
VIDEO COMPRESSION USING
DATA-DEPENDENT TRIANGULATIONS

Burkhard Lehner1, Georg Umlauf2
Geometric Algorithms Group

Department of Computer Science
University of Kaiserslautern

67663 Kaiserslautern, Germany

Bernd Hamann3
Institute for Data Analysis and Visualization (IDAV)

Department of Computer Science
University of California, Davis

CA 95616-8562, USA

ABSTRACT

We present a method for compression of video clips using data-dependent triangulations. This technique utilizes the time
coherence of a video to transfer information from one frame to the next, reducing the computation time for the compres-
sion. The results of this method are compared to those obtained with MJPEG and MPEG-2.

KEYWORDS

Video compression, data-dependent triangulations, comparison to MPEG.

1. INTRODUCTION

In today’s multimedia environments, video clips play an important role, since the resolution of digital video
cameras and low-cost web-cams have increased, and web 2.0 platforms have led to a wide propagation of
transmitting video content over the internet, and storing them on servers. This leads to high memory and
transmission bandwidth requirements. To handle these, the content can be compressed. Lossy compressions
achieve high compressions ratios, while preserving the essential information for human perception.
We use data-dependent triangulations to store the frames of a video clip in a compressed form, but its compu-
tation requires substantial computational effort. To speed this process up, we make use of the time coherence
of a video, reusing the optimized triangulation of a frame for the next frame. The compressed frame can be
displayed efficiently on current graphics hardware with fast rendering of shaded triangles.
In Section 2 we review some methods to construct data-dependent triangulations for images, and describe
some wide spread video compression approaches. After defining our notation in Section 3 we describe in
Section 4 our method of triangulation reuse for the compression. Section 5 shows some timing and numerical
approximation quality error results, and compares our method to some other video compression methods.

2. RELATED WORK

A color image can be stored in compressed form by a triangulation of the image domain approximating the
image when interpolating the color of the triangle vertices linearly within each triangle. Only the triangula-

1 lehner@informatik.uni-kl.de
2 umlauf@informatik.uni-kl.de
3 hamann@cs.ucdavis.edu

tion and the vertex colors need to be stored to reconstruct the image approximation. The task is to find a tri-
angulation with a small number of vertices and a low approximation error.
Algorithms to find such a triangulation have been discussed in Demaret et al. (2006), Garland & Heckbert
(1995), and Hoppe (1996) where greedy strategies were used to minimize the approximation error. These
methods can get stuck in local minima. Another approach to optimize a triangulation is to apply a series of
local modification operations to an initial triangulation. Some quality measure is used to judge the improve-
ment achieved by the operation. In Dyn at al. (1990) and Schumaker (1993) the only operation is the edge
swap. The vertices’ positions are defined by the initial triangulation. To determine the next operation, a
greedy method is used. To escape local minima, Schumaker (1993) used the concept of simulated annealing.
Kreylos & Hamann (2001) introduced a vertex move as additional modification operation. Optimizing the
connectivity and the position of the vertices further improves the approximation quality. Lehner et al. (2007)
used a set of heuristics, so-called guides, to determine the next modification operation to reduce the number
of necessary iterations significantly. The resulting method is called guided simulated annealing (GSA).
The most common compression format for video compression is MPEG-2, as described in Watkinson (2004).
It takes advantage of pixel coherence in space and in time. Each frame of the video is stored as one of three
types: I-frames simply store a frame as a JPEG image, see Pennebaker & Mitchell (1992). P-frames store the
difference to the preceding reference frame (I-frame or P-frame) using motion vectors. B-frames use a pre-
ceding and a following reference frame to further improve the prediction and reduce the required storage
space. MotionJPEG (MJPEG) is a simpler video compression standard than MPEG. Every frame is stored as
I-frame ignoring time coherence. The compression results are usually worse than MPEG-2.

3. NOTATION

A video V is a series (f1,…,fn) of frames, where every frame fi: Ω→IR3 is an image in the domain Ω =
INwxINh of width w and height h pixels. Each pixel is mapped to a color, represented by the L, a, and b
value of the CIEL*a*b* color model, see Wyszecki & Stiles (1982).
A triangulation t = (V, E, F) consists of a set of vertices V = {v1,…, vm}⊂Ω, edges E⊂V

2, and faces F⊂V
3

which form a simplicial complex. The approximation At: Ω → IR3 induced by a triangulation t of frame fi is
the piecewise linear interpolant of fi at the vertices. The approximation error ΔG(t, f) of a triangulation t for a
frame f is the root mean square error (RMSE) or the widely used peak signal noise ratio (PSNR) [dB]

() () ()()
()

() ()2
10 max

, PNSR 20 log ,G t G

x,y
t , f A x, y f x, y / h w /

∈

Δ = − ⋅ = Δ Δ∑
W

where Δmax is the maximum possible peak signal, which is Δmax=150.584 for the CIEL*a*b* color space.
Thus, an approximation with lower ΔG or higher PSNR has a better approximation quality. For videos a
PSNR of 30–40 usually is sufficient, since the human eye can see every frame for only a fraction of a second,
and is not able to detect approximation artifacts during that time.

4. VIDEO COMPRESSION

For compressing a video V, every frame fi is compressed using guided simulated annealing (GSA). If k is the
number of guided simulated annealing iterations used to find a good triangulation for a frame fi, compressing
V has complexity O(nk) if we start from scratch for every frame. We call this method brute force (BF).
The difference between two successive frames fi and fi+1 is usually small, since objects and cameras move
continuously. Therefore, to speed up the calculation of ti+1, we can use the triangulation ti of frame fi as initial
triangulation for the GSA process for fi+1. If the difference between fi and fi+1 is small, ti will likely be a good
initial triangulation for fi+1.
If a GSA process on an image starting with an arbitrary triangulation requires k1iterations, using a good initial
triangulation can reduce this number to k2á k1. Since f0 has no preceding frame, calculating t0 requires k1

iterations, but for all other frames, k2 iterations are sufficient. The time complexity to compress the video V is
O(k1 + (n – 1) k2). We call this method triangulation reuse (TR).
One disadvantage of TR is that the first frame is processed with k2à k1 iterations, because there is no preced-
ing triangulation we can use as initial triangulation. If in a real-time scenario the frames arrive with a con-
stant delay, the following frames would have to be buffered before being processed. A variant of the TR ap-
proach is to use k1 = k2, i.e., a small number of iterations also for the first frame. Consequently the compres-
sion time for every frame is about the same. We call this variant triangulation reuse to go (TRG). Presuma-
bly, t1 of TRG has a lower quality than t1 of TR, and since it starts with an initial triangulation of lower qual-
ity, also t2 of TRG will probably have lower quality than t2 of TR. Our experiments have shown that the qual-
ity of TRG catches up with that of TR after a few frames, see Section 5 and Figure 3. If it is acceptable that
the first few frames of a video have a lower quality and if it is inevitable that the compression time for all
frames is about the same, TRG is an alternative to TR.
To store the compressed video, we simply use the file format described in Lehner et al. (2007). Since the
number of vertices is the same for every ti, the storage space for the vertex positions and the vertex colors is
exactly the same. The connectivity using EdgeBreaker of Rossignac (1999) requires two bits per triangle, and
since the number of triangles is about twice the number of vertices, this is also about the same for every ti.
Spending some extra bits we can achieve a constant size of every ti and by this get quick random access to
every frame.

5. RESULTS

We used one small video clip V we shot on our own to test our method. It shows a man standing in front of a
white wall, moving his head and arms and talking. Its resolution is 640 x 480 pixels. It consists of 203 frames
recorded at 17 frames per second, i.e., 11.9 s length. Figure 1 shows one frame fi of each clip on the left, the
corresponding triangulation ti in the middle, and the induced approximation Ati on the right.
The original video, together with the results of the compression (using our TR method, MJPEG, and MPEG),
can be found in the supplemental material at http://www-umlauf.informatik.uni-kl.de.

Figure 1: Video V compressed with 1500 vertices per frame: original frame fi (left), triangulation ti (middle), approximation Ati (right).

We compare the methods described in Section 4: brute force (BF) with k = 300,000 iterations, triangulation
reuse (TR) with k1 = 300,000 and k2 = 10,000 iterations, and triangulation reuse to go (TRG) with k1 = k2 =
10,000 iterations. For comparison, we also compressed the videos with the brute force method, but only using
k = 10,000 iterations per frame (brute force short, BFS). This approach requires the same number of iterations
as TRG, but starts with an arbitrary triangulation for each frame. The experiments were performed on an Intel
Core Duo CPU, 1.73 GHz, 2 MB cache, 1 GB RAM. All triangulations have 1,500 vertices.
The diagrams in Figures 3 and 4 show the approximation quality for every frame of the compressed videos
for the four methods. The quality is measured as the peak signal noise ratio (PSNR) for every frame. As ex-
pected, the BF method leads to the best results but its execution time is up to a factor of 30 larger than that of
the other methods, see Table 1. The TR method produces results that are of less quality when compared to
those obtained via BF, but is much better than BFS, although it uses the same number of iterations per frame
except for the first frame. The TRG method has similar results as TR, and uses the same number of iterations
with the same computation time as BFS. TRG has a lower quality than TR for the first few frames of the vid-

eo, but after only a few frames it equalizes. For V this happens at frame f4, see Figure 3. At frame f5 TRG has
even a higher quality than TR, supposedly due to the random nature of simulated annealing.
For V every compressed frame requires 8,830 bytes, leading to a total of 1,792,506 bytes for the whole video.

 35

 36

 37

 38

 39

 40

 41

 42

 0 50 100 150 200

P
S
N
R

[
d
B
]

Frame

BF
TR
TRG
BFS

Figure 2: Approximation quality for V of the four described approaches.

 36.5

 37

 37.5

 38

 38.5

 39

 39.5

 40

 40.5

 41

 41.5

 0 2 4 6 8 10

P
S
N
R

[
d
B
]

Frame

BF
TR
TRG
BFS

Figure 3: First eleven frames of Figure 2.

 30

 32

 34

 36

 38

 40

 42

 0 50 100 150 200

P
S
N
R

[
d
B
]

Frame

TR
MPEG2
MJPEG

Figure 4: Comparison of TR, MJPEG and MPEG-2 for V.

To compare our video compression methods with state-of-the-art algorithms, we compressed V using
MJPEG and MPEG-2 compression, using the software mencoder with the lavc codec. We adjusted
the compression parameters to produce a file of about the same size. For V we used the parameter
vqmin=15 to produce an MJPEG video file of size 1,820,354 bytes. For the MPEG-2 video compression we
had to use a rate of 25 frames per second, since frame rates of 17 are not supported, but this does not affect
the approximation quality.
Figure 4 shows a comparison of the approximation quality frame by frame of the TR method described in this
paper to the results of the MJPEG and MPEG-2 videos. Table 1 shows the numerical results. For these vid-
eos, TR was superior to MJPEG, and it was even slightly better than MPEG-2, although MPEG-2 utilizes
time coherence to compress the output even more, which is not yet the case for TR.

 100
Frame

 PSN
R

 [dB
]

PSN
R

 [dB
]

 150 200 50 0
 35

 36

 37

 38

 39

 40

 41

 42

 10 8 6 4 2 0 200 150 100 50 0

 37

 38

 39

 40
 41

 30

 32

 34

 36

 38

 40
 42

 BF
TR

TRG
BFS

PSN
R

 [dB
]

BF
TR

TRG
BFS

TR
MPEG-2
MJPEG

Frame Frame

Table 1: Results of compression of V.
 BF BFS TR TRG MJPEG MPEG-2

Iterations 61M 2,030k 2,320k 2,030k — — — —

Time 11h38’ 22’14” 25’40” 22’20” — — — —
PSNR [dB] 41.1 36.9 38.9 38.8 30.6 37.9

6. CONCLUSIONS AND FUTURE WORK

Our results show that the triangulation reuse technique presented in this paper reduces the computation time
for compressing video clips using data-dependent triangulations.
To further reduce the computation time one could estimate the optical flow to predict an even better initial
triangulation, or one could try to parallelize the calculations of the GSA: Several local modification opera-
tions could be performed in parallel, as long as their areas of modification do not interfere.
To further improve the approximation quality or the compression ratio one could utilize the time coherence
of the successive frames. For this purpose, only that part of the triangulation that changes from one frame to
the next could be transmitted. Furthermore, the color at the vertex positions could be estimated from the ap-
proximation of the last frame. Only the difference between estimated and actual color has to be compressed
using arithmetic coding. Another approach is to use volume elements (e.g., tetrahedra) to approximate a vol-
umetric data set, where two dimensions are the pixel coordinates of a frame, and the third dimension repre-
sents time.

ACKNOWLEDGEMENT

This work was supported by DFG IRTG 1131, “Visualization of Large and Unstructured Data Sets,” University of
Kaiserslautern, and NSF contract ACI 9624034 (CAREER Award) and a large ITR grant, University of California, Davis.
We thank the members of the Visualization and Computer Graphics Research Group at IDAV. In particular we express
our special thanks to Oliver Kreylos, for his support at the beginning of this project, and Klaus Denker, for his help on the
implementation of the software.

REFERENCES

L. Demaret, N. Dyn, and A. Iske (2006). Image compression by linear splines over adaptive triangulations.
Signal Process., 86(7):1604–1616.
N. Dyn, D. Levin, and S. Rippa (1990). Data dependent triangulations for piecewise linear interpolations.
IMA Journal of Numerical Analysis, 10(1):137–154.
M. Garland and P. Heckbert (1995). Fast polygonal approximation of terrains and height fields. Technical
report, CS Department, Carnegie Mellon University.
H. Hoppe (1996). Progressive meshes. In SIGGRAPH ’96, pages 99–108, 1996.
O. Kreylos and B. Hamann (2001). On simulated annealing and the construction of linear spline approxima-
tions for scattered data. IEEE TVCG, 7(1):17–31.
B. Lehner, G. Umlauf, and B. Hamann (2007). Image compression using data-dependent triangulations. In
G. Bebis, editor, Int. Symposium on Visualization and Computer Graphics 2007, pages 351–362.
W. B. Pennebaker and J. L. Mitchell (1992). JPEG: Still Image Data Compression Standard. Springer.
J. Rossignac (1999). Edgebreaker: Connectivity compression for triangle meshes. IEEE TVCG, 5:47–61.
L. L. Schumaker (1993). Computing optimal triangulations using simulated annealing. Computer Aided
Geometric Design, 10(3-4):329–345.
J. Watkinson (2004). The MPEG Handbook, Second Edition. Focal Press.
G. Wyszecki and W. Stiles (1982). Color Science: Concepts and Methods, Quantitative Data and Formulae.
John Wiley & Sons.

