
header for SPIE use

VirtualExplorer: A Plugin-Based Virtual Reality Framework

Falko Kuester, Bernd Hamann, and Kenneth I. Joy

Center for Image Processing and Integrated Computing
Department of Computer Science

University of California, Davis, CA 95616-8562
{kuester, hamann, joy}@cs.ucdavis.edu

ABSTRACT

This paper introduces VirtualExplorer, a customizable plugin-based virtual reality framework for immersive scientific data
visualization, exploration and geometric modeling. The framework is layered on top of a run-time plugin system and re-
configurable virtual user interface and provides a variety of plugin components. The system provides access to scene-graph-
based APIs, including Performer and OpenInventor, direct OpenGL support for visualization of time-critical data as well as
collision and generic device managers. Plugins can be loaded, disabled, enabled or unloaded at any time, triggered either
through pre-defined events or through an external Python-based interface. The virtual user interface uses pre-defined
geometric primitives that can be customized to meet application-specific needs. The entire widget set can be reconfigured
dynamically on a per-widget basis or as a whole through a style manager. The system is being developed with a variety of
application areas in mind, but its main emphasis is on user-guided data exploration and high-precision engineering design.

Keywords: Virtual Reality, Immersive Environments, Virtual Reality APIs, Scientific Data Visualization and Exploration.

1. INTRODUCTION

Virtual reality systems have been around for almost a decade and have demonstrated the advantages and disadvantages of a
variety of different design philosophies. A variety of virtual reality APIs have been developed in academia during the last
couple of years including systems such as Avango, CAVE Lib, Lightning, MR Toolkit, ViewSVR and VrJuggler
[2,3,4,10,16]. VirtualExplorer has its early roots as far back as 1993 and has evolved over different generations and
transitioned through different evolutionary stages. The system is being developed by the Virtual Environments Group of the
Center for Image Processing and Integrated Computing at the University of California at Davis and was designed as a
flexible and intuitive scientific visualization, exploration and geometric modeling system. The VirtualExplorer framework
aims at providing an easily understandable, yet feature rich development interface to the novice VR user. It has entered the
pre open-source stage and will be available to the public after final testing is completed.
The motivation for creating such a system however, has its roots much deeper than just the creation of three-dimensional
(3D) visuals from pre-computed data or interactive modeling. During most research and development projects the
visualization component goes far beyond displaying final results. Visual results are used throughout the early test cycle to
explore and verify simulation results or analyze and modify algorithms under development. In this respect, the almost
unlimited three-dimensional workspace, offered by a virtual environment in combination with the right interaction
metaphors, provides access to another flavor of intuitive debugging and development tools. Furthermore, academic research
environments frequently face the "graduation-killed-the-code problem" in which significant amounts of invested research
time are instantly turned into unmaintainable legacy code. Our system serves as an aid in establishing a common
development base, which enforces coding standards, revision control and collaboration-oriented research avoiding staggering
amounts of redundant work. Therefore, we need a very intuitive and easy to integrate framework allowing graphic developers
to write vr-enabled code. On the other hand, the system must be flexible enough to provide access to a wide variety of
physical and simulated input and output devices. Furthermore, it must function well in both its vr-mode and the traditional
keyboard and mouse based on-screen mode. Performance, performance testing and debugging in general must be possible in
both of these modes. Another important concern was that the system should be extensible without in-depth knowledge of the
underlying framework. Since the system is intended for the visualization of large-scale scientific data, failure tolerances play

a crucial role, making it important that individual components in the application can be restarted, reconfigured, added or
removed during execution.

2. SYSTEM SPECIFICATIONS

This section introduces VirtualExplorer, a highly re-configurable plugin-based VR framework for intuitive two-handed
geometric modeling and data exploration. The open-source framework provides a variety of standard VR components such as
a scene-graph-based API for static objects, an OpenGL rendering engine for the visualization of time-varying data, a re-
configurable virtual user interface and a run-time plugin system. System components are depicted in Figure 3. The core
design provides technical and non-technical users with an easy-to-use framework for the creation of realistic and content-rich
environments and the tools for the exploration of scientific data sets. At the same time, it was important to offer an
unconstrained at-scale interface to the user that reduces or removes the pre-meditative design phase. This can be
accomplished by providing an environment that fosters the use of verification tasks and the development of modeling
strategies as part of the design cycle, resulting in a thoroughly developed and tested final product. Visibility, reachability and
accessibility controls must be built-in features in such an environment and should be automatically used throughout the
design cycle. Furthermore, the system must provide the means for tracking the model creation history in combination with
user-specifiable viewpoints or design paths. VirtualExplorer is being developed with a variety of application areas in mind,
but its main emphasis is on user-guided data exploration and high-precision engineering design. From these initial design
considerations the following list of requirements evolved:

• Ease of use • Precision • Maintainability
• Flexibility • Extensibility • Failure tolerance
• Performance • Scalability

The resulting framework is build on top of a run-time plugin system that manages the individual modular system
components, a hardware abstraction layer, which provides a higher-level, hardware-independent interface and a re-
configurable virtual user interface providing access to control features. The system also provides access to scene-graph-based
APIs, including Performer and OpenInventor and direct OpenGL support for visualization of time-critical data as well as
collision and generic device managers (Figure 1).

1. Run-Time Plugin System (RPS)

The RPS serves as the central building block
behavior of both the system and its individual
RPS to load a set of standard system, device
(Figure 2). When initializing system plugins, t
resorts to available fallback resources when c
observed either through a registered plugin
command line interface. The plugin system w
allowing plugins to be loaded, disabled/enable
or the command-line interface.
We distinguish among different flavors of plu
application programmers. The plugin harness
utility or user application plugins. Each plugin
and provides a set of standard query functions

Iris Performer OpenInventor

OpenGL)

)

 s

Run-time plugin system (RPS

 m
,
h
o

h
a
d

g
li

 u
Virtual User Interface (VUI
Figu

for
od

utili
e ha
re p

arne
s de
, re

ins
bra
is d
sed
Virtual Explorer (VE)
r

th
ule
ty
rn
lu
ss
si

pla

 in
ry
er
 to
User Application
e 1: Application layers.

e VirtualExplorer plugin har
s at run time. During the app
and user application plugins
ess verifies the correct operat
gins fail to load successfull
 listener or queried and dis
gned to provide a high degr
ced or unloaded at any time,

 order to maintain a clean s
provides the basic tools for
ived from an abstract plugin
 determine its name, version
Input Devices
ness, which allow
lication startup p
 located in prede
ion of all crucial
y. The status of t
played with the h
ee of flexibility d
 triggered either t

eparation between
the creation and c
class, overloads a
, author, purpose
Output Device
Hardware Abstraction Layer (HAL)
s the user to control the
hase VirtualExplorer uses
fined resource directories
functions and, if possible,
he plugin harness can be
elp of the Python-based

uring program execution,
hrough predefined events

 power users and novice
ontrol of system, device,
 distinct set of functions,

 and compatibility. Under

Linux and Unix, plugins are implemented as dynamically shared objects (DSOs) and dynamic link libraries (DLLs) are used
for the different Microsoft Windows flavors. In general, user programs are written as application plugins that gain access to
the vr-enabled framework at minimal cost. Simple applications can be created in minutes by deriving from one of the
provided application plugin classes. Most commonly, users will implement rendering or frame plugins that are either adding
visual context to the scene or are performing some sort of computation outside the drawing process. The plugin concept
fosters the creation of modular and, most importantly, reusable components that can help in building a dynamic, feature-rich
framework.

Figure 2: Plugin categories.

2. Virtual User Interface (VUI)

Menus are a vital component of all modeling systems since they provide access to the available system functions. With the
transition from a 2D to a 3D environment, a new set of VR input devices and, consequently, new concepts must be
implemented. Different solutions to this problem opt for either a direct port from the classical 2D menu to its 3D counterpart
or new implementations designed specifically for 3D [6,14]. The VUI is composed from pre-defined geometric
primitives/models that can be altered or replaced by the user, behavioral descriptions and specific component based actions.
The user interface can be customized to meet application-specific needs or user preferences. A style manger is available that
controls the overall look and feel of the complete VUI or individual components by supporting a variety of different base
models available for each widget. The entire widget set can be reconfigured dynamically on either a per-widget basis or as a
whole through the style manager. In combination with the layout manager, which controls widget placement, the creation of
complex and appealing menus is possible. All container classes, widgets and layout managers are editable and can be
individually controlled through a designated menu manager. The menu manager maintains the context information for all
widgets currently part of the visual user interface and user plugins can attach to it to register their own specific visual
representation and control characteristics. While the default VUI supports the most important system operations, more
advanced components can be added through customized plugins. Widgets can also be associated with different visualization
metaphors and linked to the user’s hands, head and body or statically attached to the display using a heads-up-display (HUD)
metaphor.

3. Plugin Managers

By design the VirtualExplorer kernel is kept as small as possible. It is responsible for handling the main control loop, process
synchronization and system integrity. The run-time plugin manager is the core component of the VirtualExplorer
architecture. The plugin manager provides the plugin control loop and is responsible for handling all operations associated
with plugins. Through this manager, systems or user plugins can register a set of event listeners, which subsequently are
called at the appropriate times. A Phyton-based interface provides control over operations such a plugin load, remove,
replace, suspend, and resume at run-time. The bulk of the system functionality is added through system plugins that manage
most of the relevant components. The base set of system plugins include the

• Device manager: manages all devices
• Input manager: manages all input devices
• Output manager: manages all output devices
• Menu manager: manages user interface components and interactions
• Render manager: manages drawing and swapping-related issues
• Display manager: manages system-specific display devices
• Collision manager: manages collision events between components in a scene
• Network manager: manages network plugins

VirtualExplorer Plugin
Harness

System plugins

Device plugins

Utility plugins

Application plugins

The input, output and display managers serve as the standard interface point for arbitrary physical and simulated devices and
they are implemented on top of the hardware abstraction layer. All devices in VirtualExplorer belong to either one of these
three categories, which in turn are managed by a central device manager. The input manager handles multi-sensory input
from physical or simulated devices such as the mouse and keyboard for monitor-based vr, as well as dedicated vr devices
including spatial trackers and gloves. The output manager generally controls the process flow for multi-modal interaction
feedback through haptic and acoustic devices. In addition, the display manager is responsible for creating the appropriate
output channels for the used device and configuring the display properties.
User interfaces in VEs have to be highly configurable since look, feel and functionality significantly change with each
application. Therefore, it is important to determine and provide access to the most relevant task-dependent functions. The
menu manger handles all user-interface-specific events. VUIs can be created using the VUI framework described earlier and
controlled through the menu manager. The render manager provides the required support for the available graphics APIs and
handles the draw-loop-specific operations such as updating transformation matrices and clearing and swapping the frame
buffer. The collision manager tracks collision events between different objects and also supports an object-specific
“snapping” mechanism. An object is automatically attached to another object if it is within a certain distance to the other
object and both objects have the same snapping parameters. The network manager serves as a central connection point for
separately executed local or remote plugins and provides the required support for collaborative virtual environments.
Furthermore, a base set of device plugins supporting the most common tracking and input devices such, as the Polhemus
Fastrak, the Ascension Flock of Birds, the Fakespace PinchGlove and haptic devices such as the Phantom from Sensable are
provided. New devices can be added easily through device plugin templates that allow device integration without in-depth
knowledge of the underlying system.

Figure 3: VirtualExplorer application framework.

4. Inter-Plugin Communication

The system uses an “event-emitter” and “event-listener” approach. Any application component can be turned into an emitter
or listener that sends or receives particular events. Event listeners can be registered with an event emitter and subsequently
informed whenever the particular event occurs. In general, event listeners are defined as abstract classes containing a set of

Plugin Harness

Run-Time Plugin
Manager

Input Manager

Output Manager

Render Manager

Collision Manager

Virtual Explorer Kernel

Keyboard

Mouse

Fastrak

PinchGlove

OpenGL

OpenInventor

Performer

Display

Workbench

Powerwall

Triclops

Display Manager

Network Manager

Python Interface

Flock of Birds

Voice

Force-Feedback

Spatial Sound

Menu Manager

virtual methods that can be called by the event emitter. Application code can instantiate these listener classes to gain access to
the desired callbacks and to register itself with the appropriate event emitters (Figure 4).
An extensive set of emitter and listener classes for the development of new system, device and utility plugins is provided and
can be used for the accelerated integration of new components. In addition, plugin components can acquire handles to other
plugins in the system and directly access their public methods. This approach is of benefit for the integration of smaller
modular toolkits that do not require a transparent interface mechanism or should be shielded from the outside.

5. Hardware Abstraction

VirtualExplorer strictly dist
hardware abstraction layer.
to all relevant device-related
deals with the specific high
information. Device drivers
specifications. All device d
VirtualExplorer's shared me
which of VirtualExplorer's d
send or receive. This mecha
caters to the hardware ven
allowing them to provide de
the appropriate interface an
example, can be created thro
with the input device mana
listener is called (Figure 5)
hardware device but a hand
however, can be the actual h

F

Device
Emitter

registration
addListener(Listener)

emitMethod1()
Figure 4: Emitter-listener-based ev

 Layer (HAL)

inguishes between system-specific device driv
Its purpose is to provide a platform- and devic
 data without having to deal with implementat
-level interfaces to devices providing, for ex
 in turn must implement one or more of the
rivers are implemented as stand-alone proc
mory or network interfaces. Each device ha
evice types it supports. The specified device
nism provides developers with the means to a
dors that, for commercial reasons, might no
vice plugins in binary form. A user can gain a
d specifying the device vendor string. A hand
ugh an instance of the VeTracker class, whic
ger. Subsequently, whenever the device prov
. Following the idea of the HAL, the user d
le to a generic tracking device listed under th
ardware device specified, one that creates simi

igure 5: Example of device abstraction laye

notification

System Interface Driver

r

Listener
virtual method1(...)

virtual method2(...)
emitMethod2()
ent handling.

ers and device interfaces through its well defined
e-independent API to the user that provides access
ion-specific issues. The application developer only
ample, positional, orientation, and state or event
 predefined interfaces and follow their particular
esses that can send or receive data by utilizing
s to identify its unique vendor string and specify
type or types precisely determine which data it can
dd new device drivers with minimum effort. It also
t be able to follow the open-source concept, by
ccess to individual devices by simply instantiating
le to a six-degree-of-freedom tracking device, for
h then is used to register a tracker-specific listener
ides updated data the appropriate method in the

oes not actually create a handle to that particular
e specified name. The device delivering the data,

lar data, or a simulator implemented in software.

User Application
VeTracker

VeTrackerEmitte
r and m
VeTrackerListener
FastrakDriver
VeSharedMem
VeSharedMem
VeTracker(“Fastrak”)

Shared memory
essage pas
Data flow

Registra
tion
sing.

6. Visual Debugging Support for Virtual Environments

One of the problems frequently encountered during the development of vr systems is that of testing, debugging and
performance tuning all potentially complex processes of the system. The modular plugin-based approach allows the user to
simplify the studied systems by enabling and disabling components during execution time. This approach can greatly help in
identifying potential problems and the analysis of bottlenecks. However, this feature also caters to the developers of new
algorithms by allowing them to visualize their results and to modify application code on the fly, without having to restart the
system. This concept opens the door for the development of entirely new suites of plugin-based interactive development
tools.

3. CONCLUSIONS

VirtualExplorer provides an open source framework for the accelerated development and testing of complex virtual
environments. It currently offers the user a vr-enabled and Python-scriptable run-time plugin system (RPS), a hardware
abstraction layer (HAL), drivers for a variety of tracking devices, a virtual user interface API (VUI) and support for rendering
APIs, including OpenGL, Iris Performer and OpenInventor. The system was designed to be easily extensible through
additional plugin components.

4. ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation under contracts ACI 9624034 (CAREER Award), through the
Large Scientific and Software Data Set Visualization (LSSDSV) program under contract ACI 9982251, and through the
National Partnership for Advanced Computational Infrastructure (NPACI); the Office of Naval Research under contract
N00014-97-1-0222; the Army Research Office under contract ARO 36598-MA-RIP; the NASA Ames Research Center
through an NRA award under contract NAG2-1216; the Lawrence Livermore National Laboratory under ASCI ASAP Level-
2 Memorandum Agreement B347878 and under Memorandum Agreement B503159; the Lawrence Berkeley National
Laboratory; the Los Alamos National Laboratory; and the North Atlantic Treaty Organization (NATO) under contract
CRG.971628. We also acknowledge the support of ALSTOM Schilling Robotics and SGI, and thank the members of the
Visualization and Graphics Research Group at the Center for Image Processing and Integrated Computing (CIPIC) at the
University of California, Davis.

5. REFERENCES

1. Agrawala, M., Beers, A. C., Froehlich, B., Hanrahan, P., McDowall, I. And Bolas, M., "The two-user responsive

workbench: Support for collaboration through independent views of a shared space", in SIGGRAPH 97 Conference
Proceedings, T. Whitted, ed., Annual Conference Series, pp. 327-332, ACM SIGGRAPH, Addison Wesley, Aug. 1997.

2. Bierbaum, A., "VrJuggler: A Virtual Platform for Virtual Reality Application Development." MS Thesis, Iowa State
University, 2000.

3. Conway, M., Pausch, R., Gossweiler, R. and Burnette, T., “Alice: A Rapid Prototyping System for Building Virtual
Environments,” Proceedings of ACM CHI'94 Conference on Human Factors in Computing Systems, Short Papers:
Designing Interaction Objects, Vol. 2, pp. 295-296, 1994.

4. Cruz-Neira, C., "Virtual Reality Based on Multiple Projection Screens: The CAVE and its Applications to
Computational Science and Engineering", Ph.D. dissertation, University of Illinois at Chicago, May 1995

5. Cutler, L. D., Froehlich, B., Hanrahan, P., "Two-handed direct manipulation on the responsive workbench", in
Proceedings of the Symposium on Interactive 3D Graphics, pp. 107-114, ACM Press, (New York), Apr. 27-30 1997.

6. Deering, M. F., "The HoloSketch VR sketching system", Communications of the ACM, 39(5):54-56, 1996.
7. Durlach I., Mavor, A.S., Committee on Virtual Reality Research, Commission on Behavioral Development, Social

Science, Mathematics Education, Commission on Physical Sciences, and Applications, National Research Council.
“Virtual Reality: Scientific and Technological Challenges,” National Academy Press, 1994.

8. Ebert, D. S., Shaw, C. D., Zwa, A. and Starr, C., “Two-handed interactive stereoscopic visualization”, in: Proceedings of
IEEE, R.Yagel and G. M. Nielson, eds., pp. 205-210, IEEE, Los Alamitos, Oct. 27-Nov. 1 1996.

9. Galyean, T. A., “Guided navigation of virtual environments”, 1995 Symposium on Interactive 3D Graphics, pp. 103-104,
April 1995.

10. Ghee, S., and Naughton-Green, J., “Programming Virtual Worlds", ACM SIGGRAPH '94 Course, 17, 1994
11. Green, M. and Halliday, S. , A geometric modeling and animation system for virtual reality, Communications of the

ACM 39, pp. 46-53, May 1996.
12. Green, M., "Shared virtual environments: The implications for tool builders", Computers and Graphics 20, pp. 185-189,

Mar.-Apr. 1996.
13. Guiard, Y. and Ferrand, T., "Asymmetry in bimanual skills, in: Manual asymmetries in motor performance", D. Elliott

and E. A. Roy, eds., CRC Press, Boca Raton, FL., 1995.
14. Haeffner, U., Simon, A. and Doulis, M., “Unencumbered Interaction in Display Environments with Extended Working

Volume”, In Stereoscopic Displays and Virtual Reality Systems VII, John O. Merrit, Stephen A. Benton, Andrew J.
Woods, Mark T. Bolas, Editors, Proceedings of SPIE Vol. 3957, pp. 473-480, 2000.

15. Krueger, W., Froehlich , B., “Visualization blackboard: The responsive workbench”, IEEE Computer Graphics and
Applications 14(3):12-15, May 1994.

16. Landauer, J., Blach, R., Bues, M., Roesch, A. and Simon, A., "Toward Next Generation Virtual Reality Systems", Proc.
Of the IEEE International Conference on Multimedia Computing and Systems, 1997

17. Shaw, C. and Green, M., "The MR Toolkit Peers Package and Experiment.." IEEE Virtual Reality Annual International
Symposium (VRAIS 93), pp 463-469, 1993.

18. Watsen, K., and Zyda, M., “Bamboo - A Portable System for Dynamically Extensible, Real-time, Networked, Virtual
Environments”, IEEE Virtual Reality Annual International Symposium (VRAIS'98), Atlanta, Georgia, 1998.

