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ABSTRACT

We introduce a distance measure for use in scattered data approx-
imation. Reconstruction from sparse, non-uniformly distributed
data should utilize application-specific knowledge to produce high-
quality results. Our distance measure is considering the specific
problem of computing reconstructions from sparse observational
paleoceanography data, where it is possible to consider certain
problem-specific knowledge to produce reconstructions of scien-
tific value. Our approach to the problem combines a new distance
measure with the well-known moving least squares (MLS) method.
We demonstrate that our approach produces high-quality results, by
contrasting our distance measure against Euclidean and geodesic
distances. We have used our method to generate reconstructions
from data in the Atlantic Ocean.

1 INTRODUCTION

One of the fundamental challenges in the study of climate change
throughout Earth’s history is how to combine models of past ocean
circulation, as reconstructed from sparse geochemical data col-
lected from deep sea sedimentary cores, with modern ocean circu-
lation data to yield insight into the processes governing ocean circu-
lation in the past. We approach this challenge through the analysis
of carbon isotope datasets that have been generated from analyses
of microfossils collected from deep sea cores [12].

Most previous synthesis studies of circulation changes during the
Last Glacial Maximum (LGM, 20,000 years before present time)
focused on geochemical data from benthic foraminifera in only two
dimensions, water depth and latitude (e.g., [3]). Compiled and syn-
thesized data in the third (longitude) and fourth (time) dimensions
would provide important constraints on overturning rates and water
mass boundary variations along flow paths that are not yet available.

Continuous records of foraminifera data are mainly found at
ocean depths less than 4.5km, which corresponds to the continen-
tal margins along the ocean basin periphery, elevated topographic
areas and the mid ocean ridges. With carbon isotope records from
∼480 deep sea cores [12], combining these data to produce a three-
dimensional perspective of ocean current circulation through time
requires an interpolation methodology that links data across thou-
sands of kilometers in the latitude/longitude domain, and hundreds
of meters across the vertical water column. Such a reconstruction
would allow to extract topological/structural information. Further,
it could be combined with a human-in-the-loop analysis to extract
new knowledge about features and processes.

The characteristics of the data (few data points, sparse and non-
uniform distribution, differences in length ratios, data points avail-
able only at the border of the interpolation space) are challenging
for commonly used interpolation schemes, therefore providing the
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motivation for the research described in this paper. To address the
pressing need for specialized schemes handling such a challenging
data set, we designed a method that combines a reliable interpo-
lation scheme with a novel distance measure. This distance mea-
sure is learned via training performed on the data itself in a pre-
processing step. The most important advantages of the method are
that it does not need additional information (e.g., a flow field) and
has self-optimizing parameters (e.g., compensating differences in
length ratios).

2 RELATED WORK

Scattered Data Interpolation: Franke et al. [6] provided an
overview of existing interpolation methods and evaluates them on
some examples for the reconstruction of surfaces. They noted that
real data sets with characteristics similar to those we have (sparse
and scattered), for which some of the considered methods perform
poorly, exist. Unfortunately they have not investigate this aspect
further.

A well-known interpolation scheme for irregularly distributed
data is MLS, which was introduced by Levin in [10]. This method
produces high-quality results for the approximation of shapes, even
when the data is noisy. A comparison of different approaches of
MLS is given in [2]. The main reasons that we have chosen this
method to demonstrate our novel distance measure are its robust
behavior against noise, its flexibility and that it is proven to be use-
ful in a wide range of applications.

Interpolation in the field of Oceanography: Due to the un-
certainty in ocean observations, oceanographers recognized early
that linear interpolation methods, such as Aitken-Lagrange inter-
polation [4], were unsatisfactory as they were fitting observational
noise. In increasing order of complexity, oceanographers have im-
plemented nudging techniques (e.g., [11]), temporally sequential
recursive least-squares methods (i.e., Kalman filter [5]), and whole-
domain least-squares methods (i.e., four-dimensional variational
data assimilation). The primary drawback with the latter methods
is the computational expense of representing oceanic fields and the
uncertainties.

More recently, least-squares methods have permitted the recon-
struction of global, four-dimensional (i.e., time-varying and spa-
tial, globally) property fields over the last 30,000 years [7] and the
LGM [8]. Such methods have succeeded in reproducing the obser-
vations within their uncertainty, obey ocean dynamics and bound-
ary conditions including bathymetry, and simultaneously reproduce
multiple property fields, but require large memory and computa-
tional resources.

3 METHOD DESCRIPTION

In order to present our novel distance measure we have chosen MLS
as underlying fundamental reconstruction scheme. We first briefly
outline this method, for the sake of completeness and then give a
detailed description of the proposed distance measure.



3.1 Moving Least Squares
MLS is a commonly used method for the approximation of scat-
tered data in computer graphics [10]. Since it is a well-known tech-
nique and not the focus of this work we provide only a short intro-
duction of what we need for the description of our distance measure
and the demonstrations in Section 4.

For the purposes of this work we use the general matrix form of
MLS given by Shen in [14] to find a function f that approximates
the values F of a set of unorganized sample points:

f (x) = bT (x)(BT (W (x))2B)−1BT (W (x))2F (1)

The matrix B contains a number of basis functions b. For exam-
ple, a linear basis for a three dimensional problem has the functions
1, x, y, and z. W is a diagonal weight matrix depending on weighted
distances, which we calculate using the inverse distance function as
given in [14]:

w(d) = 1/(d2 +λ
2), (2)

where λ is a parameter to control the approximation behavior and
d is a distance between two points. Obviously the distance measure
has a significant influence on the weights and thereby the recon-
struction.

3.2 Proposed Distance Measure
A new data-driven distance measure for two points P1 and P2, given
in spherical coordinates, is presented. It is used in our proposed ap-
proach, but could also be integrated in another interpolation scheme
that must calculate distances between sample points of spherical na-
ture.
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Figure 1: (a) In the spherical coordinate system the position of a
point is described by three variables r, θ and φ . (b) Our proposed
distance measure is a weighted combination of differences of those
components (∆(θ), ∆(φ) and ∆(r)).

In spherical coordinates, a point is described by a radius r and
two angles θ , φ as shown in Figure 1a. If two points P1 =
(r1,θ1,φ1) and P2 = (r2,θ2,φ2) are located on the surface of the
same sphere, which means that r1 is equal to r2, the shortest path
between them is part of a great circle. The geodesic distance can
for example be computed by the Haversine formula [15]:

dgeodesic(P1,P2) = 2r1atan2(
√

Q,
√

1−Q) (3)

where

Q = sin2 ((φ2−φ1)/2)+ cos(φ1)cos(φ2)sin2 ((θ2−θ1)/2) .

Eq. 3 is correct as long as the points lie on the same sphere. If r1
and r2 differ one could for example compute the resulting distance
as follows:

davgGeodesic(P1,P2) =
dgeodesic(P1,P122)+dgeodesic(P211,P2)

2
(4)

where
P122 = (r1,φ2,θ2) and P211 = (r2,φ1,θ1).

In applications like oceanography it is not always clear what a dis-
tance between two points should be. This is due to the fact that wa-
ter cannot flow from one position to another by following a straight
line or a great circle when this is not implied by the flow field. To
this end, a high-quality distance measure would be one that consid-
ers the flow as proposed by Streletz et al. [16]. Our method assumes
that flow information is not given, and we therefore must restrict our
distance measure purely on the data available.

In the absence of flow field information, we therefore consider
a weighted combination of differences in the three spherical coor-
dinates r, θ , and φ (see Fig. 1b). Our distance between two points
P1 and P2 is defined by Eq. 5. We consider the following generic
points P112 = (r1,φ1,θ2), P211 = (r2,φ1,θ1), P212 = (r2,φ1,θ2)
and P122 = (r1,φ2,θ2). Our new distance measure is defined as:

dproposed(P1,P2) = α∆(φ)+β∆(θ)+ γ∆(r) (5)

where

∆(φ) = (davgGeodesic(P2,P212)+davgGeodesic(P
122,P112))/2,

∆(θ) = (davgGeodesic(P1,P112)+davgGeodesic(P
211,P212))/2,

∆(r) = |r1− r2|.

A machine-learning pre-processing step is performed to estimate
adequate values for the weights α , β and γ , which is similar to a
leave-p-out cross-validation. Specifically, this step proceeds as fol-
lows: We repeatedly partition the input point set S randomly in two
subsets, a training set T and a validation set V . In every iteration i
we train αi, βi and γi on T , so that the resulting reconstruction using
MLS has a small root mean square (RMS) error for V . We termi-
nate the process of parameter optimization when n iterations have
been carried out. At this point, we assume that the values of the
three weights are properly adjusted for the data we are concerned
with.

Our optimization procedure has three input parameters: the set S
of data points, an integer p that is used to partition S and an integer
n that specifies the number of iterations. Additionally a matrix ABG
is initialized to store the weights αi, βi, γi of the individual iteration
i. The process is performed n times. In each iteration the following
steps are executed. S is randomly partitioned in a training set T and
a validation set V so that V has p elements. In our experiments a
good choice for p was |S|/3. When p is chosen too small it results in
oscillating weights of the individual iterations and the method does
not converge. After initializing the weights αi, βi and γi with 1 they
are optimized on T to minimize the RMS error for V , using MLS
as our approximation method of choice.

The simultaneous optimization of the weight parameters leads to
a multidimensional optimization problem and is in general hard to
solve. Although more sophisticated approaches could be used, in
our case it suffices to optimize αi, βi and γi sequentially. This is
done by repeating the following steps for several times: The values
of each parameter are decreased or increased and overwritten by the
value that produces the smallest RMS error for the current valida-
tion set. This simple procedure suffices to demonstrate the viability
of our approach, but it should be improved further. At the end of
every iteration the optimized values are added to ABG.

Finally, the medians of the weights considering all iterations that
are stored in AGB are determined. This extracts the weights that
have produced the smallest errors in the most iterations and therefor
are seen as meaningful for S. In contrast parameters leading to
the smallest error in one iteration are often only optimal for the
current training set T . Using the median reduces the influences of
the random configurations.

4 RESULTS

In the following, the performance of our distance measure in com-
bination with MLS is demonstrated for two examples.



4.1 Analytically Defined Data
For our first demonstration we consider a volume element E of a
thin spherical shell defined by 6,360km≤ r ≤ 6,371km, 0◦ ≤ θ ≤
45◦ and 0◦ ≤ φ ≤ 45◦. 6,371km is approximately the Earth’s ra-
dius, ignoring its ellipsoidal shape, and the thickness of this shell
approximates the depth of the Mariana Trench, which is the lowest
location of the ocean. In summary, we consider the four layers in
this volume:

g(r,θ ,φ) =


1 r < 6,363km
2 6,363km≤ r < 6,364km
4 6,364km≤ r < 6,367km
5 r ≥ 6,367km

(6)

We consider the function g in E and distribute randomly points
within this volume. Our goal is to reconstruct all reference points
on a 0.5km×1◦×1◦ grid from these sparse data. We call the set of
our input points test data set and the set of points that should be re-
constructed, and for which the exact values are available, reference
data set. Finally, the RMS error over all grid points except those
lying on the border of E is computed.

For the reconstruction we use MLS that relies on distances in the
dataset. We compare the Euclidean, the geodesic and the proposed
one. Only for our approach a pre-processing step is performed once
for every test data set. As described in Section 3 it uses three in-
put parameters. In this case S is the set of the randomly distributed
points. The second parameter p divides S in two subsets. An em-
pirically confirmed choice for p is |S|/3, which has produced high-
quality results in our experiments. The last parameter n defines the
number of iterations to perform the training for weights. We set n
to 100 for this experiment, which is sufficient considering the small
amount of data points. In Section 4.2.2 we investigate how this
parameter has to be chosen for a real data set.

Our experiment is divided in two parts. The first part investigates
the behavior of the reconstruction with decreasing number of sam-
ple points and the second part analyzes the robustness of the results
when changing the distribution of a fixed number of points.

For the first part we randomly pick 30 points in E and gener-
ate progressively smaller subsets with 30, 25, 20, 15 and 10 data
points. MLS together with all three distance measures is used to
reconstruct the reference test data set, and the resulting RMS errors
are computed. For this test data set our proposed distance measure
produces the smallest RMS errors (< 0.3377) in all cases. This is
due to the specialization of our method for such problems (sparse
data, differences in length ratios, functions with a layer character-
istic). The RMS errors (> 1.9376) produced by using Euclidean
and geodesic distance are close to each other and relatively stable,
but about one order of magnitude larger than the RMS error values
obtained with our distance measure.

The question remains whether the results produced with the pro-
posed distance measure are relatively invariant under a change of
point distribution. To examine this aspect we generated 50 test data
sets with 10 randomly distributed points in each case and computed
the resulting RMS errors. It is remarkable that our proposed ap-
proach works well in this scenario. Even for extreme distributions
it is consistently better when compared to the results computed with
the other two distance measures. Only the variability of the result-
ing errors is larger than in the case of Euclidean and geodesic dis-
tance.

4.2 Atlantic Ocean Data
As shown in the previous section our proposed approach works well
for an analytically defined data set. However, the actual goal is
to reconstruct the LGM δ 13C sediment core data set presented in
Section 1. This task is more challenging due to large gaps in the
data as well as clusters resulting from data collection.

Since the actual LGM data set does not provide us with a ground
truth against which the reconstruction results can be evaluated, we
cannot use it directly to perform a proof of concept. For this reason,
we construct a data set of the modern ocean based on the locations
given by the LGM data set. Further, we limit the data set to the
Atlantic Ocean, because it is the best-observed ocean basin during
glacial times.

4.2.1 Data Preparation
As reference data set, we use a subset of the World Ocean Circula-
tion Experiment (WOCE) oceanography gridded field [9] that was
released with uncertainty estimates. WOCE organized, collected,
and compiled global ocean observations for the decade from 1988
until 1998. We consider the part between 53◦S to 60◦N latitude and
98◦W to 18◦E longitude as representing the Atlantic Ocean. This
subset contains points of the Pacific Ocean as well as Mediterranean
Sea, which we do not need for the reconstruction of the Atlantic and
for that reason we removed them. Since we only have data located
at the sea floor it would be challenging to interpret the part between
0m and 1,000m depth, due to the extremely strong mixing in this
interval and the interaction with the atmosphere. To this end, we
do not include this part in our experiment. Furthermore, we had to
use phosphate as substitute tracer instead of δ 13C, due to lack of a
gridded climatology of modern-day δ 13C. Using phosphate makes
sense, because it has nearly a linear relation to δ 13C [1]. Our re-
sulting reference data set includes 419,623 grid points.

For our test data set we selected all nearest neighbors of the data
points included in the LGM data set within our reference data set,
resulting in 186 data points. The number of points is smaller than
the actual number of core samples, because several points of the
LGM data set are mapped to the same neighbors, as well as gaps in
the reference data set. This new subset has characteristics similar
to the original LGM data set. We use our proposed approach to
generate a reconstruction based on these 186 representative core
locations of the modern ocean and compare it against the WOCE
reference data set, which we assume as ground truth.

4.2.2 Proposed Approach
A pre-processing step is performed to obtain appropriate values for
the weights that are tuned to the actual data set. As described in
Section 3 three input parameters are considered for this purpose.
The first parameter S is our test data set that we have described in
Section 4.2.1 with an amount of 186 data points. For the second
parameter p that defines the division of S we already obtained good
results with |S|/3 in our prior example and for this reason choose it as
186/3 = 62. The last parameter n, the number of trainings iteration,
depends on the complexity of the function that is covered by S.
Since this is difficult to capture, we use the following procedure.

We performed our optimization with a relatively high value for
n. For all three weight parameters after at least 200 iterations a
convergence of the values was recognizable. Therefore, we set n to
200 for this experiment. Note that in the actual experiment we do
not train the weights again using n = 200. Should new data points
be added to the test data set, this value can be used as a reference.
The optimized values for the test data set are α = 0.015, β = 0.011
and γ = 35.57. This clearly shows that the weights are specialized
for our problem. The length ratio in the ocean between differences
in depth and differences in latitude and longitude, respectively, are
very high. Our distance measure compensates for this effect by
stretching in depth (= γ) direction.

4.2.3 Discussion
In order to investigate the performance of our reconstruction against
the reference data set we do an visual comparison using section
plots that cover significant parts of the reconstruction. For the At-
lantic Ocean a popular visualization in literature is a North-South
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Figure 2: The distribution of phosphate is compared between the
WOCE data set and our reconstruction, along a North-South section
at 26◦W in the modern Atlantic Ocean.

(meridional) section. For this reason we have generated compa-
rable plots for our reconstruction as well as for the reference data
set by cutting out a section at 26◦W and from 50◦S to 60◦N (see
Fig. 2). To highlight the largest deviations also the absolute dif-
ference is given in Fig. 2c. The major part of this plot presents a
relatively small difference below 0.1µmol/kg. There are only three
areas, denoted with numbers 1 to 3, that exhibit a large difference
above 0.4µmol/kg. In the cases of 1 and 2 the reconstruction leaves
the convex hull of the test data set and therefore we are extrapolat-
ing there. This could be the reason for larger errors in these cases.
The other location 3 shows a high difference in the middle of the
volume and for this reason we assume that our data points, located
only at the ocean floor, did not capture this feature.

(a) WOCE (b) our reconstruction (c) absolute difference

Figure 3: Comparison of phosphate distribution at a depth level of
3,000m. Data locations are indicated as spheres. The same col-
ormap as in Fig. 2 is used.

In addition to the meridional section we have evaluated our re-
sults at a depth level of 3,000m (see Fig. 3). This visualization also
shows the bathymetry and the data locations. As before, the differ-
ences overall are small, except one location in the south-west region
of the Atlantic. There are two reasons for this, first, this area is lack-
ing sample points at the considered depth level and, second, in the
southern Atlantic numerous water masses meet and mix, making a
reconstruction based on see floor samples even more challenging.

As a further quality criterion we computed the RMS error be-
tween our result and all 419,623 reference points. The reconstruc-
tion was computed in ∼46 minutes on a laptop (Intel i7 @2.4Ghz,
16GB RAM). We calculated an error of 0.1183µmol/kg. Since our
main interest is the reconstruction of δ 13C from the sediment core

data set [12] we converted the error to pseudo-δ 13C using the linear
relation given in [1], Eq. 3. This results in an error of 0.1275 per
mil, which we seem to be a reasonable result, because it is close
to the typical isotope ratio mass spectrometer (IRMS) error on the
measurement of δ 13C of 0.1 [13].

5 CONCLUSIONS AND FUTURE WORK

This paper has introduced a novel distance measure that helps to
provide accurate reconstructions for sparse and scattered data. Its
performance was demonstrated on an analytically defined data set,
as well as a real data set. In the first experiment significant improve-
ments of the reconstruction compared to results using Euclidean
and geodesic distance were achieved. In the second a relatively
small RMS error for the modern Atlantic Ocean was obtained, de-
spite the very few data. These results indicate a promising applica-
tion of our approach to data sets of other fields e.g., well logging.

It is planned to apply the approach to the actual LGM δ 13C sed-
iment core data set and discuss the results in the context of paleo-
ceanography. The primary motivation is to improve the insight into
the data and to guide the future collection of cores.
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