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ABSTRACT 
 
This paper introduces VirtualExplorer, a customizable plugin-based virtual reality framework for immersive scientific data 
visualization, exploration and geometric modeling. The framework is layered on top of a run-time plugin system and re-
configurable virtual user interface and provides a variety of plugin components. The system provides access to scene-graph-
based APIs, including Performer and OpenInventor, direct OpenGL support for visualization of time-critical data as well as 
collision and generic device managers. Plugins can be loaded, disabled, enabled or unloaded at any time, triggered either 
through pre-defined events or through an external Python-based interface. The virtual user interface uses pre-defined 
geometric primitives that can be customized to meet application-specific needs. The entire widget set can be reconfigured 
dynamically on a per-widget basis or as a whole through a style manager. The system is being developed with a variety of 
application areas in mind, but its main emphasis is on user-guided data exploration and high-precision engineering design. 
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1. INTRODUCTION 
 
Virtual reality systems have been around for almost a decade and have demonstrated the advantages and disadvantages of a 
variety of different design philosophies. A variety of virtual reality APIs have been developed in academia during the last 
couple of years including systems such as Avango, CAVE Lib, Lightning, MR Toolkit, ViewSVR and VrJuggler 
[2,3,4,10,16]. VirtualExplorer has its early roots as far back as 1993 and has evolved over different generations and 
transitioned through different evolutionary stages. The system is being developed by the Virtual Environments Group of the 
Center for Image Processing and Integrated Computing at the University of California at Davis and was designed as a 
flexible and intuitive scientific visualization, exploration and geometric modeling system. The VirtualExplorer framework 
aims at providing an easily understandable, yet feature rich development interface to the novice VR user. It has entered the 
pre open-source stage and will be available to the public after final testing is completed. 
The motivation for creating such a system however, has its roots much deeper than just the creation of three-dimensional 
(3D) visuals from pre-computed data or interactive modeling. During most research and development projects the 
visualization component goes far beyond displaying final results. Visual results are used throughout the early test cycle to 
explore and verify simulation results or analyze and modify algorithms under development. In this respect, the almost 
unlimited three-dimensional workspace, offered by a virtual environment in combination with the right interaction 
metaphors, provides access to another flavor of intuitive debugging and development tools. Furthermore, academic research 
environments frequently face the "graduation-killed-the-code problem" in which significant amounts of invested research 
time are instantly turned into unmaintainable legacy code. Our system serves as an aid in establishing a common 
development base, which enforces coding standards, revision control and collaboration-oriented research avoiding staggering 
amounts of redundant work. Therefore, we need a very intuitive and easy to integrate framework allowing graphic developers 
to write vr-enabled code. On the other hand, the system must be flexible enough to provide access to a wide variety of 
physical and simulated input and output devices. Furthermore, it must function well in both its vr-mode and the traditional 
keyboard and mouse based on-screen mode. Performance, performance testing and debugging in general must be possible in 
both of these modes. Another important concern was that the system should be extensible without in-depth knowledge of the 
underlying framework. Since the system is intended for the visualization of large-scale scientific data, failure tolerances play 



a crucial role, making it important that individual components in the application can be restarted, reconfigured, added or 
removed during execution.  
 
 

2. SYSTEM SPECIFICATIONS 
 
This section introduces VirtualExplorer, a highly re-configurable plugin-based VR framework for intuitive two-handed 
geometric modeling and data exploration. The open-source framework provides a variety of standard VR components such as 
a scene-graph-based API for static objects, an OpenGL rendering engine for the visualization of time-varying data, a re-
configurable virtual user interface and a run-time plugin system. System components are depicted in Figure 3. The core 
design provides technical and non-technical users with an easy-to-use framework for the creation of realistic and content-rich 
environments and the tools for the exploration of scientific data sets. At the same time, it was important to offer an 
unconstrained at-scale interface to the user that reduces or removes the pre-meditative design phase. This can be 
accomplished by providing an environment that fosters the use of verification tasks and the development of modeling 
strategies as part of the design cycle, resulting in a thoroughly developed and tested final product. Visibility, reachability and 
accessibility controls must be built-in features in such an environment and should be automatically used throughout the 
design cycle. Furthermore, the system must provide the means for tracking the model creation history in combination with 
user-specifiable viewpoints or design paths. VirtualExplorer is being developed with a variety of application areas in mind, 
but its main emphasis is on user-guided data exploration and high-precision engineering design. From these initial design 
considerations the following list of requirements evolved: 
 

• Ease of use • Precision • Maintainability 
• Flexibility • Extensibility • Failure tolerance 
• Performance • Scalability  

  
The resulting framework is build on top of a run-time plugin system that manages the individual modular system 
components, a hardware abstraction layer, which provides a higher-level, hardware-independent interface and a re-
configurable virtual user interface providing access to control features. The system also provides access to scene-graph-based 
APIs, including Performer and OpenInventor and direct OpenGL support for visualization of time-critical data as well as 
collision and generic device managers (Figure 1).  
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Linux and Unix, plugins are implemented as dynamically shared objects (DSOs) and dynamic link libraries (DLLs) are used 
for the different Microsoft Windows flavors. In general, user programs are written as application plugins that gain access to 
the vr-enabled framework at minimal cost. Simple applications can be created in minutes by deriving from one of the 
provided application plugin classes. Most commonly, users will implement rendering or frame plugins that are either adding 
visual context to the scene or are performing some sort of computation outside the drawing process. The plugin concept 
fosters the creation of modular and, most importantly, reusable components that can help in building a dynamic, feature-rich 
framework. 

Figure 2: Plugin categories. 

 
2. Virtual User Interface (VUI) 
 
Menus are a vital component of all modeling systems since they provide access to the available system functions. With the 
transition from a 2D to a 3D environment, a new set of VR input devices and, consequently, new concepts must be 
implemented. Different solutions to this problem opt for either a direct port from the classical 2D menu to its 3D counterpart 
or new implementations designed specifically for 3D [6,14]. The VUI is composed from pre-defined geometric 
primitives/models that can be altered or replaced by the user, behavioral descriptions and specific component based actions. 
The user interface can be customized to meet application-specific needs or user preferences.  A style manger is available that 
controls the overall look and feel of the complete VUI or individual components by supporting a variety of different base 
models available for each widget. The entire widget set can be reconfigured dynamically on either a per-widget basis or as a 
whole through the style manager. In combination with the layout manager, which controls widget placement, the creation of 
complex and appealing menus is possible. All container classes, widgets and layout managers are editable and can be 
individually controlled through a designated menu manager. The menu manager maintains the context information for all 
widgets currently part of the visual user interface and user plugins can attach to it to register their own specific visual 
representation and control characteristics. While the default VUI supports the most important system operations, more 
advanced components can be added through customized plugins. Widgets can also be associated with different visualization 
metaphors and linked to the user’s hands, head and body or statically attached to the display using a heads-up-display (HUD) 
metaphor.  
 
3. Plugin Managers 
 
By design the VirtualExplorer kernel is kept as small as possible. It is responsible for handling the main control loop, process 
synchronization and system integrity. The run-time plugin manager is the core component of the VirtualExplorer 
architecture. The plugin manager provides the plugin control loop and is responsible for handling all operations associated 
with plugins. Through this manager, systems or user plugins can register a set of event listeners, which subsequently are 
called at the appropriate times. A Phyton-based interface provides control over operations such a plugin load, remove, 
replace, suspend, and resume at run-time. The bulk of the system functionality is added through system plugins that manage 
most of the relevant components. The base set of system plugins include the 
 

• Device manager: manages all devices 
• Input manager: manages all input devices 
• Output manager: manages all output devices 
• Menu manager: manages user interface components and interactions 
• Render manager: manages drawing and swapping-related issues 
• Display manager: manages system-specific display devices 
• Collision manager: manages collision events between components in a scene 
• Network manager: manages network plugins 
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The input, output and display managers serve as the standard interface point for arbitrary physical and simulated devices and 
they are implemented on top of the hardware abstraction layer. All devices in VirtualExplorer belong to either one of these 
three categories, which in turn are managed by a central device manager. The input manager handles multi-sensory input 
from physical or simulated devices such as the mouse and keyboard for monitor-based vr, as well as dedicated vr devices 
including spatial trackers and gloves. The output manager generally controls the process flow for multi-modal interaction 
feedback through haptic and acoustic devices. In addition, the display manager is responsible for creating the appropriate 
output channels for the used device and configuring the display properties.  
User interfaces in VEs have to be highly configurable since look, feel and functionality significantly change with each 
application. Therefore, it is important to determine and provide access to the most relevant task-dependent functions. The 
menu manger handles all user-interface-specific events. VUIs can be created using the VUI framework described earlier and 
controlled through the menu manager. The render manager provides the required support for the available graphics APIs and 
handles the draw-loop-specific operations such as updating transformation matrices and clearing and swapping the frame 
buffer. The collision manager tracks collision events between different objects and also supports an object-specific 
“snapping” mechanism. An object is automatically attached to another object if it is within a certain distance to the other 
object and both objects have the same snapping parameters. The network manager serves as a central connection point for 
separately executed local or remote plugins and provides the required support for collaborative virtual environments. 
Furthermore, a base set of device plugins supporting the most common tracking and input devices such, as the Polhemus 
Fastrak, the Ascension Flock of Birds, the Fakespace PinchGlove and haptic devices such as the Phantom from Sensable are 
provided. New devices can be added easily through device plugin templates that allow device integration without in-depth 
knowledge of the underlying system. 
 

 

Figure 3: VirtualExplorer application framework. 

 
4. Inter-Plugin Communication 
 
The system uses an “event-emitter” and “event-listener” approach. Any application component can be turned into an emitter 
or listener that sends or receives particular events. Event listeners can be registered with an event emitter and subsequently 
informed whenever the particular event occurs. In general, event listeners are defined as abstract classes containing a set of 
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virtual methods that can be called by the event emitter. Application code can instantiate these listener classes to gain access to 
the desired callbacks and to register itself with the appropriate event emitters (Figure 4).  
An extensive set of emitter and listener classes for the development of new system, device and utility plugins is provided and 
can be used for the accelerated integration of new components. In addition, plugin components can acquire handles to other 
plugins in the system and directly access their public methods. This approach is of benefit for the integration of smaller 
modular toolkits that do not require a transparent interface mechanism or should be shielded from the outside. 
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6. Visual Debugging Support for Virtual Environments 
 
One of the problems frequently encountered during the development of vr systems is that of testing, debugging and 
performance tuning all potentially complex processes of the system. The modular plugin-based approach allows the user to 
simplify the studied systems by enabling and disabling components during execution time. This approach can greatly help in 
identifying potential problems and the analysis of bottlenecks. However, this feature also caters to the developers of new 
algorithms by allowing them to visualize their results and to modify application code on the fly, without having to restart the 
system. This concept opens the door for the development of entirely new suites of plugin-based interactive development 
tools. 
 
 

3. CONCLUSIONS 
 
VirtualExplorer provides an open source framework for the accelerated development and testing of complex virtual 
environments. It currently offers the user a vr-enabled and Python-scriptable run-time plugin system (RPS), a hardware 
abstraction layer (HAL), drivers for a variety of tracking devices, a virtual user interface API (VUI) and support for rendering 
APIs, including OpenGL, Iris Performer and OpenInventor. The system was designed to be easily extensible through 
additional plugin components.  
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