Duchamp, T., Hoppe, H., Lounsbery, M. and
Stuetzle, W., Multiresolution analysis of arbitrary meshes, in: Cook, R.,
ed., Proc. SIGGRAPH 1995, ACM Press, New York, NY, pp. 173–182

[4] Gieng, T. S., Hamann, B., Joy, K. I., Schussman, G. L. and Trotts, I. J.,
Constructing hierarchies for triangle meshes, IEEE Transactions on Vi-
sualization and Computer Graphics 4(2) (1998), pp. 145–161

[5] Hamann, B., A data reduction scheme for triangulated surfaces, Com-
puter Aided Geometric Design 11(2) (1994), pp. 197–214

[6] Trotts, I. J., Hamann, B., Joy, K. I. and Wiley, D. F., Simplification of
tetrahedral meshes, in: Ebert, D. S., Hagen, H. and Rushmeier, H. E.,
eds., Proc. Visualization ’98, IEEE Computer Society Press, Los Alami-
tos, CA, pp. 287–295

[7] Hamann, B., Jordan, B. W. and Wiley, D. F., On a construction of
a hierarchy of best linear spline approximations using repeated bisec-
tion, IEEE Transactions on Visualization and Computer Graphics 5(1)
(1999), pp. 30–46

[8] Hamann, B., Kreylos, O., Monno, G. and Uva, A. E., Optimal linear
spline approximation of digitized models, in: Proc. “International Con-
ference on Information Visualization ’99 (IV ’99) – Computer Aided
Geometric Design Symposium” (1999), IEEE Computer Society Press,
Los Alamitos, CA, pp. 244–249

[9] Heckel, B., Uva, A. E. and Hamann, B., Clustering-based generation of
hierarchical surface models, in: Wittenbrink, C.M. and Varshney, A.,
eds., Proc. IEEE Visualization ’98 – Late Breaking Hot Topics (1998),
IEEE Computer Society Press, Los Alamitos, CA, pp. 41–44

[10] Nielson, G.M., Scattered data modeling, IEEE Computer Graphics and
Applications 13(1) (1993), pp. 60–70

[11] Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B. P.
Numerical Recipes in C, 2nd ed. (1992), Cambridge University Press,
Cambridge, MA

32



[12] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller,
E., Equations of state calculations by fast computing machines, Journal
of Chemical Physics 21 (1953), pp. 1087–1092

[13] Schumaker, L. L. Computing Optimal Triangulations Using Simulated
Annealing, Computer Aided Geometric Design 10 (1993), pp. 329–345

[14] Delaunay, B. Sur la sphere vide, Otdelenie Matematicheskii i Estestven-
nyka Nauk 7 (1934), Izv. Akad. Nauk SSSR, pp. 793–800

[15] de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O., Com-
putational Geometry (1990), Springer-Verlag, New York, NY

[16] Edelsbrunner, H., Algorithms in Combinatorial Geometry (1987), Sprin-
ger-Verlag, New York, NY

[17] Edelsbrunner, H., and Seidel, R., Voronöı diagrams and arrangements,
Discrete Computational Geometry 1 (1986), 25–44

[18] Preparata, F. P., Shamos, M. I., Computational Geometry, third printing
(1990), Springer-Verlag, New York, NY

[19] Guibas, L. J., Knuth, D. E., and Sharir, M. Randomized incremental
construction of Delaunay and Voronöı diagrams, in: Proc. 17th Int.
Colloq.—Automata, Languages and Programming, Lecture Notes in
Computer Science (LNCS) 443 (1990), Springer Verlag, Berlin, pp. 414–
431

33


