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ABSTRACT

We present a multiresolution technique for interactive texture-based volume visualization. This method uses an
adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume further away from
this region at progressively lower resolutions. We use indexed texture maps, which allow for interactive modification
of the opacity transfer function. Our algorithm is based on the segmentation of texture space into an octree,
where the leaves of the tree define the original data and the internal nodes define lower-resolution approximations.
Rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells
away from this area. We limit the artifacts introduced by this method by modifying the transfer functions in the

lower-resolution data sets and utilizing spherical shells as a proxy geometry. It is possible to use this technique for
viewpoint-dependent renderings.
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1. INTRODUCTION

The capabilities of computing technology have steadily increased for more than four decades and continue to increase
rapidly. These increased computing capabilities have enabled applications to scale accordingly in overall throughput
and resulting data set sizes. However, current visualization techniques break down when operating in this environment

due to the massive size of today’s data sets. New techniques are necessary to provide exploration of very large and
often multidimensional data sets.

In this paper, we combine hardware-assisted texture mapping and color table lookup with multiresolution methods
for rendering large volumetric data sets. Texture mapping is substantially faster than software-based approaches, and
color lookup tables allow for easy manipulation of transfer functions. The multiresolution principle assigns priorities
to different regions of the volume and renders “high-priority regions” with highest accuracy, while “low-priority”
regions are rendered with progressively less accuracy and progressively faster.

We use an octree to decompose texture space and produce several coarser levels of an original data set. Each
level is associated with a level in the octree, and each level is half the resolution of the next level. The leaf nodes are
associated with the original resolution and the root node with the coarsest resolution. Interior nodes are created by
subsampling a node’s eight child nodes. Each value in the texture map is an index, not an RGBA tuple; the transfer
function is applied as the texture map is transferred to texture memory.

Rendering a volume involves traversing the octree and applying a selection filter to each node. Three results are
possible: (1) The node (and its children) are skipped entirely; (2) the node is skipped, but its children are visited:
or (3) the node is rendered, and the children are skipped. The selected nodes are then sorted in back-to-front order.

Finally, for each node, the algorithm builds and transfers the color lookup table, transfer the texture map, and render
the proxy geometry.

Section 2 contains a survey of related work; section 3 discusses data issues for the multiresolution representation
of textures, and Section 4 addresses the rendering of these textures. Section 5 discusses issues of static and indexed

texture maps. Section 6 shows results for two data sets and lists performance results. Conclusions and future work
are presented in Section 7.
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2. RELATED WORK

High-performance computer graphics systems are evolving rapidly. Silicon Graphics, Inc. (SGI) has been a primary
developer of this rendering technology, introducing the RealityEngine! graphics system in 1994 and the InfiniteRe-
ality'? graphics system in 1998. SGI has also extended the graphics library OpenGL!!s1* to take advantage of this
hardware. These systems were among the first to support hardware-based rendering using solid textures.

Cabral et al.? show that volume rendering and reconstruction integrals are generalizations of the Radon and
inverse Radon transforms. They show that the Radon and inverse Radon transforms have similar mathematical
forms, and, by developing this relationship, show that both volume rendering and volume reconstruction can be
implemented with hardware-accelerated textures. Their algorithms execute faster than traditional software-based

approaches. Cullip and Neumann? discuss general implementation issues for hardware textures. Their work illustrates
the superiority of viewport- versus object-aligned sampling planes.

Wilson et al.!® and Van Gelder and Kim?!6 develop the mathematical foundation for generating texture coordi-
nates. Van Gelder and Kim!® also introduce a quantized gradient method for shading. Here, a triangulated sphere
describes quantized normals which, when coupled with a quantized set of material values, allows the construction of
a lookup table. For each new scene and texture block, the current viewing and lighting parameters are applied to
the lookup table, and the lookup table is applied to the texture map as it is transferred to the texture subsystem.

They report interactive rates, both for orthographic and perspective projections. However, low-gradient regions show
traditional quantization artifacts.

Westerman et al.!” show how to visualize isosurfaces resulting from rectilinear and unstructured grids. They
use fragment testing to draw only those pixels that have a density value above a given threshold. Rectilinear grids
are rendered by solid-texturing, which is known to be much faster than the unstructured grid method. They also

demonstrate how to shade the texture-based isosurfaces with a technique that performs the shading as the texture
map is transferred to the texturing subsystem.

Grzeszczuk et al.® enumerate most methods for using hardware-accelerated texturing to provide interactive volume
visualization. They also introduce a library for texture-based rendering called Volumizer.?

Massively parallel computers have been used to provide interactive volume visualization and isosurface extrac-
tion.®"/%:13 Both ray-tracers and marching-cubes algorithms have been implemented and both are parallelizable.
The overhead of data distribution and image composition is very high and requires careful partitioning and tuning.

Shen et al.'® discuss a temporally-based multiresolution scheme for volume visualization of unsteady data sets.
They use image caching that allows fast rendering but the caching is not viewpoint independent so images must be
recomputed for new viewpoints. LaMar et al.? introduce multiresolution techniques on which this work is based. They

show that multiresolution techniques, applied to large data sets and volume rendering, are a reasonable approach to
reducing both rendering time and amount of data rendered.

Our method differs from these prior approaches in the sense that we allow adaptive rendering of a volume and
interactive manipulation of the transfer function. Prior algorithms assume that the data is “uniformly complex” and
“uniformly important”; they also assume that a “standard” transfer function is sufficient or that memory is available
to store several transformed data sets. This is not the case, for example, in an immersive environment, where a
user is exploring unknown data: first, the data closer to the viewer has more visual importance than data far away;
second, a viewer cannot know in advance what transfer function will work, so it must be possible to experiment.
Also, quality should be a “tunable” parameter: if a graphics supercomputer is not available or a user just wishes to
quickly browse a data set, then the user will be satisfied with a poorer rendering quality.

3. GENERATING THE TEXTURE HIERARCHY

In hardware texture algorithms, linear interpolation is used to interpolate the values at the centers of adjacent pixels.

A larger texture can be broken into a set of smaller textures or tiles, where interior edge pixels are duplicated between
adjacent tiles. This technique is called “bricking”.’

Figure 1 shows a one-dimensional texture hierarchy of four levels. The top level, level 0, is the original texture,
broken into eight tiles, level 1 contains four tiles at half of the original resolution, and so on. The dashed vertical lines
on either side show the domain of the texture function over the hierarchy. Arrows show the parent-child relationship
of the hierarchy, defining a binary tree, rooted at the coarsest tile, level 3. The bold vertical line denotes a point of
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Figure 1. Selecting from a texture hierarchy of four levels. Level 0 is the original texture, broken into eight tiles.
The dashed lines show the domain of the texture function over the hierarchy. The bold vertical line represents a
point of interest p. Tile selection depends on the width of the tile and the distance from the point.

interest, p, and tiles are selected when the distance from p to the center of the tile is greater than the width of the
tile. One starts with the root tile and performs this selection until all tiles meet this criterion, or no smaller tiles
exist®. The bold vertical arrows show tiles selected and correspondence in the final image.
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Figure 2. Selecting tiles in two dimensions from a texture hierarchy of five levels (Level 4 is not shown). Given the

point p, tiles are selected when the distance from the center of the tile to p is greater than the length of the diagonal
of the tile. The selected tiles are shaded.

Figure 2 shows a two-dimensional quadtree example. The original texture, level 0, has 256 tiles. The darker
regions in each level show the portion of that level used to approximate the full image. The selection method is
similar to the one-dimensional case: a node is selected when the distance from the center of the node to the point
p is greater than the length of the diagonal of the node. The original texture, divided into 256 tiles, requires 256
time units to render. The adaptive rendering scheme requires 49 time units, which translates to a speed-up factor of
approximately five. This scheme can easily be used for three-dimensional textures using an octree.

How much memory is “wasted” by breaking a volume into tiles? The waste is generated by the outer layer of

*This is the case on the left side of Figure 1.
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voxels, which 1s shared by adjacent tiles. If a brick has size n (n® voxels) and is surrounded by a half-voxel layer of
duplicate voxels, the effective size of a brick is n — 1, and there are n® — (n — 1)® “waste voxels”. The waste relative
to the tile size is O(n?/n®) = O(n~'), which means that the relative waste decreases as the tile size increases' . For

example, if we choose a tile size of 643, the tile contains 262, 144 voxels, 250,047 effective voxels and 12,097 waste
voxels.

4. RENDERING \

The rendering phase is divided into three steps: (1) selecting tiles to render; (2) sorting the tiles; and (3) rendering
the tiles using a proxy geometry.

4.1. Selecting Tiles

The first rendering step determines which tiles will be rendered. The general filtering logic starts at the root tile and

performs a depth-first traversal of the octree. For each tile, we evaluate a selection filter, which returns one of three
possible responses:

e Ignore this tile and all of its children. This response is used to cull the tree. For example, if a tile is not in the
view frustum, then we can ignore the tile and its children.

e The tile satisfies all criteria. In this case, the tile is rendered, and its children ignored.

e The tile does not satisfy the criteria. In this case, the children of the tile are checked.

Our primary selection filter is based on one of these two criteria:

¢ Field-of-View (FOV) criterion. Selects a tile if it intersects the view frustum and the projected angle of
the tile is less than half the view frustum’s field-of-view angle.

* Cone criterion. Selects the highest-resolution tiles within the viewing frustum. Its primarily use is to
determine the speedup factor of the Field-Of-View criterion.

Tiles are sorted and composited in back-to-front order. We order tiles with respect to a view direction such that,
when drawn in this order, no tile is drawn behind a rendered tile. The order is fixed for the entire tree for orthogonal

projections and has to be computed just once for each new rendering.® For perspective projections, the order must
be computed at each node.

4.2. Proxy Geometries

Texture-based volume visualization requires proxy geometries on which the texture is rendered: we use viewpoini-
centered spherical shells (VCSSs) ~ finely tessellated concentric spheres surrounding the viewpoint and culled to the
view frustum. VCSSs are implemented with three-dimensional textures and using concentric spherical shells centered
at the viewpoint, which are culled to the view frustum. This technique does not produce artifacts under perspective
projections, but it is slower than traditional techniques.® Figure 3(a) illustrates multiresolution VCSSs. In Figure
3(b), the viewpoint is on the left-hand side, almost touching the volume. The sample interval is exaggerated to show
the structure — one shell every two voxels. Using this approach, one can achieve continuity across tile faces.

4.3. Preserving Visual Properties

When rendering tiles at different levels of the hierarchy, the opacity properties of the tiles are different. Classical
rendering algorithms'® depend on using the same sampling? along rays for each pixel. But in the context of a
multiresolution format, the volume is sampled in different ways, and at varying resolutions. To preserve lighting

and opacity properties between tiles of different resolutions, we must modify the transfer functions for those tiles
generated by subsampling .

'The total waste still increases.
!Same number of samples and same spacing between samples.



Figure 3. Viewpoint-Centered Spherical Shells (VCSS)
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Figure 4. When space is sampled at two different resolutions, the colors C and C* should be the same.

Figure 4 shows an example where a texture is sampled with spherical shells at two different resolutions — one is half
the resolution of the other. Each sample s; has an associated color ¢; and an opacity value «;. The light emitted by
s; 1s a function of the incoming light and the color and opacity propertles of the sample itself. According to Levoy,'°

the color C' resulting from the high-resolution samples sg, 51, 52, . .. is

C = aoco + (1 — ao)Ch, (1)
where C; is the incoming color from samples s, s, .. ., i.e.,

Cr=aic; + (1 = a1)0s, (2)
where C is the incoming color from samples 53, 53, .. .. For the low-resolution samples sq, ss, 4, . . ., the color C* is
given by

C* = ageo + (1 - a5)C3, (3)

where C7 is the color calculated as a result of the samples sy, s, . ..

By considering only the first three samples sq, s1, and s2, the colors to be compared are C and C*, where

C= agpco+ (1 — ao)a1C1 + (1 - ao)(l — Ch)Cg and (4)
C* = agco+ (1 - a})Cs.

These two colors, in general, are different. We now describe a method to correct for this.

The accumulated opacities A and A*, are given by considering only samples sg, 51, and so,

A + (1 — ap)ay + (1 — ag)(l — a1)A2 and (5)
A* = o5+ (1 - af)As.
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Assuming that the accumulated opacities are equal at the even-

indexed samples, it follows that Ay = A%X. The
requirement A = A* implies that

C!o-i—(l—-ao)al+(1—a())(1—a'1)A2 :aB’+(1~—a€)A2. (6)

Solving this equation for o, one obtains

af = + (1 = ap)ay
S e (7)

By assuming that a; = ag + ¢, where ¢ is a very small number, we obtain the equation

of =1-(1-ao)(1- ag)+ ¢l - ag),

= 1- (1~ ao)? + O(e). (8)

Therefore, to correct for the unequal sampling, we modify the transfer function of the lower-

resolution texture by
using the value

o*=1-(1-a) (9)

This correction value reduces the artifacts between the texture bricks.

This formula is used when generating the
texture lookup table from the transfer function.

5. STATIC AND INDEX TEXTURE MAPS

shaded” texture maps. The data is transformed by the transfer function, from a byte to
an RGBA tuple, then stored in a texture map. Opacity correction is also applied at this step. This technique is useful
since one can freely choose the transfer function. For example, opacity may be a function of the gradient. Transferring
a static texture to the texture subsystem is very fast as no further transformations are necessary. However, it is very
slow since the transfer function is implemented in software, which requires that all data be touched for each new
transfer function.? Lastly, static texture maps require two or four times as much memory as an index texture map.
The static texture map uses a byte for each RGBA value, or four bytes per texel, while index texture maps use one

or two bytes per texel. For these reasons, this technique is inappropriate for situations where one may use a large
number of different transfer functions.

Static texture maps are “pre-

Index texture maps are stored directly in the texture maps
deferred until building the lookup table. Though performed in s
performed once and mostly involves moving memory. Transferri
is more involved. A texture lookup table is built and transferred
translates the index for a value for each of the RGBA channels
The texture lookup table is quite small, 256 to 65536 entries¥

Subsequently, the texture map is transferred and the texture s
each texel.

, interpreted as an index. Opacity correction is
oftware, this step has very little overhead as it is
ng an index texture map to the texture subsystem
to the texture subsystem; the texture lookup table
. This is performed in hardware and is very fast.
, and can be updated easily and quickly in software.
ubsystem translates that index to an RGBA tuple for

6. RESULTS

We have implemented our algorithm and applied it to several complex data sets. All data sets were rendered on an

SGI Onyx2 computer system with 512MB of main memory, 2GB of swap, and 16MB of texture memory, using a
single 195Mz R10000 processor.

Figures 5a to 5d show an Equine Metacarpus data set. This is a CT scan data set and consists of 1082 x 126
voxels. Each tile contains 163 texels. The number of tiles for levels 0 to 3 are: 448, 64, 8, and 1; for a total of
921 tiles. The memory requirements for static textures, with 16% x 4 = 16384 bytes per tile, is 8 MB. The memory

$The results can be cached, for each transfer function, but at a very high memory cost.

TAt 4 bytes per entry, this results in 1024 bytes to 256 KB; compared to a 1024° static texture map, which requires 4GB.
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Figure 5. Equine Metacarpus data set. Image size is 5002 pixels.

Static Texture Maps " Index Texture Maps
Data Set Size 108% x 126
Tile Size 162 texels
Tiles at Level 0 448
Tile Time 25.3 sec. 5.1 sec.
Memory Used 8 MB 53 A MB
Filter Cone FOV Cone FOV
Number Of Tiles || 432 148 433 150
Rendering Time || 10.72 sec. | 5.1 sec. 9.94 sec. | 4.93 sec.

Table 1. Rendering statistics for the Equine Metacarpus data set. Times are in seconds.
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requirements for index textures, with 163 x 2 = 8192 bytes per tile, is 4 MB. Images 5(a) and 5(c) were rendered
using static texture maps, while images 5(b) and 5(d) were rendered using index texture maps. Images 5(a) and 5(b)
use tiles from the Cone filter; images 5(c) and 5(d) use tiles from the FOV filter. Note that while the rendering times
are roughly the same, index texture maps require 5.1 seconds to generate all tiles (
once. Static texture maps require 25.3 second to generate all tiles, and this must
function is changed. Statistics concerning the rendering times for this data set are

“Tile Time”), and is done only
be done every time the transfer
given in Table 1.

Data Set Size 500° x 768
Tile Size 64° texels
Tiles at Level 0 1053

Tile Time 1049 sec.
Memory Used 637 MB
Filter Cone FOV
Number of Tiles | 593 47
Rendering Time | 25.4 sec. | 2.47 sec.

Table 2. Rendering statistics for the Raleigh-Taylor instability data set. Times are in seconds.

Figures 6a to 6h show a Raleigh-Taylor instability data set. This data set is a single time step from a simulation
and consists of 5002 x 768 voxels. Each tile contains 643 texels. The number of tiles for levels 0 to 4 are: 1053, 175,
36, 8, and 1; for a total of 1273 tiles. For index textures, this requires 1273 x 643 x 2 = 637 MB of memory. Images
6(a), (¢), (e), and (g) are rendered using tiles selected by the Cone filter, requiring 593 tiles. Images 6(b), (d), (f),
and (h) are rendered using tiles selected by the FOV filter, requiring only 47 tiles. The while grid lines show the
tile boundaries. Images 6(c), (¢), and () and images 6(d), (f), and (h) are rendered in perspective. Images 6(a)
and 6(b) are rendered orthographically. The yellow pyramid is the viewing frustum of the perspective projections
and the white and blue boxes show the tiles boundaries. The fixed resolution images, 6(c)
approximately 25 second to render, while the multiresolution images, 6(d), (f), and (h), each require about 2.5
seconds to render. Statistics concerning rendering times for this data set are given in Table 2.

)

, (¢), and (g), each require

We were not able to render a static texture map version of the Raleigh- Taylor instability data set. However, the
Equine Metacarpus data shows the timing issues. We should also note that the Raleigh-Taylor instability data set
“Tile Time” also includes a reasonable amount of time lost to swapping. However, the render time includes the time
to change the transfer function. If we extrapolate the time (from the Equine Metacarpus Static vs. Index “Tile
Time”) to regenerate the tiles for a static texture map version, the “Tile Time” should be about 5245 seconds (88
minutes); this is clearly not a reasonable amount of time if one wishes to experiment with the transfer function.

7. CONCLUSIONS

We have described a new method for building and rendering a multiresolution texture hierarchy approximation for
very large data sets where the transfer function can be modified interactively. The approach utilizes a “bricking”
strategy, where the displayed bricks are selected from an octree representation, and index texture maps, where the
transfer function applied with a color lookup table. The color lockup table is significantly faster than prior methods
and provides a better basis for exploring very large data sets. Despite the fact that our overall system is limited
by the amount of available texture memory, the algorithm produces very good results, and we expect that this
approach will have a major impact on the huge volumetric data sets that are currently encountered in numerous

applications. Future work involves removing the artifacts between tiles of different resolution and rendering pre-
segmented biological data sets.
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