
Image Compression Using
Data-Dependent Triangulations

Burkhard Lehner1, Georg Umlauf1, and Bernd Hamann2

1 Department of Computer Science, University of Kaiserslautern, Germany
{lehner,umlauf}@informatik.uni-kl.de

2 Institute for Data Analysis and Visualization (IDAV) and Department of
Computer Science, University of California, Davis, USA

hamann@cs.ucdavis.edu

Abstract. We present a method to speed up the computation of a
high-quality data-dependent triangulation approximating an image using
simulated annealing by probability distributions guided by local approx-
imation error and its variance. The triangulation encodes the image,
yielding compression rates comparable to or even superior to JPEG and
JPEG2000 compression.

The specific contributions of our paper are a speed-up of the simulated
annealing optimization and a comparison of our approach to other image
approximation and compression methods. Furthermore, we propose an
adaptive vertex insertion/removal strategy and termination criteria for
the simulated annealing to achieve specified approximation error bounds.

1 Introduction

Storing and transmitting images often requires large amounts of memory or high
bandwidths. Good compression algorithms are necessary to reduce these bottle-
necks. Lossless compression of images does not provide the necessary compression
rates. Therefore, often lossy compression algorithms are used that achieve high
compression rates, but cannot reproduce the image data exactly.

The approach presented in this paper uses a piecewise linear, C0 approxima-
tion of the image by a triangulation of the image domain. Storing or transmitting
this triangulation requires only little space or bandwidth. It has the advantage
that affine transformations of the image can be performed very efficiently by
applying the transformation to the vertices of the triangulation only. Therefore,
the encoded image can easily be displayed on screens of different resolutions.
Small screens of mobile phones or other hand-held devices and large screens
like power walls can be used. Since the approximation is a C0-continuous vector
based format, scaling the image to a large resolution does not cause sawtooth
distortions. Smoothing of the image is not necessary.

Computing a data-dependent triangulation as high-quality approximation,
i.e. low approximation error, of an image is a hard problem, which can be solved
using simulated annealing (SA). However, this requires a large number of lo-
cal, possibly rejected modifications of the triangulation, causing SA to converge

G. Bebis et al. (Eds.): ISVC 2007, Part I, LNCS 4841, pp. 351–362, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

352 B. Lehner, G. Umlauf, and B. Hamann

slowly. To speed it up we propose modified probability distributions for the
atomic modifications guided by the local approximation error and its variance.

In Section 2 we review related work on piecewise linear approximation and
image compression. We outline in Section 3 the basic notation and introduce in
Section 4 the concept of SA. In Section 5 we show how this concept is used to
approximate images. Here, also the concept of adapted probability distributions,
so-called guides, methods to control the number of triangles adaptively, and ter-
mination conditions for SA are discussed. In Section 6, we present experimental
results of our method compared to other approaches.

2 Related Work

In 3D a 2-manifold can be approximated by a triangle mesh. In [1] an initial
mesh is modified optimizing vertex positions and their connectivity to minimize
a global approximation error. In [2] a fine mesh is simplified by collapsing edges
according to a local criterion. Both methods cannot be applied to images, since
they only work on the geometry of the mesh and not on attributes such as color.

Piecewise linear approximation of a 2D scalar field induced by a triangulation
requires an error norm to measure the approximation quality. Computing a low-
error triangulation is usually done iteratively. Greedy triangulations (GT) are
computed by minimizing the error in every step. Since they are relatively simple,
they are fast, but may fail to find a good approximation because of local minima.

In [3,4] a greedy refinement strategy is used. Starting with a Delaunay trian-
gulation vertices are inserted at pixels of maximum L∞-error or Sobolev-error,
emphasizing regions of large changes in the image. The vertices are inserted by
subdividing the corresponding triangle.

A greedy decimation strategy works by removing vertices from a fine initial
triangulation, e.g., progressive meshes [5]. Although defined for 2-manifolds, in
[5] it is also applied to color images. The error is measured by the L2-norm, and
a vertex is removed by an edge collapse. The method in [6] is similar, but mea-
sures approximation quality also by the appearance of the mesh from different
viewpoints. Applied to color images it yields the same method as [5].

The method presented in [7] exhausts the space of valid triangulations more
thorough, finding better approximations at higher computational costs. It alter-
nates between refinement and decimation phases. However, it can get caught in
infinite loops, e.g., alternating between removal and insertion of the same vertex.

Another class of algorithms works only with edge flips keeping the number
of vertices fixed. In [8] the error is measured by the L2-norm. Starting with
an arbitrary triangulation, iteratively a random edge is chosen and flipped, if
that reduces the error. As every greedy strategy, this may lead to situations
where the algorithm gets stuck in local minima. Simulated annealing is used
in [9] to improve these results. By also allowing for edge flips that increase
the error with a slowly decreasing probability, better approximations can be
found. In [10] this approach is extended by operations changing the position
of vertices. Specialized to images, [11] simplifies these operations and adds a

Image Compression Using Data-Dependent Triangulations 353

greedy refinement strategy to improve the initial triangulation. Our method
further improves the performance and results of these approaches.

The main focus of methods to create vector images from raster images is
editability of the output and not compression. A general framework for this
transformation is described in [12]. Edge detection followed by a constrained
Delaunay triangulation is used to split the image into triangles of uniform color.
Incident triangles of similar color are combined to polygons. It yields C−1 ap-
proximation of the image. In [13] also the color gradient of every triangles is
estimated, and triangles with similar color gradients are combined, but only
yielding a C−1 approximation at polygon borders.

Most image compression algorithms are associated with a file format. The GIF
and PNG file formats [14] store an image using lossless compression. On natural
images both formats usually reach compression ratios of only 0.5 or less. The
JPEG format [14] uses a lossy compression. For encoding the image is partitioned
into square blocks, transformed into the frequency domain using the discrete
cosine transform (DCT), and small coefficients are dropped. The JPEG2000
format [15] does not partition the image and uses a wavelet transformation
instead of the DCT. For both formats the user can select a threshold for small
coefficients, trading off between file size and image quality. Because our method
is also lossy, we use these two formats for comparison.

3 Notation

An image I : Ω → R
3 of width w and height h maps every pixel of Ω = Zw ×Zh

to a color. This color is represented by L, a and b of the CIEL*a*b* color model
[16], where color differences, as they are perceived by the human eye, can be
measured as the L2 distance of two colors.

A triangulation t = (V, E, F) consists of a set of vertices V = {v1, . . . , vn} ⊂
Ω, edges E ⊂ V 2, and triangles F ⊂ V 3. The convex hull of M ⊂ R

2 is denoted
by CH(M). A triangulation is valid, if it covers CH(Ω). We denote by T the
set of all valid triangulations t of Ω. The set of triangles incident to an edge e is
F (e) = {f ∈ F |e ∈ f}, the set of triangles incident to a vertex v is F (v) = {f ∈
F |v ∈ f}, and P (f) = Ω ∩ CH(f) is the set of pixels within triangle f . The
approximation At : Ω → R

3 induced by t is the piecewise linear interpolant of I
at the vertices. For the approximation we measure the error per pixel p = (x, y),
triangle f , edge e, vertex v, and set of edges Se ⊂ E or vertices Sv ⊂ V

Δ(p) = (I(p) − At(p))2, Δ(f) =
∑

p∈P (f)

Δ(p), Δ(e) =
∑

f∈F (e)

Δ(f),

Δ(v) =
∑

f∈F (v)

Δ(f), Δ(Se) =
∑

e∈Se

Δ(e), Δ(Sv) =
∑

v∈Sv

Δ(v).

The total error used to measure the global approximation quality is

ΔG =
√ ∑

(x,y)∈Ω

Δ(x, y)/(h · w).

354 B. Lehner, G. Umlauf, and B. Hamann

4 The Principle of Simulated Annealing

Simulated annealing is a stochastic, iterative method to find the global extremum
s∗ of a given function f(s) : D → R in a large search space D. It is based on the
following approach: Starting with an arbitrary setting s0 ∈ D, slightly modify
s0 to get s′0 ∈ D. Using a probability distribution paccept : R

2 × N → [0, 1], s′0
is accepted with probability paccept(f(s0), f(s′0), 0), i.e., s1 = s′0, otherwise it is
rejected, i.e., s1 = s0. Iterating the process yields a sequence of settings si which
converges to the global extremum s∗ under certain assumptions on paccept [17],

paccept(f(a), f(b), i) =
{

exp ((f(a) − f(b))/τi) for f(b) > f(a)
1 for b ≤ a

, (1)

where τi = τ0τ
i
base is a temperature initialized with τ0, that is decreased to zero

by a factor τbase ∈]0, 1[in every iteration. Since settings that increase f might
be accepted depending on (1), the sequence of si can escape local minima. The
temperatures τ0 and τbase define the annealing schedule. If τi decreases too fast,
the sequence can get stuck in a local minimum. If it decreases too slowly, the
sequence converges to a better local minimum using more iterations. It can be
shown that for the right annealing schedule the probability to find the global
minimum converges to one, usually requiring a large number of iterations [17].

5 Simulated Annealing for Image Approximation

5.1 Basic Simulated Annealing (BSA)

The basic approach to find an approximation At for an image I is based on
[10,11]. To find t minimize ΔG(t) for all t ∈ T using (1), where τ0 and τbase are
user-defined parameters. There are three modifications to generate t′i from ti:

Edge Flips. change mesh connectivity: If the union of two triangles {va, vb, vc},
{vb, vc, vd} is convex, they are replaced by {va, vb, vd}, {va, vd, vc}, see Fig. 1
and [8].

Local Vertex Moves. change vertex positions locally: A vertex of ti is as-
signed a new position in its vicinity while changing the local connectivity as
little as possible without generating degenerate triangles, see Fig. 2 and [10].

Global Vertex Moves. change vertex distribution globally in two steps:
a) A vertex is removed from ti and the resulting hole is triangulated.
b) A new vertex v /∈ ti is inserted to ti either by splitting the triangle that

contains v, or by splitting the two adjacent triangles into two triangles, if
v lies on an edge of ti, and a locally optimal data-dependent triangulation
for v using the method in [8] is applied.

Then, one iteration of BSA consists of five steps:

1. Select one modification at random, with probability pf for an edge flip, pl

for a local vertex move, and pg = 1 − pf − pl for a global vertex move.

Image Compression Using Data-Dependent Triangulations 355

vava

vb vb

vc vc

vd vd

edge flip

Fig. 1. An edge flip

local
vertex
move

Fig. 2. A local vertex move. The gray edge
is flipped to prevent a degenerate triangle.

2. Select the edge for the edge flip or the vertex for the local/global vertex at
random, where every edge or vertex has the same uniform probability.

3. If the selected modification is a vertex move, select the new vertex position
at random, where every new position has the same uniform probability.

4. Generate t′i from ti using the selected modification as determined in 1.-3.
5. The modified triangulation t′i is accepted or rejected using (1), i.e.,

ti+1 =
{

t′i with probability paccept(ΔG(ti), ΔG(t′i), i),
ti if t′i is rejected.

The initial triangulation t0 is computed similar to that in [11]: Starting with
the four corner vertices, we repeatedly insert a new vertex v into f ∈ F with
largest error Δ(f) at its error barycenter, but instead of using a Delaunay cri-
terion as [11], we construct a locally optimal data-dependent triangulation for v
using the method in [8].

5.2 Guided Simulated Annealing (GSA)

The BSA finds a high-quality data-dependent approximation to an image with
a large number of iterations. Therefore, we adapt the probability distributions,
so-called guides, to speed up BSA: In steps 2. and 3. we select edges, vertices and
new positions in regions of large approximation error with a higher probability.
We use edge/vertex guides for the selection of edges and vertices and position
guides for the selection of new vertex positions.

Edge Guide. Denote by Eflippable the set of edges incident to two triangles
forming a convex quadrilateral. To prefer edges in regions of large approxi-
mation error, e ∈ Eflippable is selected with probability

pflip(e) = Δ(e)/Δ(Eflippable). (2)

Local Vertex Guide. Denote by Vmovable the set of all vertices except the
four corners of an image. To prefer vertices in regions of large approximation
error, v ∈ Vmovable is selected with probability

plocal(v) = Δ(v)/Δ(Vmovable). (3)

356 B. Lehner, G. Umlauf, and B. Hamann

(a) Original image. (b) Triangulation. (c) Approximation.

Fig. 3. Original image (550 kB) (a), the triangulation (711 vertices) (b), the approxi-
mate image (∼4 kB) (c)

Global Vertex Guide. For the global move we have to remove an “unimpor-
tant” vertex changing the approximation error only a little. For this we use
the variance Var(v) of the gradient of At for the triangles incident to a ver-
tex v. Within each triangle f of Ati the color gradient g(f) = ∇ (Ati)|f is
constant. So, the mean gradient and its variance for v are defined as

ḡ(v) =
1

|F (v)|
∑

f∈F (v)

g(f) and Var(v) =
1

|F (v)|
∑

f∈F (v)

(g(f) − ḡ(v))2.

If Var(v) is small, the color gradients of the triangles incident to v are sim-
ilar. Removing v and triangulating the hole leads to new triangles with a
similar color gradient, changing approximation quality only a little. So, we
use w(v) = (Var(v)+ε)−1, ε > 0, to guide the removal and select v ∈ Vmovable
for a global move with probability

pglobal(v) = w(v)
/ ∑

v∈Vmovable

w(v). (4)

For the new vertex position we prefer a position with a large approximation
error Δ(x, y). The position guides for the local and the global move only differ
in the set Fselect of possible triangles:

Fselect =
{

F for a global move,
F (v) ∪ {f ∈ F |f ∩ F (v) ∈ E} for a local move.

The new position is selected using the following guide:

Position Guide

a) To prefer triangles with a large approximation error, select a triangle
fselect ∈ Fselect with probability

ptriselect(f) = Δ(f)/Δ(Fselect). (5)

Image Compression Using Data-Dependent Triangulations 357

b) To prefer positions with a large approximation error, select the new
position ωselect ∈ fselect with probability

pposselect(ω) = Δ(ω)/Δ(fselect). (6)

5.3 Acceleration Trees

Using guides leads to less iterations

Fig. 4. An example of the acceleration
tree for six vertices/edges/triangles

to achieve highly similar approximation
error, see Table 1. But computing the
guides requires additional effort increas-
ing the total computation time. Every
guide involves computing weights for all
vertices/edges/triangles from a set of
candidates, see (2) – (5), and for the
selection the sum of weights normal-
izes the probabilities. The complexity
for computing these sums can be re-
duced by storing the weights in a binary tree, the so-called acceleration tree,
and updating only those that are changed by a modification with O(log n).
All leaves have the same depth 	log(n)
 and contain the weights of the ver-
tices/edges/triangles. The inner nodes contain the sum of their siblings, i.e., the
sum of all leaves of the corresponding subtree. If the number of leaves is not a
power of two, some inner nodes have no right sibling. The root contains the sum
of all weights. Fig. 4 shows an example of an acceleration tree.

To select a vertex/edge/triangle according to its probability, we use a uni-
formly distributed random number r ∈ [0, 1[and multiply it with the sum of
weights in the root of the tree and trace it down as follows: Denote by wleft and
wright the weight of the left and right sibling of the current node. If r < wleft, we
proceed with the left sibling; if r ≥ wleft, we set r = r−wleft and proceed with the
right sibling. We repeat this until we reach a leaf, and select the corresponding
vertex/edge/triangle. This also requires only O(log n) operations.

A separate acceleration tree instance is used for each of the following guides:

Edge Guide. The leaves store Δ(e) for every e ∈ Eflippable.
Local Vertex Guide. The leaves store Δ(v) for every v ∈ Vmovable.
Global Vertex Guide. The leaves store w(v) for every v ∈ Vmovable.
Position Guide. The leaves store Δ(f) for every f ∈ F for global vertex moves.

We do not use acceleration trees for local vertex moves, because Fselect contains
only a small number of triangles and does not grow linearly with the number
of triangles or vertices of the triangulation. An acceleration tree cannot be used
to speed up the selection of a pixel within a triangle for the second step of
the position guide. Fig. 6 shows the speed-up that is gained by acceleration
trees.

358 B. Lehner, G. Umlauf, and B. Hamann

5.4 Adaptive Number of Vertices

In general, the more triangles used, the better the approximation. But it depends
very much on the complexity, size of details and noise of the image how many
triangles are needed to achieve a user-specified error. Therefore, also the number
of vertices is changed during the simulated annealing procedure.

The approximant At is piecewise linear and we observed that the approxi-
mation error is O(n−1), where n is the number of vertices. Thus, there exists
a constant α with ΔG ≈ α

n for which a given error Δgoal can be achieved by
an estimated number of vertices ngoal ≈ n ΔG/Δgoal. To reach ngoal vertices, in
every iteration additional vertices can be inserted or removed with probability

pchange = n/m · |1 − ΔG/Δgoal| ,

where m is the number of iterations to reach ngoal for constant pchange. A vertex
is inserted or removed by a variant of the Global Vertex Move:

– If ΔG ≥ Δgoal a new vertex is inserted by Global Vertex Move b) with
position guides followed by the local optimal data-dependent triangulation.

– If ΔG < Δgoal a vertex is removed by Global Vertex Move a) with the
global vertex guide.

Note that insertion/removal of vertices can happen in every iteration before
step 1., independently of the rest of the simulated annealing. Its acceptance
probability is one, since a vertex removal always increases ΔG.

5.5 Termination Conditions and Image Compression

There are several termination conditions for simulated annealing focussing on
run-time, memory consumption or approximation quality:

Simulation Time. The iteration stops after a predefined time. It can be used
in combination with the next two conditions.

Triangulation Complexity. Changing the number of vertices adaptively, the
iteration stops after a predefined number of vertices or triangles is reached.

Specified Error. The iteration stops after reaching the predefined error Δgoal.
If ΔG differs from Δgoal only by |1 − ΔG

Δgoal
| < 0.03 for example, only a fixed

number of additional iterations mpost = max(1000, 0.1m) are done where m
is the number of iterations done so far. If during these iterations ΔG differs
from Δgoal by more than 3%, the simulation continues.

For every approximation At we stored coordinates, i.e. 	log2(|Ω|)
 bits per ver-
tex, and colors, i.e. 24 bits per vertex, for every vertex and the connectivity of
the mesh with [18], i.e. on average two bits per triangle. Since only an approx-
imation is stored, the compression is lossy. Experiments revealed that further
compression of the color and coordinate components is hardly possible, so these
are stored uncompressed. Using the second termination condition enables the
user to set a limit for the required memory. For the third termination condition
GSA uses as many vertices and triangles as needed to achieve Δgoal.

Image Compression Using Data-Dependent Triangulations 359
Δ

G

Iterations

0 20000 40000 60000 80000 1000000

2

4

6

8

10

12

14
No Guides

Selection Guides
Placement Guides

Selection & Placement Guides

Fig. 5. Decrease of ΔG using different
combinations of guides

Number of vertices

C
o
m

p
u
ta

ti
o
n

ti
m

e
[s

ec
]

Using acceleration trees
No acceleration trees

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

Fig. 6. Time for 500 iterations of simu-
lated annealing for different numbers of
vertices with/without acceleration trees

6 Results

All experiments were performed on a computer with an Intel Pentium 4PC,
2.66 GHz, 512 kB cache, 1 GB RAM.

Fig. 5 compares the approximation error as a function of number of iterations
of the simulated annealing method for different combinations of guides. It shows
that using guides does not corrupt the convergence of the simulated annealing
method. The graphs show that the fastest decrease in approximation error is
achieve by using all guides, and that placement guides have a higher impact
than selection guides.

Fig. 6 compares the computation time of 500 iterations of GSA for Fig. 3(a)
with and without acceleration trees for an increasing fixed number of vertices.
It shows that for more than 700 vertices the overhead for the acceleration trees
is compensated by the faster computation of the weights. For images with high
complexity and many vertices the acceleration trees give a significant speed-up.

Table 1. ΔG for Fig. 7 for different methods

For comparison Fig. 7 shows SA [11] GSA GT [5] JPG JPG
2000

Color
model RGB RGB Lab Lab Lab Lab
ΔG 17.26 16.45 6.00 6.16 10.38 6.81

approximations of the Lena im-
age (512 × 512 pixels, 786 440
bytes) using five different meth-
ods as listed in Table 6. The file
size of the compressed images is
∼ 5 750 bytes. Figs. 7(b) and
7(c) were computed with 300 000 iterations, the triangulations of Figs. 7(b), 7(c),
and 7(f) contain 1 000 vertices. For comparison with the results provided in [11],
the GSA was also computed using the RGB color model (see Table 6). GSA
produced the smallest ΔG of the tested methods. Its approximation (Fig. 7(b))
misses some high-frequency details, but its overall impression is smooth, whereas

360 B. Lehner, G. Umlauf, and B. Hamann

(a) Lena image. (b) GSA. (c) SA [11].

(d) JPEG. (e) JPEG2000. (f) GT [5].

Fig. 7. Original image (∼770 kB) (a), and approximations (∼5 750 bytes) using GSA
(b), SA [11] (c), JPEG (d), JPEG2000 (e), and GT [5] (f), (courtesy USC SIPI)

(a) ΔG = 3.0. (b) ΔG = 2.0. (c) ΔG = 1.5. (d) ΔG = 1.0.

Fig. 8. Approximations of the image shown in Fig. 3(a) with different errors ΔG

JPEG and JPEG2000 provide some of the detail, but lead to a rough and
discontinuous overall impression.

Figs. 3 and 8 show examples of the results of our compression algorithm
summarized in Table 1. The original image shown in Fig. 3(a) has 384×512 pixels

Image Compression Using Data-Dependent Triangulations 361

Table 1. Comparison of approximations of Fig. 3(a)

ΔG Itera- Time Verti- Size Bits per Compr. Fig.
tions [sec] ces [bytes] pixel rate

3.0 18 715 18.51 73 450 0.0018 1:1 130 8(a)
2.0 24 109 19.46 176 1 039 0.042 1: 568 8(b)
1.5 27 408 22.64 385 2 242 0.091 1: 263 8(c)
1.25 36 173 38.67 711 4 115 0.17 1: 143 3(c)
1.0 47 370 97.92 2 256 11 689 0.47 1: 50 8(d)

and is stored with 589 840 bytes. Fig. 3(b) shows the underlying triangulation
of Fig. 3(c) for ΔG = 1.25. The number of iterations and the number of vertices
increase as ΔG decreases. Thus, best compression rates and lowest computation
times are achieved for low image quality and vice versa, see Figs. 8(a) and 8(d).

7 Conclusions and Future Work

The method for the construction of a piecewise linear representation presented
in this paper can be used for the construction of high-quality approximations of
images. These approximations have high compression rates comparable or even
superior to JPEG compression results. Considering the approach discussed in
[10,11], our work extends their approach in the following ways:

1. By using guides with acceleration trees we achieve higher compression rates
and approximation quality.

2. By adaptively changing the number of vertices the approximation quality
can be controlled.

3. Different termination conditions allow for different optimization objectives.
4. Memory requirements for our image approximation are compared to those

of JPEG and JPG2000 image compression.

There are some additional research issues we want to work on in the future.
The guides can be further improved, for example, by using sharp features de-
tected in the image as attractors for vertices. We plan to investigate to what
extend the sliver triangles can cause aliasing effects when scaling the triangula-
tion. Using spline interpolation instead of linear interpolation could improve the
approximation quality. We also plan to extend the method to the compression
of videos, enhancing compression rates using the coherence of successive frames.

Acknowledgments

This work was supported by the DFG IRTG 1131, “Visualization of Large and
Unstructured Data Sets”, University of Kaiserslautern, and NSF contract ACI
9624034 (CAREER Award) and a large ITR grant, University of Davis. We thank
the members of the Visualization and Computer Graphics Research Group at

362 B. Lehner, G. Umlauf, and B. Hamann

IDAV. In particular, we express our special thanks to Oliver Kreylos, for his
support at the beginning of this project, and Klaus Denker for his help on the
implementation of the software.

References

1. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimiza-
tion. In: SIGGRAPH 1993, pp. 19–26 (1993)

2. Gao, J., Zhou, M., Wang, H.: Mesh simplification with average planes for 3-d image.
Systems, Man, and Cybernetics 2, 1412–1417 (2000)

3. Garland, M., Heckbert, P.: Fast polygonal approximation of terrains and height
fields. Technical report, CS Department, Carnegie Mellon University (1995)

4. Schaetzl, R., Hagen, H., Barnes, J., Hamann, B., Joy, K.: Data-dependent trian-
gulation in the plane with adaptive knot placement. In: Brunnett, G., Bieri, H.,
Farin, G. (eds.) Geometric Modelling, Comp. Suppl., vol. 14, pp. 199–218. Springer,
Heidelberg (2001)

5. Hoppe, H.: Progressive meshes. In: SIGGRAPH 1996, pp. 99–108 (1996)
6. Lindstrom, P., Turk, G.: Image-driven simplification. ACM Trans. Graph. 19, 204–

241 (2000)
7. Pedrini, H.: An improved refinement and decimation method for adaptive terrain

surface approximation. In: Proceedings of WSCG, Czech Republic, pp. 103–109
(2001)

8. Dyn, N., Levin, D., Rippa, S.: Data dependent triangulations for piecewise linear
interpolations. IMA J. of Numerical Analysis 10, 137–154 (1990)

9. Schumaker, L.L.: Computing optimal triangulations using simulated annealing.
Computer Aided Geometric Design 10, 329–345 (1993)

10. Kreylos, O., Hamann, B.: On simulated annealing and the construction of linear
spline approximations for scattered data. IEEE TVCG 7, 17–31 (2001)

11. Petrovic, V., Kuester, F.: Optimized construction of linear approximations to image
data. In: Proc. 11th Pacific Conf. on Comp. Graphics and Appl., pp. 487–491 (2003)

12. Prasad, L., Skourikhine, A.: Vectorized image segmentation via trixel agglomera-
tion. Pattern Recogn. 39, 501–514 (2006)

13. Lecot, G., Levy, B.: Ardeco: Automatic region detection and conversion. In: Euro-
graphics Symposium on Rendering conf. proc. (2006)

14. Miano, J.: Compressed Image File Formats. JPEG, PNG, GIF, XBM, BMP. In:
SIGGRAPH series, Addison-Wesley Longman, Amsterdam (1999)

15. Taubman, D.S., Marcellin, M.W.: JPEG2000: Image Compression Fundamentals.
In: Standards and Practice, Springer, Heidelberg (2002)

16. Wyszecki, G., Stiles, W.: Color Science: Concepts and Methods, Quantitative Data
and Formulae. Wiley-Interscience (1982)

17. Kirkpatrick, S., Vecchi, M.P., Jr. Gelatt, C.D.: Optimization by simulated anneal-
ing. Science Magazine, 671–680 (1983)

18. Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. IEEE
TVCG 5, 47–61 (1999)

	Introduction
	Related Work
	Notation
	The Principle of Simulated Annealing
	Simulated Annealing for Image Approximation
	Basic Simulated Annealing (BSA)
	Guided Simulated Annealing (GSA)
	Acceleration Trees
	Adaptive Number of Vertices
	Termination Conditions and Image Compression

	Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

