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High-quality Rendering of Smooth

Isosurfaces

By Eric LaMar, Bernd Hamann and Kenneth . Joy*
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Animation and visualization of rectilinear data require interpolation schemes for
smooth image generation. Piecewise trilinear interpolation, the de facto standard for
interpolating rectilinear data, usually leads to significant visual artifacts in the
resulting imagery. These artifacts reduce the confidence in the resulting visualization
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and may even lead to false interpretations of the data. This paper is concerned with

the generation of smooth isosurface image sequences, obtained by casting rays
through the image plane and computing their intersections with an isosurface. We
describe a novel solution to this problem: we replace trilinear interpolation by
tricubic interpolation, smoothing out the artifacts in the images; and we simplify the
ray—isosurface intersection calculations by rotating and resampling the original
rectilinear data in a second rectilinear grid—a grid with one family of grid planes
parallel to the image plane. Our solution significantly reduces artifacts in

individual images and leads to smooth animations. Copyright © 1999 John Wiley

& Sons, Ltd.
Received 25 May 1998; Revised 10 December 1998
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|. Introduction

With ever-increasing speed, data sets are being generated
that represent three-dimensional, volumetric information.
They arise as a result of complex computational simu-
lations or empirical data collection procedures and present
a challenge to current visualization techniques. As these
are large data sets, the approximation techniques used to
render the data produce artifacts that are visible in the
resulting images, especially in the animations. These
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artifacts frequently present misleading information about
the data and may reduce the reliability of the visualization.
It is crucial to clearly display all information contained in
a data set and not to simplify the data for the sake of
rendering ease.

Scientific data sets are typically scalar- or vector-valued
and defined on a grid in three-dimensional space. In many
cases the grid is rectilinear and the data represent either
point values associated with the nodes (or vertices) or
constant values associated with the voxels (or grid cells).
Three methods have been developed to visualize these
data sets: the construction of isosurfaces, i.e. surfaces
defining the region in space for which a particular field
variable is constant;'™ volume visualization methods,
where the algorithm casts rays through the volume,
averaging colour and opacity values along the ray;' and
splatting, which is based on projecting the voxel data onto
the image plane and considering relative depth to simulate
transparency.*™®

We describe a method based on a C'-continuous
interpolation scheme that leads to normal continuous
isosurfaces. We construct a cubic tensor product spline
interpolating the function values at the grid points,
ensuring an overall C'-continuous representation of the
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Figure 1. Ray—isosurface intersection in a voxel, The shaded area
shows the isosurface of the trilinear approximant. The bounding
curves of the isosurface on the faces of the voxel are hyperbolic
arcs

field. The algorithm extends the de facto standard of
piecewise trilinear interpolation of the data in a cell to
piecewise tricubic interpolation.

Piecewise trilinear interpolation (Figure 1) of rectilinear
data interpolates the eight data values at the corners of a
cell and yields an overall C°-continuous approximation
of a field. The resulting isosurfaces have normal dis-
continuities on the shared boundary faces of each pair of
neighbouring voxels. The resulting normal discontinuities
are clearly visible when rendering isosurfaces. Images
obtained by ray casting also suffer from the lack of
smoothness in the trilinear spline interpolation. The result-
ing artifacts, ring patterns’, are particularly disturbing in
animations of a data set.

Piecewise tricubic interpolation utilizes the 64 vertices
at the corners of a 3 X 3 X 3 array of cells and calculates
a tricubic approximant to the values within the cell. To
determine a point on an isosurface, we insert a parametric
ray equation

X bty
r(H)=p,+td=| y,+ty,

i

into the individual tricubic polynomial segments charac-
terized the field over each voxel, i.e.

et
f(xyz)= Z Z Zci,j,kxiyjzk

k=0 {=01=0

Thus we have to solve the equation
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to determine points on the isosurface f=f. This is an
equation of degree nine in f, so the intersection of a ray
with the isosurface of a tricubic polynomial requires the
solution of a ninth-degree polynomial—a difficult task.

However, if the direction vector ced of the ray r is
parallel to one of the axes of the co-ordinate system in
which f(x,y,z) is defined, then two of the values of x, y,
and z; must be zero and the intersection problem leads to
a (solvable) third-degree equation. Thus we reduce the
general ray—isosurface intersection problem by rotating
the given rectilinear grid such that one of its co-ordinate
‘directions’ is parallel to the ray direction, and by re-
sampling the field at the vertices of the ‘ray-aligned” grid.
Thus each intersection calculation is reduced to root
finding for a third-degree polynomial.

In Section 2 we review research related to this problem.
In Section 3 we review the tricubic spline that we use to
approximate a three-dimensional field. In Section 4 we
discuss the rotation and resampling steps that allow us to
efficiently render smooth isosurfaces by using axis-aligned
rays. The ray—isosurface intersection method is discussed
in Section 5. In Section 6 we discuss ray—isosurface
intersection and implementation details of the algorithm.
We present results of our approach in Section 7 and
conclude with an outlook on future work in Section 8.

2. Related Work

Two basic approaches are used in scientific visualization
for the identification, extraction and rendering of iso-
surfaces: those that generate an intermediate represen-
tation of the isosurfaces for rendering purposes; and those
that render the data directly.

The marching cubes algorithm®*” generates an inter-
mediate triangular mesh from a set of trilinear interpolants.
Considering each trilinear interpolant independently, the
algorithm determines a set of triangles that approximates
the isosurface within each voxel. The resulting triangular
mesh is displayed using conventional rendering hardware.
The number of cases to be considered for generating the
mesh within a voxel can be simplified by symmetry and
rotation to 14 cases, and the algorithm uses a look-up
table to quickly generate the triangular mesh approximat-
ing an isosurface. The marching cubes method has been
adapted to tetrahedral meshes by Shekhar et al,® where
only three cases must be considered.
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Hamann et al.’ describe a method for constructing a
‘smoother’ isosurface by fitting rational quadratic surface
patches to the triangular mesh resulting from the marching
cubes algorithm. Since the contour of the bilinear inter-
polant on a face of a grid cell is a hyperbolic arc, rational
quadratic curves can represent this curve exactly. These
boundary curves, together with boundary curves in the
interior of a grid cell, can be used to generate the control
nets of triangular rational quadratic patches that approxi-
mate the isosurface within the cell. The use of this type of
surface patch yields a ‘smoother’ isosurface, but tangent
plane discontinuities still exist at the boundaries of each
grid cell.

Levoy" introduced the concept of casting rays directly
through volumetric data to obtain transparent images. His
algorithm uses trilinear spline interpolation along with the
spline gradient to assign normal vector points along the
rays for shading purposes. In order to emphasize regions
in a three-dimensional data set where the (scalar) function
values are in a certain range, one can assign higher
weights to data in these regions by increasing their
opacity values. Furthermore, one can use the gradient to
emphasize boundaries between different ‘tissue types’:
high gradients imply such boundaries and can therefore be
used to increase the opacity of boundary regions. Levoy
describes an efficiency improvement of his algorithm in
References 10 and 11.

Several volume visualization algorithms that utilize and
render the data directly are based on transforming a recti-
linear data set so that it coincides with an ‘image space
cube’”."*"** These methods factor the viewing matrix into a
three-dimensional shear and a two-dimensional ‘warp’, thus
projecting the given data set into image space. The shear—
warp algorithm is a resampling scheme which is advan-
tageous for algorithms utilizing SIMD architectures."

Yagel and Kaufman'® present an algorithm for volume
rendering that is based on exploiting coherency between
rays in parallel projections. Rays are cast from a base
plane, which simplifies the paths through the volume in a
serial image-order algorithm, insuring uniform sampling of
the volume.

Webber'” describes an algorithm that casts rays
through the grid directly. This algorithm constructs a
biquadratic isosurface over each grid cell and intersects the
ray with this surface. This biquadratic surface is derived by
examining the 3 X 3 X 3 volume of voxels around the
target voxel and using one of the 3 X 3 sides of this voxel
array as a base for a biquadratic function. This approxi-
mating function is used for ray—isosurface intersection
tests. This method allows the derivation of a precise
intersection and a precise normal over a voxel.

Our approach combines ray-casting methods with a
tricubic spline interpolation scheme for high-quality image
generation and animation. To eliminate the root finding
for ninth-degree polynomials, we rotate and resample the
original rectilinear data set at the vertices of a grid with
one family of grid planes parallel to the image plane. We
cast rays that are normal to the image plane and thus
perform ray intersection calculations for third-degree poly-
nomials. These methods are all independent calculations
and can be efficiently implemented on a parallel processing
system.

3. Tricubic Interpolation

To solve the general ray—isosurface intersection problem,
we must compute the intersection of a (parametric) ray and
an isosurface of a tricubic approximant. We utilize cubic
tensor-product Catmull-Rom splines*® ' to represent the
scalar field for all grid cells. We briefly review this spline
scheme for the univariate case.

Given a set of scalar values f,, f,, ... f, the univariate
cubic Catmull-Rom spline is a piecewise cubic polynomial
function

f) =73 fi(X)F;(x)
i=0

where each f(x) is a function of the values f, and F(x)
denotes a set of blending functions.'® The functions f(x)
depend on the f; values but are allowed to vary with x.
Catmull and Rom discovered that certain choices of the
functions f,(x) allowed the curve to interpolate the control
points f,.

For our application it is sufficient to assume that the
knots of the spline curve are the integers; then, by utiliz-
ing the basis functions Fi(x)Z(x—LxJ)i, we can obtain
an interpolating spline segment (see the discussion in
Reference 18) by setting f(x)=0 for j<1_xJ —1 and
j >|x]+2, and

fi-1(x) fi1
|, 1

fer1(x) fret
fis2(x) )

where k=|xJ* and

* 1] denotes the floor of x, the greatest integer less than x.
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Figure 2. A Catmull—Rom spline. The curve interpolates the control points at integer values of the parameter. The slope of the curve at
the integer knots is given by the central difference of the two values on either side of each knot

i ! 0 1 0

== Bt =0 1

Thus one can write f(x) as

flxy=11 2~k (- G-DisM.

k+1
fk+2

where k=[x For x=k the spline interpolates the point £,
and the derivative at x=k is 3(fi4; — fi— ). Figure 2
illustrates a Catmull-Rom spline scheme.

A segment of the Catmull-Rom spline can also be
written as

3
flx)= Z foJ+i—1Ci(x_ LX)
i=0
where

[Co(x) C1(x) Cz(x) C3(I)]
=1 aon’  ahMe

and the functions Cj(x) denote the Catmull-Rom basis
functions.

We can bound the values of a Catmull-Rom spline for
a particular knot interval by converting it to Bernstein—
Bézier form. This conversion is given by

fi-1
fe

fk+l
fk+2

f(x)=[Bo(x) B,(x) B,(x) By(x)]1xM;'M,

where

1 0 0
=3 3 0
Mg=
3 6 0
=i 3= i

The matrix M converts from the cubic power basis to the
Bernstein basis B,-(Jc).19 The convex hull property of Bézier
curves ensures that each segment of the spline lies
between the minimal and maximal values of its four
defining Bernstein—Bézier control points. The Bernstein—
Bézier ‘control coefficients’ are given by

b1 fr-1
b

S
bis 1 fre+1
b+ fie+2

We define I as the smallest interval containing all four
values b, _,, b, by, and b, ,. The convex hull prop-
erty ensures that the curve f(x) is contained within the
interval L

The univariate Catmull-Rom spline can be extended to
the trivariate case by constructing a tensor-product spline.
In the trivariate case an individual tricubic segment is
given by

380
f(x/]/,Z): Z Z ZfoJ+i—1,LyJ+j—1,LzJ+k—1

k=0j=0i=0

Cax LxJ)Cj(y_ LY DC(z—z))

We use this spline scheme to represent a piecewise tricubic
approximation of a scalar field. We must consider a stencil
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of 64 data values to define the Catmull-Rom spline for a
particular grid cell. These 64 data values include the scalar
values at the corners of a grid cell C and the scalar values
at the corners of the 26 neighbouring cells sharing at least
one vertex with C. The 64 values are the set

{f,-,j/k: ie {L> 1L w2l
€ oL dut2t ke (gt Roe2)}

where f, ; . is the value at the vertex of C with minimum
i, j, k indices. Again it is possible to determine the range of
function values for a particular tricubic polynomial by
converting it to Bernstein—Bézier form and computing the
minimal and maximal coefficients.

4. Rotation and Resampling

We use ray tracing as the mechanism for finding and
rendering an isosurface of a trivariate scalar function.
Suppose we are to render the isosurface defined by the
expression

3 3 % |
Kxyz)=3 ¥ ¥y =f V)

k=0j=0i=0

for a particular voxel. We must intersect the ray

Xo Xy
r(t)=po+td=| y,+1ty, 2

Zot iz,

with the isosurface f=f. To intersect r(f) with the iso-
surface, we substitute the x, y and z values of equation (2)
into equation (1) and obtain, in general, a polynomial of
degree nine in f. We reduce this problem to solving a
third-degree equation by using rays that are aligned with
the z axis, e.g. x;,=y,=0.

Our algorithm is an image space algorithm, i.e. we cast
rays through each pixel in the image plane I and find
intersections with an isosurface. A ray perpendicular to the
image plane I is cast through the source grid S (see Figure
3). We replace the grid S by a second rectilinear grid T, a
grid with one family of grid planes parallel to the image
plane. Rotating grid S into grid T allows us to perform
ray—isosurface computations with axis-aligned rays (see
Figure 4).

The rotation of S into T is effectively performed by
resampling the scalar field approximation at the vertices of
T, i.e. we must approximate new function values for the

r(1)

Ty

Figure 3. Casting rays through the grid S. Ray r(t) passes
through a pixel centre in the image plane 1 and intersects the
arbitrarily oriented grid cells of S

r(t)

Figure 4. Definition of the grid T. One family of grid planes of

T is parallel to the image space plane 1. Ray r(t) is axis-aligned

with T. After resampling at the vertices of T, ray tracing can be
performed with axis-aligned rays

vertices of each cell in T from the original values at the
vertices in S. These resampling problems arise in many
visualization applications and can be resolved in a number
of ways."*'*?°22 We compare three different approxi-
mation techniques for the estimation of function values at
the vertices of T: (1) trilinear approximation; (2) tricubic
spline approximation using the Catmull-Rom spline; and
(3) Hardy’s multiquadric method.?***

Trilinear interpolation is the standard technique used to
estimate function values for rectilinear data sets. In this
method the function value for a vertex p of T is
approximated by trilinearly interpolating the eight values
at the vertices of the cell in S that contains p (see Figure 5).
and z,, p’s
local parameter values with respect to the cell in S
containing p are

Denoting the co-ordinates of p in S by A

u=xp G |_x J
o=y, Ly | 3)

w=zp Vi) ZPJ

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006000080

Copyright © 1999 John Wiley & Sons, Ltd.

. Visual. Comput. Animat. 10: 79-90 (1999)



E. LAMAR, B. HAMANN AND K. [. JOY

Visualization &

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

.
.
» ’
* ’
[ o o o
oSN S
S
,
N
>
k
<P,
i
<
~
A B
]
~ K s
i
<
s
o
IL\ P
N
o - o>

Figure 5. A two-dimensional illustration of resampling in three
dimensions. Given a vertex p of the grid T, trilinear approxi-
mation uses the eight vertices of the three-dimensional grid cell in S
containing p to approximate a function value at p. Tricubic spline
approximation and Hardy's method use the 64 vertices of S in the
stencil of the cell containing p to approximate a function value

Thus the function value f(p) is

1 1 1

fipr= 0 3 & fixps+typat iuzps+ic X Li() Ly (@) L (w)

k=0j=0i=0

where the Lagrange polynomials are Ly(H=1—+ and
L(O=¢

We can extend the trilinear spline approximation
scheme to tricubic spline approximation by using the
Catmull-Rom spline. In this case the function value for a
vertex p of T is approximated by considering the 64
vertices of the ‘stencil cell’ in S associated with the cell
containing p. If u, v and w denote the local parameter
values of p (equation (3)), then the function value f(p) is

3 Jress

fP)= X T X fupttoptiveprr X GIC;@IC(w)

k=0j=0i=0

where C(f) denotes the cubic Catmull-Rom blending
functions.

Hardy’s multiquadric method®**™®° is a standard
scattered data approximation scheme. It is used in cases
where the data sites are randomly distributed and
(typically) no connectivity information is known for the
data sites. Hardy’s approximant smoothly interpolates the
values at the data sites and we use it for estimating
function values for the vertices of the T grid.

Computer Animation

Given a vertex p in the T grid and n vertices p, py, - - -
p, of S, with associated function values f,, f;, ... f,
Hardy’s multiquadric interpolant is defined by the linear
system

f,i=Y an/Up,~-P:D2+R?, j=0,...n
i=0

and the estimate at p is

fip)=Y a;i/Up—pil)>+R?
i=0

where R” is some positive constant. The computation of
the coefficients «; requires the
(n+1) X (n+1) matrix.

If p is a vertex of the grid T, we consider the 64 data
sites given by the vertices of the ‘stencil’ in S of the cell
containing p (see Figure 5). Assuming that the spacing of
the S grid is uniform, the distances |[p; — p/|| are the same
throughout the grid and one needs to invert the 64 X 64

matrix only once. Hardy’s method is considerably slower

inversion of an

than the tricubic spline approximation owing to the
computation of the square roots. The visual results of the
two approximation schemes are similar.

5. Ray-isosurface Intersection
Tests

To intersect the parametric ray r(f) = (x,,yo,2zot fz,) with the
isosurface

3 3 3
fry2)= 2 Y X cyuxyz'=0 4)
k=0j=0i=0

we substitute the co-ordinate functions for x, y and z into
equation (4), leading to the (normalized) cubic equation

F+a+bt+c=0 (5)

To find the roots of this equation, we use Cardan’s
solution,®® which first transforms equation (5) by
substituting s=f — a 3, leading to the polynomial

s3+p5+q (6)

where

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000F0CF
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Equation (6) has three roots. The characteristics of these
roots are determined by the discriminant of the cubic
equation

D=4p’+274°

which leads to three cases.

® If D>0, then the cubic equation has one real root and
two complex roots. The single real root is given by

s;=A+B

where

b
Il
=
+
g

o~ ]

II
NS

+

EERSE

® [f D<0, then the equation has three different real roots.
The roots are given by

51=kcos<
2n+a
=k
5, cos( 3 )
1 o

)

Wl KR

e~
K

s3=kcos(

where

® If D=0, then the equation has three real roots, of which
two are equal. The roots are given by

where s, is the double root.

To accelerate the ray—isosurface intersection compu-
tations, we store an interval with each grid cell in T, which

represents a lower and an upper bound of the function
values within the cell. The Catmull-Rom interpolants are
polynomial splines and we find the lower and upper
bounds by determining minimal and maximal spline coef-
ficients of the corresponding Bernstein—Bézier represen-
tation (see Section 3). If, for a given grid cell, the desired
isosurface value is outside the interval associated with this
cell, then the cell cannot contain any part of the isosurface.

We also store intervals for each ‘column of grid cells’.*
Thus a ray can intersect an isosurface in a grid cell of a
particular column only if the column-specific interval
contains the particular isovalue. The calculation of lower
and upper bounds turns out to be beneficial for ‘sparse
data sets’, ie. data sets containing large homogeneous
areas or thin features.

6. Implementation

The algorithm requires an initial grid S and an isovalue f
and it outputs an image of the isosurface f=f. To reduce
sampling artifacts, we use a resolution for the grid T that
is at least twice the resolution of the S grid (Nyquist limit)
in each direction.””?®* We estimate function values in T
from those in S by using one of the sampling methods
discussed in Section 4. We compute intervals for each grid
cell in T and intervals for each column of grid cells in T.

For each pixel in the image plane we case a ray r(f) into
the grid T. If the column-specific interval of the column of
cells intersected by r(f) does not contain the specific
isovalue, we skip to the next pixel. Otherwise, for each
grid cell intersected by the ray, examine the intervals for
each cell and determine whether the isosurface exists
within the cell. If the interval bounds the isovalue, trace
the ray through the grid cell and determine the possible
intersections with the isosurface. If the ray intersects the
isosurface, then we compute the intersection closest to the
image plane and shade the surface using the gradient of
the isosurface. Ray tracing terminates when all pixels have
been processed.

We have implemented our algorithm on several Silicon
Graphics workstations, including systems with multiple
processors. Our implementation takes advantage of
multiple processors by executing all compute-intensive
activities in parallel. We have found a near-linear speed-up
between the implementation on an SGI O2 (single-
processor system) and an Origin 2000 (16-processor
system).

*A column of grid cells in T consists of all the cells of T intersected by
an axis-aligned ray.
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Figure 6. Artifacts generated from the algorithm and from the data in the skull data set. The artifacts inherent to the data are the ring
patterns, while the artifacts with the algorithm are the vertical patterns in the image

Figure 7. Skull data set rendered with trilinear sampling in the rotation step and tricubic interpolation in the ray-tracing step. Notice
that most of the artifacts remain in the image

The mapping of source grid vertices to target grid
vertices is done in parallel. The mapping of vertices is
structured such that the size of the needed memory stride
is kept at a minimum. Each processor runs to completion
and waits until the other processors are done. We have
experienced that the difference in completion time,
considering all processors, is usually less than 10 per cent.

The ray—isosurface intersection calculations are paral-
lelizable as well. Since rays may pass through different
numbers of grid cells and since different types of compu-
tations may be performed, we use a more sophisticated
load-balancing scheme: we use a job queue that consists of
scan line indices. A processor reads a scan line index from
the job queue and casts rays for all the pixels in the scan

line. The time needed to acquire and update the job queue
is very small compared with line scanning.

7. Results

Figure 6 shows the data set and artifacts that brought this
research problem to our attention. This data set is the result
of a computerized axial tomography (CAT) scan of a skull.
The size of the data set is 64 X 64 X 68 and its small
resolution produces artifacts in the renderings. These arti-
facts are the ‘circular’ patterns shown in Figure 6. However,
when we rendered the skull using conventional techniques,
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Figure 8. Skull data set rendered with Hardy sampling in the rotation step and tricubic interpolation in the ray-tracing step. Note that
the artifacts are reduced but are slightly blurred

Figure 9. Skull data sef rendered with tricubic sampling in the rotation step and linear interpolation in the ray-tracing step. One can see
a substantial reduction in the artifacts generated by the algorithm

we obtained artifacts that were not inherent to the data.
These are also visible in Figure 6 as the vertical ‘stripe’
pattern. When animated, the artifacts inherent to the data
set stay fixed but the stripe artifacts ripple and move.
Figures 7—10 illustrate our methods as applied to this
data set. Figure 7 illustrates the effect of trilinear sampling
in the rotation step and tricubic interpolation in the
ray-tracing step. We note that most of the artifacts due to
the algorithm remain in the image. Figure 8 illustrates the
effect of tricubic sampling in the rotation step and trilinear
interpolation in the ray-tracing step. Here most of the
artifacts are muted but still visible. Figure 9 illustrates the
effect of Hardy sampling in the rotation step and tricubic
interpolation in the ray-tracing step. In this image the
artifacts due to the algorithm are muted but the data

artifacts look blurred. Figure 10 illustrates the effect of
tricubic sampling in the rotation step and tricubic inter-
polation in the ray-tracing step. The artifacts have nearly
disappeared.

In animation these vertical bands appear to move and
pulse across the isosurface. In an animation generated with
tricubic sampling and tricubic interpolation in the ray-
tracing step, the images appear smooth and very few
artifacts are visible.

8. Conclusions

We have discussed a new method for rendering smooth
isosurfaces of trivariate scalar fields using C'-continuous
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Figure 10. Skull data sef rendered with tricubic sampling in the rotation step and tricubic interpolation in the ray-tracing step. The

artifacts are nearly gone

(a)

(b)

Figure 11. Equine metacarpal data set. (a) Using tricubic sampling and trilinear interpolation in the ray-tracing step. Note the bands
running diagonally through the image. (b) Using tricubic sampling and tricubic interpolation in the ray-tracing step. The banding has
effectively disappeared

spline functions with an efficient ray-tracing scheme.
We have shown how a rotation—resampling approach
can be used to reduce the complexity of ray—isosurface
intersection calculations.

We plan to develop error metrics to characterize and
quantify the error introduced during the rotation—
resampling phase. We shall develop better methods to
identify grid cells containing isosurfaces, more efficient
ones than our current linear search scheme. We intend to
apply our technique to other volume visualization tech-
niques, e.g. Levoy’s method, and possibly to the rendering
of vector fields. We also will investigate the elimination of
the rotation steps in this algorithm.*’

If a data set has the same value over large regions,
methods to smoothly approximate these regions by
high-degree schemes do not improve smoothness: they
require many unnecessary coefficients to be stored.
Adaptive methods, such as an octree-based approach,
could possibly be used to determine regions that
hardly vary, and we could use low-degree schemes
in such regions. Additional work must be done to
improve the ray-tracing phase of the algorithm: there
is a high degree of correlation among ray—isosurface
intersections for adjacent pixels, which we do not con-
sider at this point. We plan to investigate this in the
future.

Copyright © 1999 John Wiley & Sons, Ltd.
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(a)

(b)

Figure 12. A second view of the equine metacarpal data set. (a) Using tricubic sampling and trilinear interpolation. (b) Using tricubic
sampling and tricubic interpolation. Again the banding virtually disappears
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(b)

(d)

FIGURE 6: A comparison of trilinear and tricubic sampling using the skull data set: (a) Trilinear sampling; (b) tricubic
sampling; (c) the image in (a) filtered with a Sobel operator; and (d) the image in (b) filtered with a Sobel operator. The
two images were rendered using trilinear interpolation in the ray-tracing step.



